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Abstract

Toll-like receptors (TLRs), a major component of innate immune system, 
are expressed as membrane or cytosolic receptors on neutrophils, monocytes, 
macrophages, dendritic cells (DCs), B lymphocytes, Th1, Th2, and regulatory T 
lymphocytes. It recognizes pathogen-associated molecular patterns (PAMPs) and Toll-
interleukin1 (IL-1) receptor (TIR) of various invading pathogens. Downstream signal-
ing of TLRs activates NF-κB, which acts as a transcription factor of pro-inflammatory 
cytokines, chemokines, and costimulatory molecules. A balance between pro- and 
anti-inflammatory cytokine protects host body from infectious agents and also induces 
the healing process. Some of parasitic infections by protozoans and helminths such 
as Malaria, Leishmaniasis, Trypanosomiasis, Toxoplasmosis, Amoebiasis, Filariasis, 
Schistosomiasis, Ascariasis, Taeniasis, and Fasciolosis are the leading cause of death 
and economic loss in both developing and developed nations. Frequent exposure to 
parasites, immigration, refugee resettlement, increasing immunodeficiency, climate 
change, drug resistance, lack of vaccination, etc. are the major cause of emerging and 
re-emerging of the above-stated diseases. However, TLR activation by parasites could 
stimulate antigen presenting cells and ultimately clear the pathogens by phagocytosis. 
So, a better understanding of host-parasite interaction in relation to TLR signaling 
pathway will improve the controlling method of these pathogens in immunotherapy.

Keywords: Toll-like receptors, pathogen-associated molecular patterns,  
protozoan parasite, helminth infection

1. Introduction

Increasing cases of parasitic infections (due to protozoans and helminths) and 
high rate of mortality are the greatest problem of today’s world. Some of these 
diseases such as Malaria, Filariasis, Trypanosomiasis, Leishmaniasis, Toxoplasmosis, 
Amoebiasis, Ascariasis, Schistosomiasis, and Taeniasis affect over half a billion 
people worldwide and cause economic loss in both developing and developed coun-
tries [1]. Overpopulations, migration of people into large urban areas, and unhygienic 
environment are the main reasons for making these diseases epidemic [2]. However, 
the tragedy is that only 5% of total health expenditure was given for research work on 
parasitic diseases [3]. Currently, there is no effective vaccine available for these major 
problems. So, a better understanding of pathogenesis during infection, resistance 
mechanism of pathogens, host protective immune response initiation, and progres-
sion is needed for developing effective vaccines or therapeutic interventions [4].



Toll-like Receptors

2

Among the two types of vertebrate immune system, innate immunity provides 
the first line of defense against parasites. Previous studies stated innate immunity 
as nonspecific response, and it induces the acquired immunity (slower and specific 
response) by providing pathogens to T and B cells [5]. However, recent evidence 
proved that innate immune system also had a great degree of specificity and can 
provide host defense against invading parasites. This is because of the presence of 
five classes of pattern recognition receptors: TLRs (Toll-like receptors), C-type 
lectin receptors, NOD-like receptors (nucleotide-binding oligomerization domain 
leucine-rich repeat-containing receptors), RIG-I (retinoic acid inducible gene I 
protein) helicase receptors, and cytosolic dsDNA sensors [6, 7]. Among them, TLRs 
form a bridge between innate and adaptive immunity and play a very important 
role in parasite eradication. TLRs recognize specific pathogen-associated molecular 
patterns (PAMPs) in pathogens and initiate opsonization, phagocytosis, pro-
inflammatory and anti-inflammatory response, and apoptosis [7, 8].

2. Cells expressing TLRs

TLRs, a major component of innate immunity, are Type-1 transmembrane 
glycoproteins present in both vertebrates and invertebrates [9]. Toll-like receptors 
are named due to their similarity with Drosophila Toll protein (Toll) [10]. All TLRs 
have a highly variable extracellular domain containing leucine-rich repeat (LRR) 
domain for ligand binding and intracellular TIR homology domain [11]. Toll-like 
receptors and interleukin-1 receptor together form “Interleukin-1 receptor/Toll-like 
receptor” superfamily whose all members have a common Toll-IL-1 receptor (TIR) 
domain [12]. Till date, 10 humans and 12 mice functional TLRs were identified. 
Although humans and mice have similar TLR1–9, TLR10 is nonfunctional in mice 
and TLR11–13 are lost in humans [13]. TLR1, TLR2, TLR4, TLR5, and TLR6 recog-
nize extracellular PAMPs, which are expressed on cell surface, whereas TLR3, TLR7, 
TLR8, and TLR9 are expressed within endoplasmic reticulum (ER), endosomes, 
lysosomes, and endolysosomes and identify nucleic acids [14]. The presence of 
TLRs on specific intracellular vesicles restricts their activation by self-nucleic acids 
released by apoptotic cells [15]. TLR11 (a relative of TLR5) and TLR13 are expressed 
in intracellular vesicles [16], but cognate PAMP of TLR13 has not been identified yet 
[17]. Table 1 shows the distribution of various TLRs in different cells.

TLRs can be classified on the basis of their recognized ligands—TLR1/TLR2 
heterodimer (triacylated lipopeptides), TLR2/TLR6 heterodimer (diacylated 
lipopeptides), TLR4 (lipopolysaccharide), TLR3 (double-stranded RNA), TLR5 

Cells Expressing TLRs

Neutrophils TLR 1, 2, 4, 5, 6, 7, 8

Monocytes/macrophages TLR 1, 2, 4, 5, 6, 7, 8

Myeloid dendritic cells TLR 2, 3, 4, 7, 8

Plasmacytoid dendritic cells (PDCs) TLR 1, 6, 7, 9

B lymphocytes TLR 1, 3, 6, 7, 9, 10

T lymphocytes (Th1/Th2) TLR 2, 3, 5, 9

T lymphocytes (regulatory) TLR 2, 5, 8

Peripheral blood mononuclear cell (PBMC) TLR 2, 4, 5, 7, 8, 9

Table 1. 
Different Toll-like receptors expressed by immune cells [7, 16].
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(flagellin), TLR 7/8 (single-stranded RNA), and TLR9 (unmethylated CpG motif) 
[18, 19]. These ligands for TLRs are of bacterial, viral, protozoan, fungal, and 
helminth membrane bound or endogenously released molecules such as hyaluronic 
acid, fibrinogen, fibronectin, b-defensins, heparan sulfate proteoglycans, heat 
shock proteins, nucleic acids, and synthetically derived molecules [20].

3. TLR signaling pathway

TLRs present on dendritic cells (DCs) [both myeloid DCs (mDCs) and plasma-
cytoid DCs (pDCs)], neutrophils, macrophages, natural killer (NK), and natural 
killer T (NKT) cells induce dendritic cell maturation, MHC molecule upregulation, 
and costimulatory molecule production (CD40, CD80, and CD86) [21, 22]. The 
cytokines released by TLR signaling ultimately activate Th1 cells (via IL-12 from 
DCs) and Th2 cells (via IL-4 from B cell) [21, 23].

Toll-interleukin-1 receptor (TIR) domain is responsible for transducing the signal 
from TLRs to their adaptor proteins. The C-terminus of all TLRs, IL-1 and IL-18 and 
adaptor proteins of TLRs have this TIR domain. Six adaptor proteins involved in TLR 
signaling are MyD88 (myeloid differentiation factor 88), TIRAP (Toll-IL-1 receptor 
domain-containing adaptor protein) and MAL (MyD88 adapter-like), TRIF (TIR 
domain-containing adaptor inducing interferon-β) and TICAM-1, TRAM (TRIF-
related adaptor protein) and TICAM-2, SARM (sterile-α and HEAT/Armadillo 
motifs-containing protein) and MyD88-5, and BCAP (B Cell Adaptor for PI3K) [24]. 
TLR signaling occurs via two separate pathways: MyD88 (myeloid differentiation 
primary response protein)-dependent pathway and MyD88-independent pathway. 
MyD88-dependent pathway stimulates all TLRs except TLR-3, which gets stimulated 
by MyD88-independent pathway. However, in case of TLR4, both MyD88-dependent 
and independent pathways operate [25]. MyD88 (an adaptor molecule) activates 
IRAK-4 (interleukin-1 receptor-associated kinase-4) alone or in combination with 
TIRAP (Toll-IL-1 receptor domain-containing adaptor protein) or MAL (MyD88 

Figure 1. 
TLR signaling pathway.
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adapter-like). Then, IRAK-4 phosphorylates IRAK-1 [26] which in turn phos-
phorylates IRAK-2. IRAK-2 ubiquitinates TRAF6 (tumor necrosis factor receptor-
associated factor 6) and induces two signaling pathways: (1) AP-1 (activator protein 
1) activation via MAK 4/7 (mitogen-activated protein kinase) phosphorylation and 
(2) TAK1 (transforming growth factor-β-activated kinase 1) activation ultimately 
leads to MAPK (mitogen-activated protein kinase) and IKK complex [27] stimula-
tion and nuclear factor κB (NF-κB) translocation inside the nucleus via degradation 
of its inhibitor. Both AP-1 and NF-κB induce the expression of pro-inflammatory 
cytokines and chemokines. A different MyD88-dependent pathway stimulates TLR 
7, 8, and 9, which acts as a ligand for viral nucleic acids. MyD88-associated IRAK1 
(interleukin-1 receptor-associated kinase-1) phosphorylates IRF7 (interferon-
regulatory factor-7), which regulates Type I interferon expression [28]. TLR signal-
ing through MyD88-independent pathway occurs via two adaptor molecules—TRIF 
(Toll-IL-1 receptor domain-containing adaptor inducing interferon-β) and TRAM 
(TRIF-related adaptor molecules) (Figure 1). This induces Type 1 interferon by 
IRF-3 (interferon-regulatory factor-3), NF-κB activation, and expression of co-
stimulatory molecules [29].

4. Protozoan infections

Different protozoan (Plasmodium, Leishmania, Trypanosoma, Toxoplasma, and 
Entamoeba) PAMPs induced pathogenic reactions through TLR signaling pathway.

4.1 Malaria

Malaria, one of the most life-threatening diseases of human history, has infected 
about 219 million people over 90 countries with around 1 million deaths per year. 
Plasmodium, an intracellular protozoan parasite, is the causative agent of malaria. 
It is transmitted by infected female Anopheles mosquito biting, and four species of 
Plasmodium are responsible for human malarial infection. Among Plasmodium falci-
parum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae, P. falciparum 
is the deadliest. Recently, another species named Plasmodium knowlesi has been found 
to infect humans [30]. In the early presymptomatic stage, a very low level of plasmo-
dium can induce inflammatory response [31]. The innate immune genes such as TLRs, 
PRRs, and inflammatory cytokines are already upregulated, and these lead to elevate 
the level of TNF, IFN, and IL-12 from plasmodium-infected peripheral blood mono-
nuclear cells (PBMCs) up to 48 h of infection [32, 33]. These inflammatory responses 
are associated with the pathophysiological condition and clinical symptoms of 
malaria including anemia, cerebral malaria, and ultimate death [34]. Cerebral malaria 
is caused due to overexpression and binding of adhesion molecules such as intracellu-
lar adhesion molecule 1 (ICAM-1), vascular cellular adhesion molecule 1 (VCAM-1), 
endothelial/leukocyte adhesion molecule (ELAM-1), and CD36 [35] on brain endo-
thelial cell receptors. Thus, inflammatory response leads to sequestration of infected 
red blood cells in host brain [36]. Furthermore, TNF and IFN suppress hematopoiesis 
and lead to anemia during malarial infection [37]. The potential immunomodula-
tors of the malarial parasites are: (1) plasmodial glycosylphosphatidylinositol (GPI) 
anchors, (2) hemozoin, and (3) plasmodial DNA. All of these three molecules are 
referred as “malaria toxin” released during schizogony and cause inflammation and 
symptoms of malaria [38, 39].

Homodimer of TLR4 and heterodimer of TLR1/TLR2 and TLR4/TLR6 can 
bind to GPIs released during erythrocytic phase of P. falciparum infection [40]. 
GPI induces TLR-mediated proinflammatory cytokines (TNFα and IL-1) [41] and 
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nitric oxide [42] release from macrophages. It also induces cerebral malaria at later 
course of infection [43]. Plasmodium 2-Cys peroxiredoxin also acts as a TLR4 ligand 
in monocyte and mast cells and causes cytokine production [44]. Hemozoin is 
released during each life cycle of P. falciparum infection and makes a complex with 
plasmodial DNA. This complex acts as a TLR9 ligand and leads to the production 
of proinflammatory cytokines (TNFα and IL-1β) [45]. Hemozoin DNA complex 
induces cerebral malaria by caspase 1-mediated inflammasome (NLRP3) formation 
by TLR9 in case of P. chabaudi infection [46] but is absent in P. berghei spoprozoite 
infection [47]. Although in case of both mice and humans, Plasmodium infection 
renders no TLR stimulation in dendritic cells. The infant exposed to TLR-mediated 
cytokine profiles (IL-10) is associated with higher risk of P. falciparum maternal 
infection during delivery [48]. RNA of P. chabaudi acts as a ligand for TLR7 and 
induces IFNγ, IL-10, IL-12, and TNF release at 24 h of infection [49]. In case of P. 
vivax infection, TLR5 and TLR7 hinder parasitic growth, but TLR9 is associated with 
high inflammation and cytokine production [50]. The 19 kDa C-terminal fragment 
of merozoite surface protein 1 (MSp1) in P. vivax acts as a ligand for TLR5 [51]. 
P. yoelii infection in peritoneal macrophages enhances TLR and parasite-specific 
immune response [52] (Figure 2). Other than Th1 response, malaria parasite-
derived molecules also induce Th2 response via IL-4-inducing  
factor (released by PI3K-Akt-NF-κB signaling) in DC [53].

4.2 Leishmaniasis

Leishmaniasis is one of the deadliest parasitic infections with an estimation of 
200,000–400,000 worldwide infections each year. A protozoan parasite is the caus-
ative agent of this disease, which is transmitted to humans by the biting of female 
Phlebotomus sandfly. The pathology of this infection and causative parasitic species 
includes cutaneous (i.e., L. major, L. mexicana, and L. guyanensis), mucocutaneous  
(i.e., L. amazonensis and L. braziliensis), or visceral leishmaniasis (L. donovani and  
L. chagasi) [54]. Several reports indicate that few Leishmania-derived molecules could 
interact with innate immune receptors (TLRs) of host and result in inflammatory 

Figure 2. 
TLR signaling during Plasmodium infection.
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response. This inflammation effectively deprives parasites from the host by inducing 
efficient adaptive responses.

Lipophosphoglycan (LPG) occurs as a surface protein of L. major, L. mexicana, 
L. aethiopica, and L. tropica and acts as a major ligand for TLR-mediated host 
immune response. LPG’s secreted form is structurally similar to membrane bound 
form with differences in sugar types of glycan and in number of phosphorylated oli-
gosaccharide repeats. Membrane bound LPG induces ROS production and Th2 cell 
differentiation, whereas soluble LPG causes Th1-promoting cytokine production 
[55]. Inside NK cells, LPG of L. tropica induces TNFα, IFNγ, nitric oxide (NO), and 
reactive oxygen species (Th1 response) release via TLR2 upregulation and stimula-
tion [56, 57]. TLR2 can also induce immune response by altering TLR9 expression 
[58]. However, in case of L. braziliensis and L. amazonensis, parasite could decrease 
IL-12 production, increase IL-10 production by TLR2-mediated p38 MAPK inhibi-
tion in macrophages, and thus increase pathogenesis. TLR2/TLR4 dimerization 
induces the expression of SOCS-1 and SOCS-3 (suppressor of cytokine signaling 
protein) by LPG [59]. A protein structurally related to silent information regulator 
2 (SIR2) family could activate B lymphocytes, major histocompatibility complex 
(MHC) II, CD40 and CD86 (costimulatory molecules) overexpression, DC matura-
tion, and TNFα and IL12 secretion through TLR2 [60]. HO-1 (heme oxygenase-1) 
mediated inhibition of TLR2, 4, 5, and 9 (but not TLR3) association with their 
adaptor proteins resulted in downregulation of TNFα and IL-12 production in  
L. chagasi and L. donovani infection [61]. This inflammatory imbalance occurs due 
to MAPKp38 phosphorylation inhibition and ERK 1/2 phosphorylation activation 
in macrophages. In addition, L. donovani, L. mexicana (expressed p8 proteogly-
colipid complex), and L. major suppressed TLR4 activation by releasing TGFβ 
that activates A20, a complex deubiquitinating enzyme, through SRC homology 
region-2 domain containing phosphatase-1 (SHP-1) and IRAK inactivation [62]. 
Proteoglycolipid complex (P8), host-derived Apolipoprotein E (ApoE), and four 
glycolipids of L. pifanoi amastigote were the ligands of TLR4 and control the 
parasite [55]. P8 activates TLR4 of parasitophorous vacuole, which induces IL1 and 
TNFα production and aids in phagocytosis of L. pifanoi. At early stage of infection, 
neutrophil-derived serine protease and elastase results in parasite death, but at later 
stage, bone marrow derived macrophages (M2b macrophage) phagocytose neu-
trophil and helps in L. major replication by Th2-type response [63]. L. panamensis 
infection results in TNF α production through TLR-1, TLR-2, TLR-3, and TLR-4 
pathway in human primary macrophages [64], metacyclic promastigote of L. mexi-
cana induce phosphorylation of MAP kinases (ERK, p38, and JNK) through TLR4 
and MФ(bone marrow-derived macrophages), iNOS, cyclooxygenase-2 (COX-2), 
prostaglandin E2 (PGE2), NO, and arginase-1 are act as the inflammatory response 
mediators [65]. Leishmania parasites grow inside the phagolysosome of the host 
cells, which reflect that endosomally localized TLRs are also involved in pathogen-
esis [66]. In case of L. donovani infection, TLR7 activates IRF-5 and induces Th1 
responses of host [67]. Cytosine-phosphate-guanosine motifs in DNA of L. major 
induce TLR9-mediated NK cell activation and IL12 production from bone marrow-
derived DC [68, 69]. Recent reports show that viral RNA present in L. guyanensis 
(LRV1-Lg), L. major (LRV2-Lmj) [70], and L. aethiopica (LRV2-Lae) serves as a 
ligand for TLR3 [71]. TLR3 produces NO and TNFα during L. donovani infection 
and mediates leishmanicidal activity [72] (Figure 3).

4.3 Trypanosomiasis

The protozoan parasites of the genus Trypanosoma cause a group of disease 
in several vertebrates, called trypanosomiasis or trypanosomosis. In humans, 
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Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause African 
trypanosomiasis or sleeping sickness (transmitted by tsetse fly), and Trypanosoma 
cruzi causes American trypanosomiasis or chagas disease (blood feeding 
Triatominae bugs) [73]. All of these parasites cause millions of death per year in 
both sub-Saharan African and Latin American countries. The disease remains 
asymptomatic for several years and ultimately affects the central nervous system, 
heart, and GI tract [74].

TLR receptor plays an important role in internalization of the parasite through 
phagocytosis and induces immune response for parasite eradication from cells [75]. 
GPI anchored mucin-like glycoproteins (tGPI-mucin contains unsaturated alkyl-
acylglycerol) of the T. cruzi trypomastigote membrane activates MAPK (by phos-
phorylation) and IkB (inhibitor of NF-κB), which triggers TLR2-mediated cytokine 
production by macrophages [76]. A TLR2-TLR6 and CD14 complex recognize the 
free GPI (glycoinositophospholipids containing ceramide) from T. cruzi parasite 
(epimastigote) [77]. Tc25, a T. cruzi derived protein, induces TLR2-mediated pro-
inflammatory cytokine release from host cells [78]. However, role of GPI anchors 
VSGs of T. brucei Trypomastigotes in specific TLR-mediated macrophage activation 
and proinflammatory cytokine (TNFα, IL-6, and NO) production have not been 
elucidated yet [79]. T. cruzi and T. brucei genomic DNA (contains unmethylated 
CpG motifs) have TLR9-mediated TNFα and IFNα/β stimulation and penetration 
of T cells in brain parenchyma [80, 81] (Figure 4).

4.4 Toxoplasmosis

Toxoplasma gondii, an obligate intracellular apicomplexan parasite, is a leading 
cause of food borne disease in a wide range of worm-blooded animals worldwide 
[82]. T. gondii causes asymptomatic toxoplasmosis in healthy adults and produces 
severe toxoplasmic encephalitis in immune compromised people [83]. Moreover, it 
causes congenital toxoplasmosis in fetus leading to death and abortion [84]. Inside 
its intermediate host humans, mice, etc., T. gondii proliferates asexually to form 
tachyzoite and bradyzoite stages [85].

Figure 3. 
TLR signaling induced by different Leishmania ligands.
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Figure 5. 
Toxoplasma and Entamoeba induced TLR signaling pathway.

TLR11 and TLR12 recognize T. gondii profiling (TgPRF) and induce IL12 and 
IFNα production in conventional dendritic cells (cDCs), macrophages, and plas-
macytoid dendritic cells (pDCs). This IFNα induces IFNγ production from NK 

Figure 4. 
Trypanosoma PAMPs and TLR signaling.
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cells. T. gondii infection also induces IFNβ production in inflammatory monocytes 
(IMs) and TLR4-mediated phagocytic uptake of the parasite [86]. Endosomal TLRs 
(TLR3, TLR7, and TLR9) stimulate IL12 production in human PBMCs in response to 
DNA and mRNA of T. gondii tachyzoites when the cells were primed with IFNγ [87]. 
GPIs present in parasite membrane aggravate TLR2- and TLR4-mediated TNFα 
production in inflammatory response [88]. In some cases, tachyzoites differenti-
ate into bradyzoites inside the central nervous system and cause neurological and 
behavioral abnormalities [89]. TLR2 signaling pathway makes chronic inflamma-
tion in different central nervous system cell types [85] (Figure 5).

4.5 Amoebiasis

Entamoeba histolytica is a protozoan parasite, which causes amebiasis in humans. 
It is one of the deadliest diseases after malaria and causes almost 40,000–100,000 
deaths per year in underdeveloped countries [90]. The clinical symptoms include 
diarrhea, dysentery, pain in lower abdomen, and liver abscess, which occur due to 
invasion of amoeba in host lung, heart, brain, skin, genital, etc. [91]. The lipophos-
phopeptidoglycan (LPPG) present on the surface of E. histolytica induces TLR2- and 
TLR4-mediated NF-κB activation and cytokine (IL-8, IL-10, IL-12p40, and TNFα) 
release from human monocytes [92]. The Gal/GalNAc lectin (Gal-lectin), a surface 
molecule of E. histolytica, upregulates cytokines and TLR2 genes via NF-κB and 
MAP kinase activation in macrophages and dendritic cells [93]. TLR9 recognizes 
E. histolytica genomic DNA and helps in TNFα production in macrophages [94] 
(Figure 5).

5. Helminth infections

Although several studies were conducted on TLR signaling in response to 
intracellular parasites, only a few examination reflects the interaction of helminths 
with TLRs.

5.1 Filariasis

Lymphatic filariasis (commonly called elephantiasis), caused by three species 
of nematode parasites, Wuchereria bancrofti, Brugia malayi, and B. timori, is a 
major health problem in tropical countries. During initial stage, infection remains 
asymptomatic. Acute condition displays local inflammation of skin, lymph nodes, 
and lymphatic vessels, which ultimately leads to edema in chronic condition [95]. 
Wolbachia, an intracellular symbiotic bacterium of filarial nematode, is the major 
mediator of inflammatory response in case of lymphatic filariasis and onchocer-
ciasis [2]. WSP protein in outer membrane of Wolbachia sp. induces TLR2- and 
TLR4-mediated inflammation in macrophages and DCs [96].

In case of chronic infection, filarial nematode downregulates host immune 
response via TLR4-mediated T cell apoptosis [97]. Live microfilariae of B. malayi 
can downregulate mRNA and protein expression of TLR1, TLR2, TLR4, and TLR9 
and activate TLR2 upon antigen stimulation on B cells and monocytes [98]. In DCs, 
live microfilariae and microfilarial antigen (MF Ag) diminish IL-12, IFNα, and 
cytokine production via inhibition of NF-κB complex formation [99]. Microfilariae 
infective stage (L3) of B. malayi also shows partial inhibition of Langerhans cells 
(LCs) that lead to CD4+ T cell proliferation [100]. Circulating B cells (called Breg) 
express TLR2 and TLR4 and maintain a worm favorable condition via induction 
of Treg, IL-10, and filarial-specific IgG. However, Breg-mediated response causes 
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asymptomatic infection in initial stages but leads to secondary infection by bacteria 
and virus in filarial patients [92]. A phosphocholine-containing glycoprotein  
(ES-62) of Acanthocheilonema viteae (rodent filarial nematode) inhibits B and T 
lymphocyte activation. The secretory ES-62 inhibits TLR4-mediated IL-12 and 
TNFα production [101] (Figure 6).

5.2 Schistosomiasis

Schistosomiasis is a worldwide distributed parasitic disease caused by a 
flatworm, Schistosoma. It accounts for 260 million infected people in tropical 
and sub-tropical regions (Africa, South America, the Middle East, East Asia, and 
the Philippines) [102]. S. mansoni, S. intercalatum, S. haematobium, S. japonicum, 
and S. mekongi are the five species of schistosomes that cause disease in humans. 
S. mansoni, S. japonicum, and S. intercalatum are responsible for intestinal schis-
tosomiasis, while S. haematobium causes urinary schistosomiasis and is most 
important in terms of public health [102]. Fresh water snail of the genus Bulinus 
(S. haematobium), Biomphalaria (S. mansoni), and Oncomelania (S. japonicum) 
acts as an intermediate host of Schistosoma parasites [103].

S. japonicum eggs are deposited in the liver, lung, and intestinal wall of host, 
which induce granulomatous inflammation and progressive fibrosis. Th cells, natu-
ral killer (NK) cells, NKT cells, myeloid-derived suppressor cells (MDSCs), and 
macrophages are mainly involved in fight against S. japonicum and its eggs [104]. 
Expressions of TLR1, TLR3, TLR7, TLR8, and NF-κB are greatly repressed at the 
initial stage of schistosomiasis. TLR3 modulates Th2 response in lung in S. mansoni 
infection and in NK cells during S. japonica infection [105]. S. mansoni is known to 
attenuate Th1 responses (decrease IFN𝛾, TNF𝛼, IL-12, and NO) but to promote Th2 
immune responses (increase IL-10 and TGF𝛽) [106]. Although TLR4 protects the 
host from Schistosoma infection, TLR2 favors the parasite growth [107]. Both SEA 
(soluble egg antigen) and ES products of S. mansoni act as a strong inducer of Th2 
response [108]. It induces transcription of markers CD40 and CD86 and cytokines 
IFNβ, TNFα, and IL-12-p40 in mouse myeloid DCs [109]. Glycans present in 
S. mansoni induce Treg by TLR2-mediated DC differentiation and IL-10 secre-
tion [110]. Schistosoma egg product LFNP III also stimulates IL-10 production 

Figure 6. 
TLR signaling pathway induced by Helminth pathogens.
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from TLR2 and promotes Treg activation [111]. An immunomodulatory peptide, 
SJMHE1 of S. japonicum, induces TLR2-mediated Treg activation. The lysophos-
phatidylserine and glycolipids [112] of scistosome also activate TLR2 in DCs [113] 
(Figure 6).

5.3 Taeniasis

The pork tapeworm (Taenia solium) is a cestoda parasite transmitted to humans 
by feeding cystic larvae infected pork. Here, pig acts as an intermediate host, which 
swallows T. solium egg containing human stool and develops larva inside their 
body [114]. The cysticercosis cyst causes neurocysticercosis (NCC) in the nervous 
system, and adult taenia produces intestinal taeniasis in humans. Both are endemic 
in Latin America, sub-Saharan Africa, India, vast parts of China, and South East 
Asia [115].

TLR4 and TLR2 play an important role in developing murine NCC caused 
by Mesocestoides corti [116]. The carbohydrate of T. crassiceps induces TLR4- and 
TLR2-mediated cytokine release (IL-6 and IL-4) [117]. However, molecules derived 
from T. sodium did not induce TLR2- or TLR4-mediated cytokine release in human 
lymphocytes [118]. Both T. solium and T. crassiceps express several glycolipids 
(GSL-1) and phospholipids that may act as PAMPs. T. crassiceps expresses lysophos-
phatidylcholine [119], also present on Schistosome, and triggers TLR2 response. 
Although the mechanism of these molecules inducing TLR signaling has not yet 
been evaluated, the host may use a similar pathway of this parasite recognition 
[120] (Figure 6).

5.4 Ascariasis

Phospholipids from schistosomes and Ascaris worm trigger TLR2, and lysophos-
phatidylserine can activate DCs to induce Th2 and IL-10-producing Treg [121].

5.5 Fasciolosis

F. hepatica tegumental antigens (FhTeg), F. hepatica ES, and ES-derived enzymes 
(thioredoxin peroxidase 2-Cys peroxiredoxin, fatty acid-binding protein) inhibit 
TLR4- and TLR3-mediated inflammatory response and facilitate parasite survival 
inside the host [122]. The protease activity of F. hepatica Cathepsin L1 (FheCL1) 
causes endosomal degradation of TLR3 and downregulates IL-1 production [123].

6. Conclusion

In conclusion, induction of TLR signaling pathway by infectious pathogen 
recognition provides a better understanding of innate immune defense mechanism 
against this disease. Immunotherapy emerges as a promising therapeutic approach 
for parasitic infection treatment over the past few years. Although no effective 
drugs have emerged, vaccine adjuvants yield promising results due to induction of 
cellular immunity via TLR. Large scales of clinical studies were conducted for devel-
oping potent and well-tolerated adjuvants. The protozoan and helminth parasites 
can cause activation (to a small degree) and negative regulation (to a larger degree) 
of TLRs resulting in increasing or decreasing parasite burden [103]. TLR agonists 
or antagonists are small molecule mimics, natural ligands used for treating Type I 
allergy, cancer, and infectious diseases. MF59 (Novartis) and AS04 (GSK) are some 
examples of TLR4 agonist licensed for human use [124]. GLA (TLR4 ligand) and 
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3M-052 (TLR7/8) ligands are now in clinical trial. Recently, RTS,S/AS01, a recom-
binant chimeric protein (c-terminal of circumsporozoite antigen fused with HPB 
antigen, and “ASO1” refers to the adjuvant formulation MPL and QS21, a natural 
glucoside), is used for treating Malaria [125]. Several new drugs have been chemi-
cally synthesized for better understanding of the interaction of TLRs with their 
ligands. The knowledge from these studies will provide a greater opportunity for 
developing plant-derived new therapeutic drugs. So, major efforts are required for 
targeting TLRs in pathological conditions.
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