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Their Antimicrobial Activity in 
Free-Form and Immobilized on 
Material Surfaces
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Abstract

Defensins are naturally occurring antimicrobial peptides secreted in the human 
body. Mammalian defensins are small, cysteine-rich, cationic peptides, generally 
consisting of 18–45 amino acids. The antimicrobial activity of defensins arises from 
their unique amino acid sequence, showing activity against both Gram-positive 
and Gram-negative bacteria, fungi and enveloped viruses. The use of antimicro-
bial peptides is rising due to their potential to control biofilm formation and kill 
microorganisms that are highly tolerant to antibiotics. In free-form, defensins are 
capable of destroying such microorganisms through numerous mechanisms mainly 
the carpet, the toroidal and the Barrel-Stave models. However, immobilization of 
antimicrobial peptides (AMPs) on surfaces with the help of coupling agents and 
spacers can improve the AMPs’ lifespan and stability in the physiological environ-
ment leading to applications for medical devices and implants. Fundamental 
understanding of both free-form and surface-immobilized defensins is important 
to design more effective antimicrobial peptides and improve their performance in 
future developments.

Keywords: antimicrobial peptides, defensins, mammalian peptides,  
surface-immobilized antimicrobial peptides, surface-immobilized defensins

1. Introduction

The innate immune system is the first line of defence in human body and verte-
brates. Defensins are naturally occurring antimicrobial peptides (AMPs) that are a 
part of the innate immune system, protecting the body against foreign microorgan-
isms. Defensins are produced by the interaction of antigen-presenting microbial 
cells with pattern recognition receptors, such as toll-like receptors that are present 
on the membrane of numerous immune cells (i.e., macrophages, neutrophils and 
leukocytes [1]. Mammalian defensins are small, cysteine-rich, cationic peptides, 
generally consisting of 18–45 amino acids [2]. Next to being antimicrobial, defen-
sins also serve as immune-stimulating agents.

When synthesized in vivo, defensins are initially produced as inactive precursor 
proteins (i.e., pro-defensins), which consist of the defensin and a pro-peptide. The 
pro-peptides are present to ensure delivery of defensins through the body without 
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premature attachment of defensins to other microorganisms [3]. The pro-peptides 
inhibit premature attachment to other microorganisms by neutralizing the cationic 
charge of defensins. Also, the pro-peptides ensure subcellular localization (i.e., the 
location of where a protein resides in a cell) and folding of defensins into their char-
acteristic conformation. Through proteolytic removal in vivo of the pro-peptides, 
the defensins are activated [4]. The reasoning behind the pro-peptides functioning 
as a folding assistant is based on the research performed on folding of defensins in 
vitro without the pro-peptide, which is found to be extremely difficult [5, 6].

α-Defensins are expressed by neutrophils and macrophages, that is, a type of 
white blood cell and cells that can engulf foreign particles, respectively. In general, 
these tend to have a broader antimicrobial activity, when compared to β-defensins, 
showing activity against both Gram-positive and Gram-negative bacteria, fungi 
and enveloped viruses [7]. Paneth cells also produce α-defensins, also known as 
crypticidins, which are involved in the reduction of bacteria present in the intesti-
nal lumen. β-Defensins are primarily produced and released by epithelial cells and 
leukocytes, that is, a type of cell that lines the surfaces of your body and a type of 
blood cell that is made in the bone marrow, respectively. These are mainly active 
against Gram-negative bacteria and yeast; however, many also show antibacterial 
activity towards Gram-positive bacteria [8]. The pro-peptides of β-defensins are 
smaller than those of α-defensins.

Both α- and β-defensins form a triple-stranded antiparallel β-sheet structure that 
is stabilized by hydrogen and disulphide bonds; bond formations are schematically 
represented in Figure 1.1 The position of the cysteines and intramolecular disulphide 
linkages determines the category of the defensin. The consensus of cysteine place-
ment within the amino acid sequence for α-defensins follows C-X-C-X4-C-X9-X-X, and 
C-X6-C-X4-C-X9-C-X6-C-C for β-defensins [9]. When looking at the position of the 
disulphide linkages from cysteine in sequential order (denoted by C#), the disulphide 
bridges are formed between C1-C6, C2-C4 and C3-C5 for α-defensins and C1-C5, 
C2-C4 and C3-C6 for β-defensins [10], as shown in Figures 2 and 3, respectively. The 
disulphide bridges are important for holding the defensins in their three-dimensional 
structures. In addition, they contribute to the defensins chemotactic activity (i.e., 
movement or orientation of an organism or cell towards chemical stimulus) but when 
altered, only slightly affect their antimicrobial activity [11].

The adopted mechanisms of the interaction between defensins and the 
invading microorganism are not yet fully understood. However, disruption of 

1 All the figures shown in this chapter have been created by the authors.

Figure 1. 
Schematic of a (a1) parallel and (a2) antiparallel β-sheet structure, made with the use of JSME [12]. (b) 
Conformation of a β-defensin (hBD3), made with the use of PEP-FOLD3 [13]. Hydrogen bonding represented 
by dotted lines, hydrogen atoms are white, carbon atoms are grey, oxygen atoms are red, nitrogen atoms are blue 
and rest-groups are pink; not exact structure.
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the plasma membrane has been shown to be the leading cause of cell death in 
microbial species. The disruption caused by defensins depends on many factors, 
such as the polar topology, spatial separating of charges and hydrophobicity. 
These factors allow the attraction and subsequent interaction of defensins with 
the lipid bilayer of the bacterial membrane. Conversely, this interaction causes 
the defensins to insert themselves between the hydrophilic region of the plasma 
membrane and disrupt the bacterial membrane, utilizing numerous mechanisms. 
These include the introduction of channel-like pores and carpet-like membrane 
disruption, resulting in cell lysis. Simultaneously, the introduction of voltage-
dependent channels in the bacterial membrane allows the influx of water and 
results in an increase of osmotic pressure that leads to the rupture of the mem-
brane. On the other hand, some defensins move through bacterial cell walls, bind 
to target cells and disrupt normal metabolism, which may lead to apoptosis of the 
targeted cells [14, 15].

2. Mammalian defensins

The genomic organization and evolution of defensin genes of several vertebrate 
species have been studied [16]. The human genome encodes, at least, 35 different 
defensin peptides [17]. Most of the mammalian defensin genes are divided over 
three chromosomes, found in four different gene clusters (Figure 4). All the genes 

Figure 2. 
Schematic of HNP1 (α-defensin) showing amino acid sequence and disulphide bridges.

Figure 3. 
Schematic of HBD1 (β-defensin) showing amino acid sequence and disulphide bridges.
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expressing α-defensins and several β-defensins are found in chromosome 8 (cluster 
p23.1); genes that express most of the remaining β-defensins are found in chromo-
some 6 (cluster p21) and chromosome 20 (cluster q11.1 and p13).

Four out of the six human α-defensins are found in neutrophils and other leu-
kocytes, specifically, human neutrophil peptides (HNPs) 1–4 (i.e., DEFA1–4). The 
remaining two, human α-defensin 5 and 6 (HD5 and HD6, i.e., DEFA5 and DEFA6), 
are expressed by Paneth cells in the intestinal lumen [18]. Numerous β-defensins are 
found in the respiratory system, gastrointestinal tract and urogenital system. These 
are expressed by epithelial cells, namely, human BD1 (hBD1, i.e., DEFB1), hBD2 
(DEFB4), hBD3 (DEFB103A) and hBD4 (DEFB104) [19].

Defensins are amphipathic (i.e., having both hydrophobic and hydrophilic 
groups) and, it has been demonstrated that they show the ability to form dimers 
and oligomers with toxin molecules [20, 21]. The initial electrostatic interaction 
is caused by the cationic charge of the peptide and the negatively charged outer 
membrane of the bacterial cell wall [22]. Bacterial membranes contain many nega-
tively charged phospholipids, lipopolysaccharides or teichoic acid, while eukaryotic 
membranes contain neutral phospholipids and cholesterol [23]. This explains the 
destructive ability of defensins towards microbes but not host cells [24].

2.1 Antimicrobial mechanisms of defensins

The activity of defensins against microorganisms is determined by the interac-
tion of the cationic molecules with the negatively charged acidic lipopolysaccharide 
or teichoic acid on Gram-positive and Gram-negative bacterial membranes. The 
antimicrobial activity of defensins in the body depends on different factors such as 
salt concentration and serum components [25]. In addition, the configuration of 
defensins plays an important role on the activity of these molecules. For example, 

Figure 4. 
Schematic of the genomic organization of defensins in three human chromosomes, showing chromosome 6, 
chromosome 8 and chromosome 20, respectively.
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helical antimicrobial peptides in solution show a typical helical amphipathic 
characteristic and they are either unstructured until they are in contact with the 
biological membrane or structured through disulphide bonds. Defensins are among 
the structured type of antimicrobial peptides and the hydrophilicity of the α- and 
β-defensins determines the extent of interaction between these molecules and the 
bacterial membrane [26].

As mentioned before, the antimicrobial mechanisms of defensins have not been 
fully understood. The formation of membrane pore or channel has been shown 
to be dependent on the membrane configuration. For example, the abundance of 
negatively charged phospholipids on the plasma membrane affects the concentra-
tion of peptides that are required to form a stretch or curvature on the outer layer 
of the bacterial membrane, and consequently lead to cell lysis [27]. Other events 
such as phospholipid reversal and penetration of peptides inside the cytoplasm on 
the inner side of the membrane leading to the loss of membrane composition and 
causing cellular inactivation have also been mentioned in the literature [28].

Most studies conducted on defensin mechanisms have been conducted on the 
α-helical structured peptides. These molecules interact with the membrane of the 
microorganisms. It is evident that defensins utilize membrane depolarization and 
permeation, against bacteria and yeast, as their most likely defence mechanisms. 
Defensins also aid the mobilization of T-cells and immature dendritic cells, which 
contribute in the activation of acquired immune responses that will trigger a long-
lasting cellular response to a potential pathogen [29]. Most defensins provide their 
antimicrobial activity through interaction with cellular membranes. The pore-
forming model describes the interaction between positively charged peptides and 
the negatively charged head of phospholipid groups of cellular membranes operates 
once a critical concentration is reached. This will cause the self-aggregation and 
perpendicular insertion of peptides inside the membrane leading to production of 
lined transmembrane pores, resulting in the disruption of ionic and proton gradi-
ents. The second model causes the formation of channels where the strain of peptide 
at the critical concentration, induces the inward curving of the membrane, creating 
dome-shaped channels lined with phospholipid-head groups and peptides [30].

The mechanisms in which the AMPs destroy the bacterial cells have been 
studied for decades. AMPs that present their secondary structure in the form of 
α-helix present their destructive effects on a bacterial cell based on three different 
documented mechanisms. First is the Barrel-Stave model, which is the most studied 
mechanism, where the peptide disrupts the membrane by exposing its hydrophobic 
site to the lipids in the membrane bilayer. This will force the membrane to undergo 
conformational changes by forming a pore on the surface of the membrane [31, 32]. 
The second mechanism is the toroidal model where the peptide and the lipid of the 
membrane bilayer integrate upon interaction and form torus pores leading to the 
death of bacterial cells. Cell death caused by these mechanisms leads to loss of 
compositional specificity, leakage of critical metabolites or depolarization of the 
membrane due to an increased rate of phospholipid reversal [33, 34]. The third 
mechanism is the carpet model where the concentration of AMP is related to the 
amount of interaction with the bacterial membrane. In this model, the peptides 
surround the cell membrane by attaching to the phosphide group of the membrane 
bilayer where they disrupt the curved anionic membrane and dissolve it, killing the 
bacteria [35, 36].

2.2 Antimicrobial activity evaluation methods

The evaluation of antimicrobial activity is widely used in the field of drug 
discovery as well as epidemiology and therapeutic prediction [37]. Since the low 
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density of peptides will ultimately result in preservation of membrane integrity 
and adjustment of the membrane, maintaining a higher concentration of peptides 
is crucial. This will result in imposed curvature strain on bacterial membrane [38]. 
Therefore, measurement of the minimum inhibitory concentration (MIC) is an 
important initial step for the confirmation of antimicrobial activity. MIC refers to 
the lowest concentration of compound needed for observable inhibition of bacte-
rial cell growth. In addition, other measurements include minimal bactericidal 
concentration (MBC) which refers to the minimum concentration of the reagent 
that can cause bacterial death, the haemolytic activity (HC) that refers to the ability 
to break down red blood cells (i.e.,) to find the inhibitory effect of AMPs on normal 
mammalian cells and IC50, which refers to the half-maximal inhibitory concentra-
tion [39]. Since defensins are found in more diluted concentrations in extracellular 
environment than in a local environment, the measurement of the interactions 
between peptides and bacteria in situ (e.g., using a mice model) is mandatory [40].

Colorimetric assays are used to determine the concentration of peptides (MIC) 
where the absorbance is usually measured at 750 nm using a UV-visible spectro-
photometer. The assays are performed in 96-well microtiter plates and a series 
of antimicrobial peptide dilutions are added to the bacterial cells immersed in 
growth medium. The MIC is measured based on the growth after incubation for a 
defined period of time (16–20 h) [41]. This methodology measures the colour of 
the dilutions, which is directly proportional to the number of cells in each well. The 
absorbance is measured with the help of a microplate reader counting the number 
of cells killed by the antimicrobial peptide. This methodology provides information 
about the susceptibility of the microorganism to the peptide [42], but it only applies 
to aerobic bacteria [43].

Electron microscopy is used to visualize the interaction of peptides with the 
phospholipid bilayer of bacterial membrane. Simultaneously, fluorescent dyes are 
used to observe the ability of peptides to permeate and penetrate the membrane 
of bacterial cells. Fluorescence spectroscopy is used to study the insertion of 
fluorophores into a membrane as well as provide information about the rate of 
peptide penetration into the membrane with the help of surface plasmon resonance. 
Fluorescence quenching can also be used to gain an insight into the depth of peptide 
penetration inside the cells [2].

In addition, both circular dichroism (CD) spectroscopy [44] and nuclear 
magnetic resonance (NMR) spectroscopy are used to measure the orientation and 
secondary structure of an antimicrobial peptide, when bound to a lipid bilayer. 
However, only NMR is used to measure the penetration of antimicrobial peptides 
into lipid bilayers in a relevant liquid-crystalline state [45]. The use of CD can 
distinguish between the randomly coiled, α-helical and β-sheet structures since 
they show wavelength-dependent differences in the absorption of the right and left 
circularly polarized light. Using oriented CD can also provide information about 
the orientation of peptide upon insertion into the membrane. This is dependent 
on the concentration of these peptides, the nature of the lipid and the extent of 
hydration [2].

In order to study the peptide configuration, both solution and solid-state NMR 
can be employed. For solution NMR, a mixture of peptide-detergent micelle is 
needed for the stabilization of the peptide in water and to overcome insufficient 
resolution and low (signal/noise) ratio [46]. The most recognized model membrane 
system used in solution NMR is the dodecylphosphocholine (DPC). This method 
is used for studying the interaction of peptides with the lipid bilayer since it has 
the ability to rotate freely in solution and mimic anisotropic environments of lipid 
membranes [47]. In addition, solid-state NMR is a premium technique to use for 
the analysis of immobile peptides that are difficult to analyse with crystallography 
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or solution NMR. They can be used without a need for major peptide modification 
to determine the structure of membrane proteins in the phospholipid bilayer. This 
technique offers the examination of the structure and motion for the peptide-lipid 
interactions in physiologically relevant conditions and produces sharp resonance 
lines due to macroscopic alignment [48].

In addition, to provide the dynamic interaction between the defensins and the 
lipid bilayer, using a monolayer mimicking the structure of bacterial membranes 
can also be used. To observe the interaction between the two, the sum frequency 
generation spectroscopy (SFG) is employed. This methodology can provide infor-
mation about gas-liquid, solid-liquid and liquid-liquid interactions and is able to 
detect the biomolecule orientation and adsorption in sub-micron quantities. This 
technique uses a pulsed narrow band visible laser beam spatially and temporally 
overlapped with a broadband infrared laser and measures the incident beam 
produced from the surface [49]. The vibrational spectrum of C〓O groups from 
the amide backbone group can provide the secondary structure of the peptides. 
Consequently, vibrations from acyl chains of the lipid bilayer can provide important 
information about the interaction of peptide with the membrane as well as informa-
tion about the molecular structure of the peptide, without the use of vesicles and 
labels to complicate the process of analysis [50].

3. Antimicrobial activity of defensins in free-form

There are two types of AMPs: first AMPs that show activity towards both bacte-
rial and mammalian cells; second, AMPs that show only activity towards the bacte-
rial cells. Most linear cationic AMPs are unordered in aqueous solution. The balance 
between the positively charged and hydrophobic amino acids in cationic AMPs 
permits the amphipathic adaptation of these molecules in solution. This allows the 
interaction of AMPs with the negatively charged bacterial membrane and the sub-
sequent penetration of these molecules inside the lipid membrane [51]. The interac-
tion of these peptides with the bacterial membrane is increased due to their high 
inside-negative transmembrane potential. On the other hand, normal eukaryotic 
cells have a net neutral charge across their membrane bilayer, and they have reached 
a zwitterionic (overall neutral) point. This insight can partly explain the attraction 
of AMPs to prokaryotic cells and the relatively weak attraction of these molecules 
towards eukaryotic cells [38]. The amphipathic characteristics of defensins aid the 
adaptation of a folded confirmation for these molecules in both hydrophobic and 
hydrophilic environments [44]. These molecules are often difficult to stabilize and 
show poor bioavailability due to their many different cleavage points that provide 
susceptibility to enzyme degradation and their linear form which leaves their two 
ends exposed [52].

α-Defensins (DEFA1–4) are produced by endoplasmic reticulum of the bone 
marrow shown in Figure 5, and the highest concentration of defensins is found in 
granules (i.e., leukocyte storage organelles). Pre-pro-defensins (light purple circles 
in Figure 5), however, consist of 94 amino acids. To produce pro-defensins (dark 
purple circles in Figure 5), 19 amino acids are removed from the N-terminus of 
pre-pro-defensins. Further proteolysis from the N-terminal side of the sequence of 
amino acids results in the production of mature defensins (blue circles in Figure 5). 
The prepared defensins are encapsulated into vesicles and fused with phagocytic 
vacuoles. The introduction of a pathogen into cells will then result in the recogni-
tion and engulfing of such molecules by phagocytic leukocytes with the aid of 
defensins and the subsequent death of the pathogenic organism. Although some 
α-defensins are produced in the bone marrow, some (DEFA5-6) are also produced 
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in the Paneth cells of the intestines [53]. β-Defensins (DEFB1–4) on the other 
hand are mainly produced in the epithelial cells. These regions have the highest 
concentration of defensins due to the higher susceptibility to a pathogenic attack, 
which renders them weaker and subsequently in need of the immunity provided by 
defensins [17].

β-Defensins mature into a secreted peptide after pre-pro-peptide state. This 
mature peptide has six cystine residues connected with intramolecular disul-
phide bonds. The connectivity of these disulphide bonds as well as the number 
of residues are factors differentiating α- and β-defensins [54]. The importance 
of a balance between the hydrophobicity of the defensins and their net posi-
tive charge is highlighted in the activity of these peptides towards the bacterial 
membrane [55]. The crystal formation of defensins usually results in the produc-
tion of a dimeric structure. Crystallographic studies of α- and β-defensins show 
that free-form α-defensins have three intramolecular disulphide bonds (Paneth 
cell defensins and innate immunity of the small bowel) and they form a dimeric 
structure with six β-sheets [56]. The monomeric structure of β-defensins consists 
of three β-sheet folds as well as a helical N-terminus [16]. Nevertheless, defensins 
undergo conformational changes when introduced to a bacterial membrane. 
Targeted approaches on a specific protein may render the AMPs useless against 
the bacteria due to bacterial resistance and genetic changes to its conformation. 
Therefore, it is important that defensins work as non-specific agents on the 
membrane of the bacterial cells. Bacteria resistant to antimicrobial peptide activ-
ity usually display enzymatic covalent modification on their membrane, which 
reduces their negative charge.

α- and β-defensins are generally known for their cluster of positively charged 
amino acid residues. Although the sequence of amino acids is highly variable 
in defensins, their cysteine residues and their framework are highly conserved 
[17]. DEFA1-3 and human β-defensins are stored as mature peptides, whereas 
DEFA5 is stored in its pro-peptide form [57, 58]. The dimerization of β-defensins 
in solution is shown to be the functional structure for recognition of microorgan-
isms [16]. However, DEFA1 takes a non-dimeric structure in solution, forming a 

Figure 5. 
Schematic diagram of production of α-defensins and the phagocytosis of pathogens with the aid of defensins: 
(1) bone-marrow promyelocyte; (2) neutrophil; (3) phagocytosis.
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voltage-dependent channel in the planar lipid bilayer [59]. This specific example also 
shows that the interaction of DEFA1 with the membrane phospholipid depends on 
the presence of anionic phospholipids on the membrane. On the other hand, DEFA2, 
an α-defensin similar to DEFA1 (lack of alanine at position 1), requires the assembly 
of approximately two dimers for the formation of pores in uni-lamellar vesicles [60]. 
DEFA1 and DEFA2 are the potent forms of  α -defensins and DEFA3, differing by only 
an additional amino acid at the N terminus, is known to be less active against C. albi-
cans [61]. The dome-shaped, three-dimensional structure of amphiphilic defensins 
has been hypothesized to have the N- and C-termini at the two ends and the hydro-
phobic section having an amphiphilic structure at the lowest portion. The functional 
diversity of defensins and their potency mainly depend on the N- and C-terminal 
residues [26]. A study showed that arginine-rich cationic defensins provide a higher 
spectrum of antimicrobial activity due to their higher cathodal electrophoretic 
mobility [62].

The concentration of defensins in epithelial cells averages 10–100 μg ml−1 
although the uneven distribution of these molecules results in a higher local 
concentration [17]. Defensins attack Gram-positive and Gram-negative bacteria 
with the same mechanisms; however, the attack is on the cell wall and the outer 
membrane of the bacteria, respectively. Accumulation of cationic peptides close to 
the negatively charged surface in Gram-negative bacteria may lead to binding and 
crossing of defensins into the cell via a charge-exchange mechanism by competing 
with Ca2+ and Mg2+ bound to lipopolysaccharides [63]. Although the porous surface 
of Gram-positive bacteria allows ease of movement for the defensins [64], safe 
passage of defensins through the cell wall allows via the same mechanisms to attack 
the membrane bilayer. Generally, defensins are known to interact with lipopolysac-
charides, polysaccharides and phospholipids of Gram-negative, Gram-positive and 
bacterial membrane bilayer, respectively [65].

Defensins are active against bacteria at a concentration of 1–10 μg in optimal 
conditions such as low ionic strength conditions, low concentrations of proteins 
or other substances interfering with this activity. However, cellular conditions are 
harsh and the salt as well as protein concentrations inhibit defensins’ antimicro-
bial activity depending on the sequence and bacterial target of the defensin [66]. 
In addition, higher concentrations of defensins have been shown to have toxic 
effect towards mammalian cells, specifically lung tissue [67]. Permeabilization of 
defensins renders the production and synthesis of DNA and their subsequent RNA 
and protein. The extent of interaction of defensins with the bacteria depends on 
the amino acid backbone and the flexibility of this chain allowing for the pres-
ence of potential spatial interactions with the head of phospholipid groups in the 
membrane [68].

Defensins provide their antimicrobial activity by the creation of pores or 
membrane disruption, which both lead to the release of cellular contents [69]. 
Other regulatory factors such as wound closures [70], fibroblast proliferation and 
chemotaxis of T-cells and dendritic cells can also be mentioned as the activity of 
defensins. Defensins also have a modulatory effect on the production of cytokines 
[71]. Other activities of defensins include regulation of immune and inflamma-
tory regions by providing chemotactic activity for monocytes, T-cells and den-
dritic cells. In addition, nanomolar concentrations of defensins can also activate 
nifedipine-sensitive calcium channels of mammalian cells, reducing the electrical 
conduction [72].

Overall, defensins are important molecules for providing a cascade of antimicro-
bial activity in the human body in defence against pathogens and they are mainly 
concentrated in regions that are more prone to pathogenic attack.
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4. Defensin-like peptides immobilized on material surfaces

Bacterial adhesion and colonization resulting in biofilm formation on the surface 
of biomaterials are responsible for most medical device-associated infections and 
malfunctions [73, 74]. The magnitude of this problem continues to pose a signifi-
cant problem to health care providers, often resulting in major negative medical 
and economic consequences [75, 76]. Many of the currently used medical devices 
are amenable to modification, either by functionalization or coating of the surface 
of the device, making it possible to combat inflammation and reduce the risk of 
infection [77].

In general, device-associated infections have been treated by developing 
material surfaces containing antibiotics and biocides [78]. The use of this 
approach comes with the risk of cytotoxicity, raising concern as a potential threat 
to human and environmental health. An alternative to this is the use of antifoul-
ing coatings, making it possible to prevent attachment of bacteria, proteins and 
other microorganisms. This more passive approach makes it possible to prevent 
antibiotic resistance and leaching of cytotoxic biocides but is not capable of 
killing already adherent bacteria and makes it hard to avoid infection completely 
[79]. Therefore, a combination of antifouling and antimicrobial properties is 
favourable to combat biofilm formation and further reduce the risk of infection 
[80, 81].

Defensin-like peptides (i.e., antimicrobial peptides, AMPs) exhibit a com-
bination of antimicrobial and antifouling properties, which is why AMPs have 
received significant attention as an alternative to conventional biocides and anti-
biotics, showing the ability to overcome and combat medical device-associated 
infections. However, so far, there is little success in the development of AMPs for 
therapeutic applications, with only a few AMPs that have been approved for medi-
cal use at their initial introduction. After the unsuccessful introduction of the 
‘first-generation’ AMPs, research has been performed on reducing cytotoxicity. 
It was found that AMPs were increasingly more toxic when having hydrophobic 
characteristics, sufficient enough to interact with neutrally charged eukaryotic 
cell membranes [82]. By replacing or interrupting these hydrophobic regions of 
AMPs, cytotoxicity was reduced and only showed a slight decrease in antimicro-
bial activity, providing the amphipathic characteristics were maintained [83]. 
Also, developing narrow-spectra AMPs would decrease the required concentra-
tion needed to combat pathogens and additionally prevent the cytotoxic activity 
towards eukaryotic cells [84].

In order to further reduce the cytotoxicity, immobilization of AMPs onto 
material surfaces is a potential approach to reduce the concentration needed when 
in free-form and will also increase their half-life time. The half-life time of AMPs 
is found to be based on the rate of protease digestion or related to peptide aggrega-
tion [85]. In order to compensate for their relatively short half-life time, increased 
concentrations of AMPs are used; but, this results in increased cytotoxicity and has 
limited the use of AMPs. Other efforts to increase the half-life time of peptides have 
been focused on using substitutes for L-amino acids, because unprotected peptides 
are more rapidly metabolized (i.e., broken down for nutrition) [86]. By substitution 
of L-amino acids by D-amino acids, the introduction of unnatural β- and ɣ-peptide 
bonds and modifications of the N- or C-terminus, it is possible to increase the 
stability of AMPs [87–89].

Overall, it is of great importance to improve the stability of AMPs against deg-
radative mechanisms in vivo and increase the bond stability between the AMPs and 
materials in order to develop almost non-cytotoxic and long-lasting antimicrobial 
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surfaces [90, 91]. Therefore, by limiting the necessity of implant removal due to 
AMP inactivity caused by degradative mechanisms, patient compliance can be 
increased.

4.1 AMP immobilization methods

It is possible to immobilize AMPs through two main pathways, either physically 
or chemically. A popular physical method is layer-by-layer assembly, in which AMPs 
are ‘sandwiched’ between two polyionic polymers, making it possible to integrate 
a controllable loading of AMPs [92, 93]. However, the interspersed AMPs within 
the polyionic polymer layers are not able to interact with the surrounding environ-
ment, and they will need to diffuse outwards to utilize their antimicrobial activity. 
Therefore, with the use of physical immobilization, it is difficult to fully utilize the 
potency of AMPs. Covalent-based immobilization of AMPs has significant advan-
tages, in comparison to physical immobilization, such as the formation of more 
stable bonds and thus improvement of their relatively short half-life time, while also 
minimizing the possibility of leaching of AMPs [90, 94].

Furthermore, the material surface is also of great importance to the stability of 
AMPs. A polymer surface (i.e., dibromomaleimide polymer substrate) prepared by 
chemical vapour deposition (CVD) and functionalized with AMPs showed a better 
antimicrobial stability when compared to a self-assembled monolayer (SAM). When 
exposed to air, this polymer showed slower detachment of bound AMPs when com-
pared to SAM [95]. Additionally, orientation of AMPs was also retained. These results 
show the importance of using a non-degradable material surface to improve bond 
stability of AMPs. Next to that, the surface morphology needs to be well defined as 
an undefined surface could lead to inhibition of attachment of biological molecules. 
Also, depending on the density of the functional groups that are present or able to 
be induced, the number of peptides on the material surface can vary significantly. 
However, even though AMP concentration is of importance, it does not appear to be 
the most critical criterion for the improvement of antimicrobial activity [96, 97].

The antimicrobial activity of covalent-based surface-immobilized AMPs is seen 
to be mainly dependent on the used coupling strategy, spacer specifications and 
peptide orientation and concentration [98]. However, there are certain limits to 
improving the antimicrobial activity by increasing the AMP concentration, due 
to factors such as coupling conditions and steric hindrance (i.e., repulsive forces 
originating from overlapping electron clouds of neighbouring molecules). Next to 
that, some microorganisms are found to be insensitive to any further increase after 
reaching a certain limit in AMP surface density or exposure time [99].

It is demonstrated that direct-immobilized AMPs also show antimicrobial activ-
ity without the use of a spacer. Nevertheless, most potent developments make use of 
spacers, the length (i.e., the distance between the material surface and peptide) of 
which is shown to significantly influence the activity of surface-immobilized AMPs, 
when compared to the AMP surface density [90]. Conversely, the possibility of 
chain cleavage of the spacer due to polymer degradation reactions could lead to the 
release of immobilized AMPs. This could be minimized with the use of stabilized 
polymer spacers [59]. The increased activity seen with the use of spacers is a result 
of improved mobility of AMPs, increasing probability of membrane permeabiliza-
tion and subsequent cell death. However, this would only be a correct hypothesis 
assuming that AMPs demonstrate a similar mode of action to that of their free-form 
counterparts. According to the literature, there are also AMPs that will depolarize 
the cytoplasmic membrane and disrupt the electron transport, which subsequently 
would lead to partial membrane permeabilization and thus cell death [100, 101].
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Figure 7. 
Schematic of orientation change of N-terminus-immobilized α-helical peptide before (left) and after (right) 
bacterial contact; not drawn to scale or exact structure.

The difficulty of these developments is the lack of comparable information, 
since most of the observed reactivity and antimicrobial activity are found to be 
specific to the reactant environment, type of materials and AMPs. Fully under-
standing these structure-function relationships is important to clarify and improve 
the performance of surface-immobilized AMPs in future developments.

4.1.1 Orientation of direct immobilized AMPs

When a peptide is directly bonded to the material surface, as displayed in 
Figure 6, the immobilized terminus determines its orientation. When α-helical 
peptides are immobilized at their N-terminus, they will point perpendicular to 
the material surface (i.e., orientate upstanding), but when immobilized at their 
C-terminus, they will take on a laying-down orientation. In general, when an AMP 
has its N-terminus bonded to the surface, it has been shown to have a lower MIC 
when compared to C-terminus and N-side-chain-immobilized AMPs [102]. The 
relatively high MIC of C-terminus-immobilized AMPs is likely related to the inhibi-
tion of membrane interaction [51]. However, according to the literature report-
ing the antimicrobial activity dependence of the orientation difference between 
N-terminus and C-terminus-immobilized peptides, there is also a cell-dependent 
potency, which indicates that the mode of action of AMPs is not only dependent on 
their own characteristics but also on the characteristics of the targeted microorgan-
ism [103]. Another important parameter is the position of the cationic amino acids. 
When they were closer to the bonding site, an increased antimicrobial activity 
was observed, while, when they were positioned in the middle or closer to the 
N-terminus, a decrease of the antimicrobial activity was observed [100].

However, as shown in Figure 7, the orientation of AMPs changes after their initial 
interaction with bacteria (i.e., the immobilized α-helices bind to the anionic lipid 
bilayer). Since immobilized AMPs cannot follow the barrel-stave or toroidal model 
due to limited mobility, it is suggested that the charge-charge interaction plays a 
dominant role in the elimination of bacteria [104, 105].

Figure 6. 
Schematic of (a) N-terminus and (b) C-terminus surface-immobilized α-helical peptide; not drawn to scale or 
exact structure.
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Figure 8. 
Immobilization of AMPs onto numerous functional groups, using different coupling methods; not drawn to 
scale or exact structure.
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Additionally, when functionalizing the material’s surface with different reac-
tive groups as seen in Figure 8, the orientation of immobilized AMPs can be 
controlled using chemo-selective (i.e., directed immobilization) coupling reac-
tions. In general, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 
N-hydroxysuccinimide (NHS) are found to be widely used as activating agents for 
the coupling of peptides to numerous functional groups by forming amides, which 
inhibit the formation of carboxylic salts with an amine [98, 106].

4.1.2 Spacer-incorporated immobilized AMPs

Although orientation can be partly controlled with the use of chemo-selective 
coupling agents, they often do not add enough mobility to increase the probability 
of membrane permeabilization or polarization. In order to improve the mobility 
and subsequent activity of AMPs, the use of spacers is found to be useful. As shown 
in Figure 9, there are two types of spacers, stiff and flexible spacers. Stiff spacers 
(e.g., polyvinyl chloride or polymethyl methacrylate) allow the increase of reach 
and thus might allow membrane permeabilization, but will restrict sideways mobil-
ity by keeping the AMPs pointing in a specific orientation [98]. Flexible spacers 
such as polyethylene glycol (PEG) also allow the increase of reach and are able to 
allow sideways mobility; however, orientation cannot be determined due to their 
flexible chains [107].

However, even if the peptide was linked to a PEG spacer, the random orienta-
tion of an immobilized AMP through its C-terminus is found to result in the loss of 
antimicrobial activity [97]. However, the oriented immobilization of the same AMP 
through its N-terminus is found to restore the antimicrobial activity. It has also been 
suggested that the water-swelling property of PEG aids in maintaining the activity 
of immobilized peptides [108]. Additionally, in the absence of the PEG spacer, the 
AMP did not show antimicrobial activity. Nevertheless, the utilization of PEG as 
a spacer is found to present numerous advantages, as it can create non-adhesive 
surfaces due to its non-fouling characteristics (i.e., inhibition of microorganisms 
binding to the material surface) [108]. Lastly, the solubility and stability of pep-
tides, against protease digestion or peptide aggregation, can be improved with the 
use of a spacer [107, 109, 110]. These previously mentioned factors show yet again 
the complexity of the factors on influencing the antimicrobial activity of immobi-
lized AMPs.

5. Conclusions

AMPs are demonstrated to show antimicrobial activity at relatively low concen-
trations, without damaging mammalian cells, being able to utilize several mecha-
nisms against numerous microorganisms similar to defensins in the human body. 
Immobilization of AMPs improves their lifespan, preserves the mode of action and 
does not seem to influence the mechanism on the biological level; however, they 

Figure 9. 
Schematic of spacer-incorporated immobilized AMPs, showing stiff spacers (left) and flexible spacers (right); 
not drawn to scale or exact structure.
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do show reduced antimicrobial activity upon immobilization to material surfaces. 
Nonetheless, this reduced activity can be partly restored with the use of chemo-
selective coupling agents and the incorporation of spacers. Whether degradation 
of the material and coupling agents is desirable or not, understanding the kinetics 
is of great importance as the decrease of structural integrity and/or release of 
particles (i.e., molecules, debris, etc.) might result in an adverse biological reaction. 
Nonetheless, there are significant indications that AMPs are suitable candidates 
to replace conventional biocides and antibiotics. In addition, they can be utilized 
to develop the next generation of antimicrobial surfaces as coatings for medical 
devices and implants.
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