
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

NIR Hyperspectral Imaging for 
Mapping of Moisture Content 
Distribution in Tea Buds during 
Dehydration
Keqiang Yu, Yanru Zhao, Xiaoli Li and Yong He

Abstract

This work employed hyperspectral imaging technique to map the spatial distri-
bution of moisture content (MC) in tea buds during dehydration. Hyperspectral 
images (874–1734 nm) of tea buds were acquired in six dehydrated periods (0, 3, 
6, 9, 14 and 21 min) at 80°C. The spectral reflectance of tea buds were extracted 
from region of interests (ROIs) in the hyperspectral images. Competitive adaptive 
reweighted sampling (CARS) was used to select effective wavelengths (EWs) and ten 
representing the wavelengths were selected. The quantitative relationship between 
spectral reflectance and the measured MC values of tea buds was built using partial 
least square regression (PLSR) based on full spectra and EWs. The quantitative 
model established using EWs, which had a result of coefficient of correlation (RP) of 
0.941 and root mean square error of prediction (RMSEP) of 5.31%, was considered 
as the optimal model for mapping MC distribution. The optimal model was finally 
applied to predict the MC of each pixel within of the tea bud sample and built the 
MC distribution maps by utilization of a developed image processing procedure. 
Results demonstrated that the hyperspectral imaging technique has the potential of 
mapping the MC spatial distribution in tea buds in dehydrated process.

Keywords: NIR hyperspectral imaging, tea buds, moisture content,  
spatial distribution, dehydration process

1. Introduction

Tea, one of the most popular beverages worldwide, is of great interest due to its 
beneficial medicinal properties [1, 2]. Tea products are mainly made from the pro-
cessed tea buds or fresh tea leaves of a plant called Camellia sinensis. In the tea process-
ing, a great number of moisture are always changed along with a series of physical 
and chemical reactions. Especially in the drying stage with thermochemical reactions 
under high temperature, variations of moisture content (MC) in tea can directly 
affect smell, taste and others quality characteristics. With the growing consumption 
of the tea products, high qualities of tea products become more and more important 
nowadays. Therefore, in order to produce the high quality of tea products and pro-
long its shelf life, the determination of MC distribution in tea is quite meaningful in 
modern society.
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The conventional way to analyze MC includes the gravimetric method, oven-
dehydrated [3], freeze-dehydrated or lyophilization [4], electronic moisture ana-
lyzer [2], and so on. Those methods are time-consuming, tedious and fail to meet 
the requirements of real-time, on-line detection of MC in tea processing. In addi-
tion, the same sample cannot be reused for any other purpose and those methods 
may debase the quality of tea products through directly touching way.

In recent years, spectroscopy technique has proved to be a powerful tool for 
detecting the MC in tea products and agricultural sideline products. For example, 
Mizukami et al. [5] developed a new method for measuring the moisture in tea 
leaves using an electrical spectroscopy. Diffuse reflectance spectroscopy combined 
with chemometric analysis were employed to investigate MCs in tea [6]. Sinija and 
Mishra [2] employed Fourier transform near infrared (FTNIR) spectroscopy to 
measure MC in green tea. However, spectroscopy technique is not able to provide 
spatial information of quality parameters, which greatly limited its application to 
quantify spatial distribution.

Hyperspectral imaging, a powerful analytical tool, has attracted a great deal of 
attention for the safety detection of agricultural and sideline products. It integrated 
conventional spectral information and digital imaging into one system, which made 
it possible for providing both spectral and spatial information of an object simulta-
neously [7]. Over the past several years, hyperspectral imaging has many potential 
applications for quantifying and controlling of quality parameters with good 
precision. It is widely applying in evaluation of various agricultural products, such as 
beef [8], pork [9] and lamb [10], moisture in prawn [11], mushroom [12], moisture 
in banana [13], strawberry [14] and maturity and firmness of apple [15], and texture 
analysis to classify green tea [16].

However, to the best of our knowledge, applying the hyperspectral imaging 
technique to determine the moisture distribution in tea buds has not been found 
to date. There are also some broadband peaks occurring in the NIR region related 
to the overtone and combination vibrations of hydrogen containing bonds, such as 
O–H, C–H, and N–H [11]. The presence of water (O-H) in the tea buds showed two 
feature wavelengths at 980 and 1450 nm (O–H stretching second and first over-
tones) in NIR region. So, this research employed the NIR hyperspectral imaging for 
predicting and mapping the distribution of MC in tea buds. The steps of the work 
are to: (1) obtain hyperspectral image of tea buds in NIR region of 874–1734 nm and 
measure the MCs of tea bud samples in dehydrated process; (2) extract spectral data 
of the region of interests (ROIs) from the acquired hyperspectral images; (3) select 
the effective wavelengths which carried the most valuable information related to 
MC prediction and build the quantitative models; (4) develop an image processing 
procedure for mapping the spatial distribution of MC in tea buds. The main steps 
involved in building MC distribution maps are presented in Figure 1.

2. Materials and methods

2.1 Pretreatment of tea buds samples

In this research, buds of tea bushes (C. sinensis cv. Longjing 43) were prepared 
for the experiment. Tea bushes were planted about 6 years in the Zijingang campus 
of Zhejiang University, Hangzhou (30°16′N, 120°20′E), China. Each tea bud sample 
contained three fresh leaf blades. A total of 216 tea bud samples were randomly 
collected from different tea clusters on 2 April 2013. At first, random 36 tea buds 
were selected for acquiring the hyperspectral images. Then the remaining 180 
samples were randomly divided into five groups. These five groups of tea buds 
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were implemented to dehydrate at 80°C by an attemperator (IKA@C-MAG HS4, 
Germany) for corresponding five dehydrated times (3, 6, 9, 14 and 21 min), respec-
tively. Meanwhile, all samples were scanned by to acquire hyperspectral images in 
the corresponding dehydrated time.

After acquirement of hyperspectral images, the MC of all samples was measured 
by the gravimetric method according to the Chinese National Standard GB8304-87.  
In detail, all samples were dried in a constant temperature oven at 103°C for 18 h. 
Meanwhile, an electronic balance with accuracy of 0.0001 g was employed to 
weight all samples after acquiring hyperspectral images and drying. All the mea-
surements were carried out in a room at approximate constant temperature of 25°C 
and relative humidity of 35–45%. In addition, all the 216 tea bud samples were 
divided into a calibration set (162 samples) and a prediction set (54 samples) by 
Kennard-Stone (K-S) algorithm [17].

2.2 Hyperspectral imaging acquiring equipment

In this study, a laboratory pushbroom hyperspectral imaging equipment 
(Figure 2) with reflectance mode was employed to scan all the samples. As Yu et al. 
[18] described, the core sensing components of the equipment consisted of several 
parts: a conveyor belt operated by a stepper motor (IRCP0076, Isuzu Optics Crop, 
Taiwan, China); an illumination unit assembled by two 150-W quartz tungsten 
halogen lamps (Fiber-Lite DC950 Illuminator, Dolan Jenner Industries Inc., USA); 
an imaging spectrograph (ImSpector N17E, Spectral Imaging Ltd., Finland) 
covering a spectral range of 874–1734 nm; a CCD camera (C8484-05, Hamamatsu, 
Hamamatsu city, Japan) coupled with a camera lens (OLES23; Specim, Spectral 
Imaging Ltd., Oulu, Finland) and a computer with the spectral-cube data acquisi-
tion software (Isuzu Optics Corp, Taiwan, China), which could set and adjust the 

Figure 1. 
Main steps for building of MC distribution maps in tea buds by using hyperspectral imaging, (1) pre-treatment 
of tea buds; (2) hyperspectral data pre-processing; (3) analyses of spectral data; (4) image post-processing for 
building the MC distribution maps of tea buds.
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speed of conveyer belt, exposure time, binning mode, wavelength range, image 
acquisition, images calibration and so on. Overall, all the components (except 
computer) were fixed inside a dark chamber to avoid any stray light which might 
affect the veracity of hyperspectral imaging equipment.

In order to acquire clear and undistorted hyperspectral images, some parameters 
of the equipment needed to be adjusted before the images acquirement. Firstly, 
illumination unit should set an appropriate intensity and adjust a proper angel to 
make the light gather in a linear area of the conveyor belt just below the imaging 
spectrograph. Then, two reference reflectance panels with reflectance of 99.9 and 
0% were adopted for dark and white reflectance calibration of sample. In this study, 
the distance between samples and the lens was 165 mm. All samples placed on the 
conveyor belt and moved at a speed of 14.5 mm/s to be scanned with an exposure 
time of 5 ms during the image acquisition. Gradually in line by line pattern, a 
hyperspectral image called “hypercube” with dimension of (x, y, λ) was built. In 
this study, the hyperspectral images were obtained with 320 pixels in x-direction, 
n-pixels in y-direction (based on the length of each sample) and 256 wavelengths in 
λ-direction.

2.3 Calibration of hyperspectral images

Because of the existence of dark current in CCD camera and the uneven inten-
sity of illumination in different bands, several bands with weaker light intensity 
contained the bigger noises [19]. Based on this point, the raw hyperspectral images 
(Iraw) required to be calibrated and the calibration process could be finished using 
the following Eq. (1) [20, 21]:

  R =   
 I  raw   −  I  dark  

 ________ 
 I  white   −  I  dark  

    (1)

where, R were the calibrated hyperspectral images of the samples; Idark were the 
dark reference images (~0% reflectance) obtained with light source off; Iwhite were 
the white reference images (~99% reflectance) acquired from a white reference 

Figure 2. 
Schematic diagram of the hyperspectral imaging equipment.
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ceramic tile. Then the calibrated images were used as the basis for subsequent 
processing and analysis.

2.4 ROIs identification and spectral data extraction

Spectral data were extracted by the region of interests (ROIs) function of ENVI 
software. An irregular ROI was identified by initially shape of tea bud in hyper-
spectral image. Then, the mean relative reflectance for each image by averaging 
the spectral responses of each pixel in the ROI was calculated. According to this 
procedure, a total of 216 mean reflectance spectra were obtained from the hyper-
spectral images of tea bud samples. Because of because the response of the CCD 
detector [8] and strong noise existence, the reflectance in two regions of 874–950 
and 1670–1734 nm was rather low and littery. Therefore, hyperspectral images were 
resized to the spectral range of 950–1670 nm with a total of 214 wavebands.

2.5 Chemometric of spectral data processing

Competitive adaptive reweighted sampling (CARS), a novel algorithm for select-
ing important variables [22], was employed to select the effective wavelengths from 
the full range spectra of the calibration in this study. Details of the CARS methodol-
ogy could be found in Li et al. [22].

Partial least square regression (PLSR), one of the most robust and reliable 
analytical tools for modeling, is a linear and supervised multivariate calibration 
method [23]. PLSR projects the spectral data onto a set of orthogonal factors called 
latent variables (LVs), and explores the optimal function by minimizing the error of 
sum squares (finding the optimal LVs), which is typically done by cross-validation 
[24]. The process of extracting the LVs should take the response variable into 
account. In this research, the quantitative model between the spectral reflectance 
and MCs was established using the PLSR.

The performance of a calibration model is usually evaluated according to 
coefficients of correlation (R) and root mean square error (RMSE) in calibration 
(RC, RMSEC), in cross-validation (RCV, RMSECV) and in prediction (RP, RMSEP). 
Generally speaking, a model with larger values of RC, RCV and RP, smaller values of 
RMSEC, RMSECV and RMSEP is wonderful, and it has a small difference between 
RMSEC, RWSECV and RMSEP.

In this research, data extractions, statistical calculations and multivariate 
data analyses were executed with ENVI 4.6 software (ITT Visual Information 
Solutions, Boulder, CO, USA), “The Unscrambler X 10.1” (CAMO PROCESS 
AS, Oslo, Norway) and MATLAB 7.8 (R2009a) software (The Math Works, Inc., 
Natick, MA, USA). The developed procedures for mapping MC distribution were 
completed in MATLAB.

3. Results and discussion

3.1 Spectral features of tea buds and statistics of measured MC

In general, NIR spectra region contained rich information relevant to hydrogen 
containing bonds than others spectra region [24]. To compare spectral trends over 
six dehydrated periods, the mean spectral values of the pixels within the ROI of 
tea bud samples were calculated. And those values exhibited some variances and 
overlays between two adjacent dehydrated periods (not given here). The mean spec-
tral reflectance curves are illustrated in Figure 3. There were also some broadband 
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peaks occurring in the NIR region related to the overtone and combination vibra-
tions of hydrogen containing bonds, such as O-H, C-H, and N-H [25]. As is shown 
in Figure 3, the existence of water in the tea buds showed two feature wavelengths 
around 980 and 1450 nm (O-H stretching second and first overtones). Additionally, 
the absorption peak around 1200 nm (C-H stretching second overtone) was due 
to organic matter content in tea bud. Because of the complex chemical composi-
tions (maybe including C-H and N-H) in tea buds, it is hard to find a clear trend 
of curves over MC within 950–1100 nm. However, it was worth noting that the 
spectral reflectance curves over MC showed a clear upward trend in the vicinity of 
1450–1650 nm during the dehydrated processing in five periods (0, 3, 6, 9, 14 and 
21 min).

In addition, Figure 4 summarizes the statistics of MCs including mean, max, 
min and standard deviation (SD) values of tea bud samples in six dehydrated peri-
ods. It could be concluded that the mean, max and min values of MC appeared an 
obviously decreasing trend. Especially in mean values of those groups, a remarkable 
gradient (declining about 10%) was easily observed.

3.2 Variables selection

In this study, CARS was employed to select the effective variables. During the 
CARS process, some key variables were survived, while incompetent variables were 
sifted out. Figure 5 demonstrated the process of variable selection by CARS.

Figure 5(a) illustrated that the number of sampled variables decreased fast at 
the first stage of EDF and then slowly at the second stage of EDF, which demon-
strated “fast selection” and “refined selection”. And in Figure 5(b), it was clearly 
that along with the number of sampling runs increased, RMSECV values first 
reduced in sampling runs 1–4, and then fluctuated in a gentle way in the sampling 
runs 5–33, finally in sampling runs 34–50 increased fast. In this process, most of 

Figure 3. 
Mean spectral reflectance of tea buds in six dehydrated periods.
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uninformative variables were eliminated, and finally the RMSECV value increased 
because of the loss of some key variables [22]. The optimal variable subset was 
determined corresponding to the minimal 5-fold RMSECV value, and located by 
the vertical blue asterisk line in Figure 5(c). Moreover, the regression coefficient 
path of each wavelength was also shown in Figure 5(c). The variation of coefficient 
values of each variable was recorded by the colorful lines at different sampling runs. 
At the beginning of the each number sampling run, the absolute value of regression 
coefficient of each wavelength was very lowly. After that, values of some variables 
had a growing trend, while the rest of variables became smaller and smaller and 
turned into zero eventually (those were weeded out) because of their incompe-
tence. In other words, the larger the absolute coefficient was, the more possibility 
the corresponding wavelength was able to survive.

Based on the calculation of CARS, ten wavelengths at 1133, 1173, 1332, 1372, 
1419, 1446, 1450, 1507, 1538 and 1595 nm were identified as the EWs for predict-
ing MC of tea buds. And the distribution of the selected EWs based on CARS was 
demonstrated in Figure 6.

Obviously, most of those selected EWs (1419, 1446, 1450 and 1507 nm) were 
scattered around the O-H stretching first overtones (1450 nm). Comparatively 
speaking, only two effective wavelengths (1133 and 1173 nm) were centered in C-H 
stretching second overtone (1200 nm), which might be related to organic matter of 
tea buds.

3.3 Modeling of MC in tea buds by PLSR

In this research, the multivariate models were established by PLSR algorithm 
with full spectra and EWs, respectively. In the PLSR model of calibration set, the 
quantitative relationship between the spectral reflectance and corresponding 

Figure 4. 
Statistical results of measured MC of tea bud samples in six dehydrated periods.
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Figure 5. 
Selection of effective wavelengths, (a) changing trend of the number of sampled variables; (b) 5-fold RMSECV 
values; (c) regression coefficients of each variable with the increasing of sampling runs, the line (marked by 
asterisk) denoted the optimal point where 5-fold RMSECV values achieved the lowest.

Figure 6. 
The distribution of the selected effective wavelengths.
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measured MC of tea bud samples was established. Table 1 displayed the statistical 
results with respect to the prediction of MC in tea buds by using the full spectra 
and EWs.

Form Table 1, the PLSR model based on full spectra (F-PLSR) with RC = 0.956, 
RMSEC = 5.22%, RCV = 0.908, RMSECV = 5.93%, RP = 0.946, RMSEP = 5.07% had 
the better result for predicting MC in tea buds. Compared to the F-PLSR model, the 
results of CARS-PLSR model had a slight drop in RC, Rp of 0.008, 0.005, respec-
tively. The above results indicated that models using full spectra for predicting MC 
of tea buds had excellent predictive accuracy and robustness.

Regretfully, full spectra had a high-dimensional data and F-PLSR model could 
not provide a simple linear function about the reflectance of spectral reflectance 
and MC of tea buds. On the contrary, the selected ten EWs had minimal redun-
dancy and offered a commendable prediction performance (RP = 0.941). Hence, 
CARS-PLSR model was considered as the ideal model for the predicting MC of tea 
buds during the six dehydrated periods. The obtained function Eq. (2) according to 
CARS-PLSR model was shown as follows:

   

 Y  mositure   = 0.7649 + 7.8540  λ  1133nm   − 3.2826  λ  1173nm  

     
                   − 13.9586  λ  1332nm   + 7  .4947  λ1372nm   − 2.3084  λ  1419nm  

      
                     +3.1167  λ  1446nm   + 1.8836  λ  1450nm   − 5.9708  λ  1507nm  

      

                     − 5.3227  λ  1538nm   + 19.9262  λ  1595nm  

    (2)

where, λi nm was the spectral reflectance at the wavelength of i nm, and Ymositure 
was the predicted moisture content of tea buds. In addition, the obtained function 
was also taken for further analysis of mapping the spatial distribution of MC in 
tea buds.

3.4 Distribution maps of MC in tea buds

For predicting MC in all spots of the sample, the CARS-PLSR model was then 
transferred to each pixel of the image. After multiplying the model’s regression 
coefficients by the spectrum of each pixel in the image [25], a prediction image 
(called distribution map) was built and exhibited the spatial distribution of MC of 
the sample. In the final distribution map, the pixels with similar spectral character-
istics would generate the same predicted values of MC, which were led to a similar 
color in the acquired image [7, 25].

Figure 7 shows examples of spatial distribution maps of tea buds with different 
MC levels in six dehydrated periods. Figure 7(a) showed the pseudo-color images 
of six tea bud samples with different MC values. The values at the top of tea buds 
represented the average concentration of moisture in the whole samples. As seen 

Models Variable 

number

LVs Calibration Cross-validation Prediction

RC RMSEC 

(%)

RCV RMSECV 

(%)

RP RMSEP 

(%)

F-PLSR 214 7 0.956 5.22 0.908 5.93 0.946 5.07

CARS-

PLSR

10 5 0.948 5.15 0.921 5.43 0.941 5.31

Note: F-PLSR stood for meant the PLSR model established using the full spectra; CARS-PLSR represented the PLSR 
model built based on EWs selected by CARS.

Table 1. 
The results of PLSR models for predicting MC in tea buds based on full spectra and the effective wavelengths.
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clearly that the color of samples changed from emerald to silver along with MC 
values decrease. In addition, it was so hard to find out the difference in MC from 
point to point by naked eye from the pseudo-color image. Surprisingly, the different 
MC level among the samples was very obvious to be discerned from the final distri-
bution maps as shown in Figure 7(b). A linear color scale was generated with the 
different MC values from small to large shown in different color from blue to red. 
The MC of tea buds from high to low was displayed in different colors from red to 
blue. Meanwhile, the difference of MC level within a sample could be easily identi-
fied. A comprehensive map with different colors indicated that there were mixed 
components and heterogeneous distribution of MC in samples. Many pixels in fresh 
tea bud (0 min dehydrated) were red or orange because it had an average MC value 
of 64.67%. Along with the dehydrated time increased, the color of pixels changed 
from red, orange, pale bluish green to blue, which indicated the moisture of tea bud 
gradually lost. It was worth noticing that the edge of blade was turned blue firstly, 
then the vein, and finally the petiole. Especially in two dehydrated periods (9 and 
14 min), the color of leaf petiole and blade was obviously different. This is a clear 
indication of MC status during the dehydrated process of tea buds.

In fact, the water in the blade is free water in mesophyll cells while it exists in a 
form of the bound water in xylem, leaf vein and petiole. Meanwhile, the free water 
can be easily dried in a short time at a lower temperature, in contrast evaporation 
of the bound water requires a long time at a higher temperature. So the MC of the 
blade is lower than that of leaf vein and petiole in the early stage of drying. Through 
visualization analysis, and spatial variation of MC can be intuitively detected which 
will provide vital information for understanding the drying dynamics of tea leaf 
and optimization of tea leaf drying process.

4. Conclusions

This study was conducted to evaluate the dominant position of hyperspectral 
imaging technique in NIR region for mapping spatial distribution of MC in tea 
buds during dehydration. The results demonstrated that as a promising technology, 

Figure 7. 
Distribution maps of MC in tea buds in six dehydrated periods. (a) Pseudo-color image of the tea buds in 
three monochromatic images at 1399, 1197 and 995 nm; and (b) the spatial distribution maps of MC in six 
dehydrated periods.
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hyperspectral imaging could achieve the objective of mapping the MC distribution 
in tea bud during the drying process. In this research, the chemometric method of 
CARS was employed to select EWs. After that, PLSR algorithm was used to establish 
the quantitative relationship between the spectral reflectance and measured MC of 
tea buds. At last stage, the MC of all pixels in tea buds were calculated based on the 
optimal PLSR model. Meanwhile, the spatial distribution maps were built using a 
developed image processing procedure. The spatial variation of MC could expose 
the different MC within tea buds in different dehydrated periods, which applied 
an approach to kinetic analysis of MC in drying process, and provide important 
information for optimization of tea processing technic.

In further research, tea products with more types of sample and different 
geographical locations, ages and times should be taken into account to establish 
more robust and generate MC determination model, which could give more help for 
optimization of dehydrated process of agricultural products.
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