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Abstract

The effectiveness on several fruits by the application of alternative methods 
against fungi is summarized in the present chapter. Several investigations have 
reported the efficacy of these technologies for controlling fungal infections. 
Currently, high post-harvest loses have been reported due to several factors such as 
inefficient management, lack of training for farmers, and problems with appropri-
ate conditions for storage of fruits and vegetables. Even now, in many countries, 
post-harvest disease control is led by the application of chemical fungicides. 
However, in this time, awareness about fungi resistance, environmental, and health 
issues has led to the research of eco-friendly and effective alternatives for disease 
management. The pathogen establishment on fruits can be affected by the applica-
tion of GRAS compounds like chitosan, essential oils, salts, among others; besides, 
their efficacy can be enhanced by their combination with other technologies like 
ultrasound. Thus, the applications of these alternatives are suitable approaches for 
post-harvest management of fruits.

Keywords: alternative systems, antifungal activity, postharvest fungi, tropical and 
subtropical fruits

1. Introduction

The consumption of fresh fruits and vegetables is essential for a healthy diet [1]. 
However, their production can be affected by microbial pathogens (mostly fungus) 
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during the production chain [2]. In order to reduce the presence of pathogens, sev-
eral post-harvest technologies have been applied [2]. One of them is the application 
of chemical fungicides; however, this practice is not accepted due to environmental 
and health issues [3]. Other alternatives are the use of eco-friendly substances such 
as generally recognized as safe (GRAS) compounds and emergent technologies 
like ultrasound and fogging. Currently, consumers demand fresh products free of 
chemical residues; therefore, it is necessary to develop technologies eco-friendly, 
effective to protect against pathogens infection, and that these technologies can 
maintain the fruit quality. Alternative systems such as edible coatings, essential 
oils, salts, natural compounds (plant extracts), among others to chemical use are 
suitable approaches for post-harvest disease management. These alternatives can 
be applied in combination with other control systems like emerging technologies 
(ultrasound) in order to improve their efficacy. The aim of this chapter is to make 
a compilation of several studies conducted on fruits for controlling important 
pathogens in several crops.

2. Fruit industry: importance in the world

Fruits and vegetables are essential sources for the micronutrients needed for 
healthier diets [4]. The potential of vegetables is to generate positive economic 
and nutritional impacts. The estimated farm gate value of annual global fruit and 
vegetable production, at nearly $1 trillion per year, exceeds the farm gate value of 
all food grains combined (US$ 837 billion). On the other hand, it is likely that the 
production of fruit and vegetable crops will not increase as rapidly as would be 
expected. Environmental changes can affect many different aspects of agricultural 
production. With greater climatic variability, temperature patterns and precipita-
tion are some of the problems faced by fruit producers [5]. Technological advances 
have focused their efforts on the development of new varieties, crop management 
techniques, and innovations in postharvest handling and processing. Even in 
high-income countries such as the US, there is evidence that public funding for 
research in the agricultural area is less than expected, given its economic value and 
its contribution to human health [6].

3. Post-harvest losses: tropical and subtropical fruit

It is reported that about one-third of the production of food intended for 
human consumption is lost or wasted worldwide, which is roughly equivalent to 
1.3 billion tons per year. This means that huge amounts of resources directed to 
food production are used in vain, and that greenhouse gas emissions caused by 
food production that is lost or wasted are also unnecessary [7]. A very significant 
part of the food that deteriorates or that is lost at post-harvest stage are fruits and 
vegetables. These losses occur throughout the management system of fruits dur-
ing the harvest, transfer to the packinghouse, in the packing, during the storage, 
transportation and distribution to marketing centers. The causes of the losses in 
post-harvest are due to economic limitations, the lack of post-harvest technol-
ogy as well as the lack of trained personnel about the knowledge in technology, 
management, physiology, and post-harvest pathology of horticultural products. 
This problem occurs mainly in developing countries, reaching up to 30 or 40% of 
post-harvest losses [8].
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The fruits during their growth in the field are exposed to the attack of patho-
genic fungi; they can be established as a latent infection in the fruit; and when the 
fruit begins its maturation process, the fungi can be activated and continue with 
their development, leading the deterioration of fruit. To control these pathogens, 
synthetic fungicides have been applied in a traditional manner; however, due to 
pollution and the environment issues, damage to the health of people and in general 
to living beings, as well as generating resistant strains of fungi, it is necessary to 
find alternatives to pathogen control [9, 10]. Currently, the research of alternative 
systems to the use of fungicides to control the losses caused by fungi, applying 
products of biological origin as well as organic and inorganic salts, among oth-
ers, in order to control fungi infections, without contaminating the environment 
and without harming living beings has increased [11, 12]. Reducing the losses of 
post-harvest could solve the problem of hunger in many countries of the world, 
where not only it is producing more food but rather it is to conserve the food that is 
currently produced.

4.  Chemical methods: applications for post-harvest disease  
management

Most of the post-harvest losses are attributed to the attack of a large amount 
of fungus in tropical and subtropical fruits. Chemical control of post-harvest 
diseases is widely used to maintain fruit quality [13]. There are a wide variety of 
fungicides for chemical control, and the vast majority is destined or directed to 
the pre-harvest applications, leaving aside the use in post-harvest stage [14, 15]. 
To make efficient the use of chemical fungicides, it is necessary to know both 
the pathogen and the fungicide. From the pathogen, it is necessary to know the 
genus and the species as well as their concentration found at pre- and post-harvest 
stages. On the part of the fungicide, it is necessary to know the mode and site of 
action, as well as the maximum residual limit (MRL) (Table 1) permitted on fruits 
and specific regulations where the fruit will be exported [16]. In Table 1, some 
fungicides used for post-harvest disease of tropical and subtropical fruit diseases 
are listed. The site and mode of action are summarized in the table, as well as the 
MRL that are allowed in the US [17] and the EU [18]. An important consequence 
for the inadequate use and irrational applications of chemical treatments is micro-
bial resistance, and in this sense, it is recommended to alternate formulations to 
avoid this problem. Besides, post-harvest chemical control should be regionalized 
to the specific conditions and environment of each crop [19]. It is important to 
mention that agrochemical companies suggest the doses and formulations to 
use in a specific crop. At this point, public research centers have an important 
contribution, not only to verify the efficiency of fungicides but also to establish 
strategies for the efficient use of post-harvest chemical control [15]. Considering 
the new consumer tendencies, about secure products free of chemical residues, it 
is necessary to consider the rational use of chemical fungicides without exceeding 
the MRL [20–22].

Therefore, the worldwide trend for both consumers and researchers is the 
reduction of the use of chemical fungicides and the research for biological, organic, 
and environmentally friendly alternatives. All this is under certification systems to 
guarantee the implementation, improvement, integration, and harmonization of 
all mechanisms to ensure a production of healthy and good quality fruit, with high 
traceability (GLOBALG.AP) [23, 24].
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Common name MRL (ppm) Chemical group Mode action Target site

EU [17] US [16]

Avocado Mango Papaya Avocado Mango Papaya

Cyprodinil 1.2 1.2 1.2 1 1 1 Anilino-
pyrimidines

Amino acids and protein 
synthesis

Methionine biosynthesis (proposed)

Carbendazim — — — 3 2 3 Benzimidazoles Cytoskeleton and motor 
proteins

ß-tubulin assembly in mitosis

Thiabendazole 10 10 5 3 3 10

Pyraclostrobin 0.6 0.6 0.6 — 0.05 0.2 Methoxy-
carbamates

Respiration Complex III: cytochrome bc1 
(ubiquinol oxidase) at Qo site

Trifloxystrobin — 0.7 0.7 — 0.7 — Oximino-acetates

Fludioxonil 5 5 5 5 5 5 Phenylpyrroles Signal transduction MAP/Histidine-Kinase in osmotic 
signal transduction

Iprodione — — — 10 10 10 Dicarboximides

Prochloraz — — — 5 2 1 Imidazoles Sterol biosynthesis in 
membranes

C14-demethylase in sterol 
biosynthesis

Difenoconazole — 0.1 0.6 0.6 0.07 0.2 Triazoles

Table 1. 
Common name, chemical group, mode and target site as well as its MRL in some fruits for consumption [23].
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5.  Alternative methods in the control of post-harvest decay of tropical 
and subtropical fruit

5.1 Chitosan

The excessive use of agrochemicals in tropical and in subtropical fruit has leaded 
the search for new natural products, eco-friendly, and nontoxic to humans. In sev-
eral investigations, chitosan has proved their efficacy for controlling several post-
harvest diseases. Several mechanisms of action have been proposed for chitosan:

a. Pathogens: the interaction of the biopolymer with the microorganism causes 
changes on cell permeability affecting biochemical processes like homeostasis, 
fungal respiration as well as nutrient uptake and the synthesis of proteins caus-
ing severe damage on fungal cells [12].

b. Plants: induction of defense systems, by the production of important enzymes 
(phenylalanine ammonium lyase, polyphenol oxidase, among others) and plant 
immunity, favoring the adaptation of plants to biotic and abiotic stresses [25].

c. Fruits: the capability of chitosan to form mechanical barrier (coating) on fruits 
offers several advantages of coated fruits like a reduction on respiration rate, 
avoid water losses maintaining fruit firmness, maintenance of color, among 
others. Thus the shelf-life of fruits can be extended [36].

The induction of defense systems has been reported by the application of chito-
san at post-harvest stage, preventing the development and dispersion of important 
pathogens such as Colletotrichum gloeosporioides, Alternaria alternata, Rhizopus 
stolonifer, and Fusarium oxysporum [26–28]. Enzymatic activity is also affected by 
the curative application of chitosan, and it increases the activity of polyphenol 
oxidase (PPO), peroxidase (POD), and phenylalanine amino-lyase (PAL) that 
induce the expression genes of β-1,3-glucanase and chitinase, involved in the 
defense against pathogens [29, 30]. The physiological mechanisms of the fruit are 
positively affected by the application of chitosan at post-harvest management under 
biotic and abiotic stress, that is why the post-harvest shelf-life and quality (firm-
ness, appearance, color) of fruit can be maintained during the storage time, besides 
the respiration rate and ethylene production of fruits decrease [31]. Some studies 
reported an enhanced content of total soluble solids, ascorbic acid, the nutritional 
value, and acceptability [30, 32, 33]. Chitosan is compatible with other substances 
like organic salts, gums, or essential oils, and this alternative can improve their 
efficacy against pathogens due to a synergistic effect [34, 35]. Even when important 
information has been generated on the use of chitosan in post-harvest tropical and 
subtropical fruits, it is still necessary to generate information on the regulation 
(activation and suppression) of genes that participate in both systems of acquired 
resistance and those that control the processes physiological, enzymatic, and 
physicochemical factors of maturation in post-harvest.

5.2 Essential oils

The use of GRAS substances like essential oils (EOs) has increased in the last years, 
due to the research of alternatives to chemical treatments for disease control [36]. 
Several investigations have reported the efficacy of essential oils in vitro and vivo tests 
[37–40]. The application of EOs in fruits has advantages such as: high effectiveness 
against several pathogens and low toxicity (nontarget microorganism and humans) 
[36]. EOs can be applied on fruits directly (vapor phase) or incorporated as active 
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microbial agents in different matrices (films, coatings, among others) at pre-harvest 
or post-harvest stages. In a recent investigation, cinnamon essential oil was added 
into biodegradable polyester nets for controlling A. alternata [41]. The results are 
promising due to their efficacy in vitro tests by stopping the development of fungus on 
mycelial growth (72% of inhibition) and the total control of germination. The pres-
ence of essential oil did not alter the biodegradability of nets as well as their efficiency 
to maintain fruit quality and the disease control on infected fruits by reducing the 
disease incidence. Incorporation of EOs into edible films for active packaging has 
demonstrated high efficacy against important post-harvest pathogens. Recently, soy 
protein isolate was used as a carrier for limonene with good results against P. italicum 
(isolated from infected limes) [42]. The liberation and efficacy (in vitro tests) of the 
active agents were evaluated simulating the storage conditions of limes (13 and 28°C). 
The mycelial growth and germination process were successfully inhibited by the 
incorporation of limonene into the protein matrix. The results in vitro were confirmed 
in infected limes with P. italicum by reducing the severity and blue mold incidence 
with the application of soy protein isolate with limonene added [43]. In another study, 
films based on chitosan, oleic acid/beeswax, and lemon essential oils were tested on 
tomatoes for preserving their quality. According to their results, the applications of 
these films improve the fruit quality by reducing water losses and the maintenance of 
appearance of fruit [44]. In a recent study, anthracnose and stem-end rot in the green-
skinned on avocado fruits was successfully controlled by the application of thyme oil in 
combination with a prochloraz solution; besides, this treatment improved fruit quality 
(firmness) during the storage time [20]. Essential oils of copaiba and eucalyptus were 
tested against Alternaria alternata and Colletotrichum musae under in vitro, and the 
results showed good efficacy at low concentrations of the treatments (0.0–1.0%) [45].

The efficacy of black caraway (Carum carvi) and anise (Pimpinella anisum) 
essential oils was tested against Penicillium digitatum in vitro as well as in vivo (on 
oranges) evaluations. The results showed that treatments were capable to control 
fungi development in vivo and in vitro tests; besides, the quality of oranges was pre-
served by the application of the treatment of 600 μL/L [46]. In a study, lemongrass 
oil was tested against Colletotrichum coccodes, Botrytis cinerea, Cladosporium her-
barum, Rhizopus stolonifer, and Aspergillus niger in vitro. According to their results, 
fungal development, sporulation process as well as spore germination of fungi was 
affected in different levels (depending on the concentration of treatment) when 
they were exposed to the treatments by stopping their development [47].

Thus, utilization of EOs for controlling diseases can be alternatives to chemical 
treatments.

5.3 Plant extracts

Currently, the study of fruits and vegetables at post-harvest stage has focused 
on the development of alternative control for conservation with better efficiency, 
sustainability, and lower cost than conventional methods. In this sense, some 
extracts from plants have proven to be a viable alternative for the extraction of 
substances with antimicrobial activity with high efficiency and low toxicity [48]. 
In a study, aqueous and ethanolic extracts from garlic (Allium sativum) were 
evaluated on citrus fruits (Citrus sinensis, Jaffa, and Valencia) with good results 
(Table 2), and it is suggested that the highest antifungal activity of the extract can 
be produced by the presence of allicin in the soluble fractions of extracts from gar-
lic [49]. In the same way, extracts of garlic, ginger, and celery have been shown to 
have different effects on the control of the incidence of Penicillium sp. in fruits of 
the species Citrus reticulata Blanco [50]. In a similar study, soybean extracts were 
evaluated as protection method on oranges infected with P. digitatum, and green 
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mold was significantly reduced (88–100%) due to the presence of β-conglycinin 
in the soy protein fraction [51]. In recent years, extracts of some angiosperm 
species have been studied as natural fungicides, such as Orobanche crenata and 
Sanguisorba minor, which have shown high efficiency in the control of the diseases 
produced by Monilinia laxa in stone fruits such as apricot, cherry, and nectarine 
[52–54]. For the case O. crenata extracts, the antifungal activity is attributed for 
the presence of the phenolic compound verbacoside, and for S. minor extracts, the 
efficacy is related to the presence of a combination of phenolic compounds like 
caffeic acid, quercetin, luteolin, and kaempferol [52–54].

An important approach in fruits is quality. In this sense, the application of some 
plant extracts can help preserve the fruit quality and improve their shelf life. In a 
recent investigation, the application of guava extracts (from leaves) and lemon on 
banana fruits (Musa sapientum L.) at post-harvest stage considerably improved the 
shelf life of the fruits (up to 8 days) compared to untreated fruits (only 4 days), 
having a positive effect on the conservation of the physicochemical characteristics 
of fruit during the storage time [55]. Utilization of plant extracts for disease man-
agement in both pre- and post-harvest stages can be another alternative to the use 
of chemical treatments, due to their effectiveness and eco-friendly characteristics.

5.4 Acetic acid, peracetic acid, and hydrogen peroxide

The use of sanitizing agents such as acetic acid (C2H4O2), peracetic acid (C2H4O3), 
and hydrogen peroxide (H2O2) on the processing and marketing industries of fruits 
and vegetables have been considered a useful tool to the control of different kinds 
of pathogens [56]. The FDA has approved the use of these compounds because their 
decomposition products are water, oxygen, and acetic acid, and these are not toxic 
compounds and are friendly with the environment [57, 58]. For these reasons, they 
are classified as GRAS [56]. The acetic acid, peracetic acid, and hydrogen peroxide 
are recognized as antimicrobial and antifungal agents, because they have high 
spectrum of attack on bacteria, fungi, spores, and viruses. In vivo studies realized 
on fresh and fresh-cut horticultural products confirm their antimicrobial capacity 
with the reduction of human pathogens such as Staphylococcus aureus, Escherichia 
coli, Streptococcus mutant, Salmonella Thompson, and Listeria monocytogenes [59, 60]. 
The application of acetic acid, peracetic acid, and hydrogen peroxide also decreases 
the microbial pollution of aerobic mesophiles, molds, and yeast, obtaining with 

Fruit Disease Pathogen Extract 

source

Disease inhibition (%) References

Orange Blue mold P. italicum Garlic 92 [47]

Green mold P. digitatum Garlic 90 [47]

Soybean 100 [49]

Citrus rot Penicillium sp. Garlic 80.2 [48]

Celery 5.3

Ginger 16.3

Cherry Brown rot M. laxa O. crenata 76 [51]

S. minor 89

Nectarine Brown rot M. laxa O. crenata 75 [53]

S. minor 100

Table 2. 
Disease control of plant extracts.
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these innocuous and acceptable products to the consumers [61]. In fruits like guavas, 
peaches, and tomatoes, the antifungal effect of these sanitizers has been confirmed 
with the inhibition of phytopathogens such as Rhizopus stolonifer, Monilinia fruc-
ticola, Alternaria alternata, Botrytis cinerea, Fusarium solani, and Rhizoctonia solani 
[62–65]. The inactivation capacity of these compounds on pathogens is based on 
their high oxidizing power, producing reactive oxygen species (ROS) that generate 
instability in biomolecules such as DNA, lipids, and proteins, which are vital for 
the correct cellular functioning of pathogens [56]. Usually, the application of these 
sanitizers at post-harvest stage in fruits and vegetables is by spraying, dipping, and 
fumigation. Several authors have investigated the pathogen inhibitory effect of each 
application system, with the finality to know which application system has better 
efficiency. The inhibition of A. alternata and B. cinerea in tomato fruits treated with 
acetic acid by immersion (50 ml/L by 3 min) and fumigation (50 μl/L by 30 min) 
was evaluated [64]. The results of this investigation showed the efficacy of both 
application systems. The growth inhibition of the pathogens tested ranged from 90 to 
100% by immersion and fumigation, respectively. In strawberry fruits infected with 
B. cinerea and treated with peracetic acid, where the lower incidence of gray mold 
disease was obtained with the fumigation system (66%) compared to immersion 
method (80%) [66]. These results confirm that the capacity of inhibition of these 
GRAS substances against phytopathogens depends not only on the concentration 
used but also on the exposure time, the microorganism tested, and the application 
method [67]. The individual application of acetic acid, peracetic acid, and hydrogen 
peroxide has controlled microbial contamination in an acceptable way, but different 
reports have been showed that their combination with other compounds and tech-
nologies increases microbial control. Some of the technologies used include ultra-
sonic, organics salts, essential oils, ultraviolet light, hot water, and steam [63, 68–73]. 
Maintaining not only the safety but also the quality on post-harvest products is a con-
stant challenge for the horticulture industry. The application of acetic acid, peracetic 
acid, and hydrogen peroxide can also improve the quality of the products, according 
to different in vivo studies carried out. In peppers, fruits treated with the solution of 
hydrogen peroxide and applied by dipping (15 mM by 30 min) increased their shelf 
life and the fruits maintained their appearance after 2 weeks stored at 20°C compared 
to control fruits [74]. In according to their results, fruits and vegetables such as 
tomatoes [75], grapes [76], nectarines [63], apples [68], and cherries [77] have been 
maintained the quality. Thus, the application of these sanitizers in post-harvest is a 
practical strategy to maintain the safe and quality of the post-harvest products.

5.5 Salts: organic and inorganic

Nowadays, there is a tendency to reduce the use of synthetic fungicides in agri-
culture. In this sense, organic and inorganic salts are chemical substances that are 
food additives generally recognized as safe (GRAS). They are widely used in the food 
industry due to the low toxicity and environmental impact, besides they can be com-
bined with other control systems to control phytopathogens in post-harvest stage in 
different fruits and vegetables [78, 79]. It has been shown that salts such as calcium 
propionate completely inhibit the mycelial growth of B. cinerea at a concentration 
of 5% (w/v) [78]. This may be due to the fact that it changes the plasma membrane, 
thus inhibiting essential metabolic functions. Some authors have described that 
high concentrations of sodium benzoate inhibited the growth of A. Alternata [80], 
and this is attributed to the fact that weak acids within the cell create a dissociation, 
causing that protons and anions accumulate and cannot cross the plasma membrane 
again [81]. Bicarbonate salts, also were effective to inhibit the growth of various 
pathogens, the efficiency of this salt is attributed to the fact that it creates cellular 
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ionic imbalances affecting the synthesis of polyamines and DNA during cell divi-
sion [82, 83]. With the accessibility of these compounds and their effectiveness, it 
is possible that they can be adopted to reduce the use of traditional fungal agents. 
In a study, potassium sorbate was applied at low concentrations (1%) on infected 
tomato fruits, and significant reduction of disease incidence was obtained against 
Rhizoctonia solani, Colletotrichum coccodes, Botrytis cinerea, and Alternaria solani [84]. 
In another study, gray mold caused by Botrytis cinerea was totally controlled by the 
application of potassium sorbate at 1% [85]. The effectiveness of potassium sorbate 
is related to its undissociated form (sorbic acid), which has the ability to penetrate 
the cell membranes, causing an internal imbalance affecting enzymes related to the 
growth of microorganisms [86]. In a study on citrus, potassium sorbate at 3% solu-
tions was applied in combination with heat treatment (62°C, 60 s) to evaluate their 
effectiveness in reducing the disease incidence caused by Penicillium strains. The 
results showed that the treatments can reduce the disease incidence on “Clemenules” 
(20%), “Nadorcott” mandarins (25%), “Fino” lemon (50%), tangerine “Ortanique” 
(80%), and “Valencia” oranges (95%) stored 20°C for 7 days. Besides, when 
infected and treated fruits were stored at 5°C during 60 days, on “Valencia” 
oranges, the green mold (Penicillium digitatum) was reduced up to 95% and blue 
mold (Penicillium italicum) up to 80% [87]. Green mold caused by P. digitatum was 
reduced up to 80% on infected oranges by the application of sodium benzoate (3%) 
in combination with hot water (53°C) during 60 s, and fruits were stored at 20°C for 
7 days [88]. The effectiveness of sodium benzoate is related to its undissociated form 
of benzoic acid, which can enter the cell membrane, and its neutralization within 
the cell leads to acidification of the intracellular space, thus affecting the growth of 
fungus [89]. On the other hand, another alternative to avoid pathogen development 
is the use of silicates, and the most used in the fruit industry is: potassium, calcium, 
and sodium. It has been reported that the action of these organic salts causes, among 
other effects, inhibition of mycelial growth and alteration of the morphology of 
the hyphae, and in addition, the germination of conidia is inhibited and causes 
alterations in their external morphology. The application of sodium silicate induces 
alterations in the cell wall and in the morphology of the hyphae on pathogenic fungi. 
It is important to mention that the application of silicate as post-harvest treatment 
presents results similar to those reported with chitosan and tebuconazole [90]. 
The investigations of the use of inorganic salts in post-harvest stage are not very 
frequent, even there are not yet many studies that determine the effect that this 
may have if applied to different types of crops. These salts have been applied on 
orange [91], melon [92], avocado [93], and papaya [94], with good results due to the 
treatments, which form a barrier against pathogens on surface fruit. In addition, the 
application of silicates can improve some quality attributes of fruits like the mainte-
nance of weight and reducing the respiration rate due to the capacity of the silicates 
to deposit between the cell wall and the cell membrane, thus decreasing the perme-
ability, besides the stomata are covered, maintaining the humidity of the fruit and 
reducing its respiration [95, 96]. With the accessibility of these compounds and their 
effectiveness, it is possible that they can be adopted to reduce the use and applica-
tions of traditional fungal agents.

5.6 Jasmonic and salicylic acid

Resistance induced to disease in plants by biotic and abiotic elicitors is a very 
effective method for restricting the spread of fungal infection [97]. In general, 
pathogen resistance processes in plants are based on their own defense mechanisms, 
such as pre-existing antimicrobial compounds and inducible defense mechanisms. 
Resistance to diseases induced in plants and fruits by biotic or abiotic treatments 
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is a very attractive strategy to control diseases [98]. The signal molecules salicylic 
acid (SA), jasmonic acid (JA), and methyl jasmonate (MeJA) are endogenous plant 
growth substances that play key roles in development and responses to environmental 
stresses. These signal molecules are involved in some signal transduction systems in 
plants and fruits, which induce particular enzymes catalyzing biosynthetic reactions 
to form defense compounds such as polyphenols, alkaloids, or pathogenesis-related 
(PR) proteins. This can result in induction of defense responses and provide protec-
tion for plants and fruits from pathogen attack [99]. Salicylic acid activates induc-
tion of acquired systemic resistance (SAR) response in plants, proving that in the 
plant-microorganism interaction, the enzyme phenylalanine ammonia lyase (PAL) is 
induced, which is the key in the biosynthesis of phenolic compounds [100]. Peroxide 
has an antibiotic activity against pathogens; it could intervene in the signaling cascade 
for the expression of defense genes. SA regulates activities of enzymes, peroxidase 
(POD), and polyphenoloxidase (PPO), that are related to induced defense of plants 
and fruits against biotic and abiotic stress [101]. Jasmonic acid (JA) and methyl jasmo-
nate (MeJA) have been found to occur naturally in a wide range of higher plants. MeJA 
is an occurring plant growth regulator that modulates many physiological processes 
including responses to environmental stresses [99]. Studies indicate that acquired 
systemic resistance depends on signaling mediated by MeJA and is associated with 
some signal transduction systems, which induce particular enzymes that catalyze 
biosynthetic reactions to form defense compounds such as polyphenols, alkaloids, 
reactive oxygen species (ROS•), or PR proteins [102]. The exogenous application of 
MeJA induces and increases the activity of defense enzymes such as β-1,3-glucanase 
(β-Gluc), chitinase, polyphenoloxidase (PPO), and phenylalanine ammonia lyase 
(PAL), which are enzymes associated with resistance to diseases [103]. Application of 
MeJA effectively suppressed gray mold rot caused by Botrytis cinerea in strawberry 
[104] and decreased fruit decay on papaya fruit infected by C. gloeosporioides and 
Alternaria alternata [105]. For grape fruits inoculated with Botrytis cinerea, the appli-
cation of MJ (0.01 mM) increased the enzymatic activity of PAL and PPO [106], and 
the same behavior was reported on Hass avocado fruits with an increase in the activity 
of the resistance enzymes, chitinase, β-1,3-glucanase and PAL [11]. The application 
of MeJA (10 mM) in cranberry fruit inoculated with Penicillium citrinum maintained 
greater POD and PAL activity [107]. There are several studies on the application of 
SA in fruits for the induction of defense mechanisms against pathogens. Resistance of 
the tomato fruit against Botrytis cinerea using SA as a resistance inducer, a significant 
increase in the expression level of the PR1 gene was observed in the fruit and a lower 
expression in the PR2 and PR3 genes [108]. The post-harvest application of SA (2 mg/
mL) showed a decrease in the severity of anthracnose in mango cv. Kensington Pride 
[109]. Thus, the use of inducers offers several advantages for post-harvest disease 
control; besides, they can combine it with other methods to enhance their efficacy.

5.7 Coatings and edible film from natural sources

Edible coatings on fruits and films made from natural sources are a novelty 
method and an alternative to the use of post-harvest chemical treatments, particu-
larly in highly perishable fruits [110]. The coatings act as a barrier during processing, 
handling and storage, delaying the deterioration of food, improving its quality, and 
extending their shelf life. The functional properties of edible coatings and films 
depend on their application and the characteristics of the fruit in which they are going 
to be used. The nature of the compound that is used to produce the coating strongly 
influences its efficiency, thus it must take into account both its physical and chemical 
properties, as well as its mechanical and permeable properties. Based on this, if the 
edible coatings are used properly, they may be able to delay the ripening of the fruit, 
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slow the decomposition of the chlorophyll, reduce the weight loss, retain the ascor-
bic acid, improve the appearance of the fruit, and especially prolong the shelf life 
[111–113]. To date, the functional properties of different compounds for the produc-
tion of edible coatings have been studied. Compounds from natural sources such as 
Aloe vera and waxes have shown promising properties to be applied in the preserva-
tion of tropical fruits, and therefore coatings based on these compounds can represent 
an innovation in the commercial application and exploitation of these resources. Aloe 
vera gel is one of the natural compounds, which has gained a great interest. Because of 
its nature mainly constituted by polysaccharides, it is capable to form a uniform layer 
on the surface of the fruit and be easily applied [114]. Aloe vera coating can improve 
the post-harvest qualitative and quantitative traits, thus it can be an alternative for 
chemicals preservative in the commercial storage of tropical and subtropical fruits.

Aloe vera-based coatings have been successfully tested in mango fruit ripening 
(Mangifera indica L. cv. Kensington Pride) [111]. Aloe vera coating reduced aroma vola-
tile biosynthesis in the fruit pulp. Likewise, it was found that coatings delayed ripening 
of the fruit compared to control. They state that this effect was characterized by the 
suppression respiration and/or delayed climacteric peak, late fruit color development, 
and a greater firmness in the coated fruit compared to the uncoated ones. Similarly, the 
effect of edible coatings based on Aloe vera to extend the shelf life of the guava (Psidium 
guajava) has been demonstrated. Achipiz et al. [112] found that a coating with a con-
centration of 4% potato starch and 20% A. vera showed a favorable effect by reducing 
the weight loss and the respiratory rate of the fruit and increasing the firmness and 
retention of the vitamin C content after 10 days of storage. In another study, the effect 
of the Aloe vera gel coating on the store ability of peach fruits was evaluated [115].

The Carnauba wax stems from the leaves of the Brazilian palm Copernicia cerif-
era. It is produced as a protection method to prevent dehydration and damage. The 
Carnauba wax as an edible coating is being extensively studied because it has been 
demonstrated to reduce water loss, improve appearance, and prolong shelf life in a 
wide variety of fruits. An edible coating based on cassava starch and carnauba wax 
adding organic acids and calcium chloride was evaluated in mangoes cv Tommy Atkins 
minimally processed [113]. According to the results, the attributes of sensory, physi-
cal, and chemical quality were maintained, and the useful life of fruit was possible to 
prolong up to 24 days under refrigeration conditions (5 ± 1°C and 90 ± 2% RH).

Saucedo-Pompa et al. [116] developed an edible coating based on candelilla 
wax to improve avocado quality. Furthermore, they studied the effect of the ellagic 
acid addition in the shelf life of the fruit. The results showing the application of 
edible films based on candelilla wax improved the quality of the avocado fruits and 
extended its shelf life compared to the control fruits. Also, the addition of ellagic 
acid to the edible film showed an important effect, since it reduced the damage 
caused by the fungus C. gloeosporioides (the main phytopathogenic fungus for 
avocados) and significantly improved the quality and shelf life of avocado. Another 
coating based on mesquite gum-candelilla wax was evaluated in Persian limes [117]. 
The results showed that coatings decreased the weight loss of the fruit. In addi-
tion, by adding mineral oil (33%) to the emulsion, they observed that water vapor 
permeability was significantly improved, as well as its appearance.

5.8 Ultrasound

Ultrasonic is an economically and environmentally viable alternative for the 
processing of fruit and vegetable post-harvest [118]. Low intensity ultrasound has 
been used for quality control of fresh fruit and vegetables in pre- and post-harvest 
processes [119]. Harvesting time and storage period can be indirectly assessed by 
ultrasound measurements that are linked physicochemical measurements such as 
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firmness, mealiness, dry weight percentage, oil contents, total soluble solids, and 
acidity [119]. On the other hand, decontamination of fresh product by ultrasound is 
relatively recent. The inactivation of microorganism caused by cavitation phenom-
enon has promoted high intensity ultrasound as method to decontaminate fruits and 
vegetables. The efficiency of the ultrasound process is affected by several factors 
such as power level, treatment time, and temperature [120]. Additionally, ultra-
sound can be applied directly to the medium (water) or in combination with some 
compounds (organic salts, organic acids, chitosan, among others) to achieve better 
results. Concerning individual ultrasound application, ultrasound at low frequen-
cies (20 and 40 kHz) has demonstrated to decrease the microbial load of mesophilic 
aerobes in lettuce (0.9 log CFU/g) and strawberry (1.49 log CFU/g) [121, 122]. At the 
present time, ultrasound is being implemented in combination with various aqueous 
sanitizers in order to improve microbial safety and maintain food quality on organic 
fresh produce. In vitro assay, the addition of low weight chitosan (1000 ppm) 
enhanced the inactivation of Saccharomyces cerevisiae by ultrasound (20 kHz) at 45°C 
in Sabouraud broth (pH 5.6). After 30 min of exposure to chitosan, approximately 
1-log cycle reduction of the yeast was obtained leading to a final reduction of more 
than three log cycles after 30 min of the ultrasonic treatment [123]. In the case of in 
vivo assays, the effectiveness of ultrasound (40 kHz, 5 min) alone and organic acids 
(0.3, 0.5, 0.7, 1.0, and 2.0% of malic acid, lactic acid, and citric acid) alone and their 
combination on reducing Escherichia coli O157:H7, Salmonella Typhimurium, and 
Listeria monocytogenes in fresh lettuce was compared. For all three pathogens, the 
combined treatment of ultrasound and organic acids resulted in additional 0.8–1.0 
log reduction compared to individual treatments, without causing significant quality 
change (color and texture) on lettuce during 7 day storage. The maximum reduc-
tions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes were 2.75, 3.18, and 
2.87 log CFU/g observed after combined treatment with ultrasound and 2% organic 
acid for 5 min, respectively (Sagong et al., 2011). In peach fruit, the effect of ultra-
sound (40 kHz, 10 min) and salicylic acid (0.05 mM) either separately, or combined 
on blue mold caused by Penicillium expansum was investigated. The results showed 
that the application of salicylic acid alone could reduce blue mold, while the use of 
ultrasound had no effect. Results also revealed that salicylic acid combined with 
ultrasound treatment was more effective in inhibiting fungal decay during storage 
than the salicylic acid treatment alone. The combined treatment increased the activi-
ties of defense enzymes such as chitinase, β-1,3-glucanase, phenylalanine ammonia 
lyase, polyphenol oxidase, and peroxidase, which were associated with higher 
disease resistance induced by the combined treatment. Furthermore, the combined 
treatment did not impair the quality parameters of peach fruit after 6 days of storage 
at 20°C [124]. The incorporation of ultrasound alone or in combination with other 
agents in decontamination process could be a useful preservation technique for 
post-harvest fruits and vegetables. Combination of ultrasound and sanitizers could 
increase pathogen reduction without affecting the product quality, while concentra-
tion of sanitizers could be reduced as well as treatment time required, saving time 
and money and avoiding significant risks to consumers.

5.9 Fogging

In order to prolong the shelf life of fruits and vegetables in post-harvest periods, 
various technologies have been developed that maintain their integrity as well as their 
nutritional properties. One of the technologies little explored at present is the use of 
ultrasonic nebulization (Fogging) as a method of distribution of compounds that serve 
to prevent or control pathogenic diseases in the post-harvest period. Fogging has been 
used successfully for the spraying of disinfectants such as chlorine dioxide, sodium 
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hypochlorite, hydrogen peroxide, acetic acid, and ethanol, achieving the control of 
epiphytic microorganisms on the surface of the strawberry (fungi and bacteria), thus 
reducing the decay index by up to 83.2%, demonstrating that nebulization is an effec-
tive method for the reduction of diseases in the post-harvest stage [125]. Regarding 
fruit quality, in a study with strawberry, peracetic acid was applied as a disinfectant 
by ultrasonic nebulization, and the results showed that the anthocyanin and phenolic 
compound contents were preserved even when the fruits were exposed to low concen-
trations of peracetic acid [126]. In the post-harvest and fruit storage period, it is neces-
sary to minimize chemical products as environmental precautions and avoid adapting 
pathogens to various fungicides, causing high losses of between 30 and 50% in veg-
etables and fruits [125, 127]. The use of ultrasonic nebulization offers advantages such 
as the reduction of the amount of disinfectant and a better distribution of the treatment 
on the fruits, and in a study of figs, the inhibition of gray mold disease (B. cinerea) 
80% of control was achieved with only the application of chlorine dioxide (1000 μL/L) 
[127]. Ultrasonic nebulization as a conservation method in the post-harvest period 
gives high benefits in different ways, by reducing the quantity of substances applied, 
the exposure time as well as a better distribution of the treatments, its application in 
fruits and vegetables has not been explored, thus the development of this technology 
can offer an alternative to the use of chemical fungicides for the control of diseases.

6. Conclusions

Considering the new tendencies in fruit industry and marketing, the use of alter-
native methods represents a suitable approach for several agriculture commodities 
not only for controlling post-harvest diseases but also for maintaining fruit quality.
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