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Chapter

Long Noncoding RNAs in
Osteosarcoma: Mechanisms and
Potential Clinical Implications
Christos Valavanis and Gabriela Stanc

Abstract

Long noncoding RNAs (lncRNAs) are noncoding transcripts consisting of a
diverse class of long RNAs of more than 200 nucleotides in length. Recent studies
have shown that lncRNAs are involved in cell signal transduction pathways, cell
cycle and cell death regulation, chromatin remodeling, and gene expression regula-
tion at the transcriptional and posttranscriptional levels. They are also involved in
the metastatic process of different types of tumors, such as urothelial carcinoma,
colon carcinoma, breast carcinoma, lung carcinoma, and hepatocellular carcinoma.
In addition, lncRNAs demonstrate precise expression patterns in specific tissues and
cells and therefore play important roles in cell differentiation and tissue develop-
ment. In this chapter, we review the molecular mechanisms of lncRNA cell func-
tions and their involvement in the pathogenesis, progression, and metastasis of
osteosarcoma, a rare bone tumor of childhood and adolescence. We also review
emerging clinical implications of lncRNA use as potential prognostic biomarkers
and therapeutic targets, as well as their putative involvement in drug resistance, in
osteosarcoma progression, and in therapeutic interventions.

Keywords: lncRNAs, osteosarcoma, pathogenesis, prognosis, metastasis,
drug resistance

1. Introduction

Osteosarcoma is a rare malignant tumor and the most frequent primary malig-
nant tumor of the bone affecting most often young people in childhood and adoles-
cence [1–3]. It is of mesenchymal histogenetic origin and is characterized by the
production of osteoid and fibrous stroma. It has a tendency to be highly anaplastic
with cytological pleomorphism consisting of cells of epithelioid, spindle, ovoid, or
giant multinucleated appearance and in most cases a mixture of them [4]. It is
genetically unstable and exhibits structural chromosomal alterations [5–8]. It rep-
resents different pathological entities based on clinical, radiological, and histopath-
ological features. Depending on histopathological features, osteosarcoma displays
different subtypes, the most common among them are osteoblastic osteosarcoma,
chondroblastic osteosarcoma, and fibroblastic osteosarcoma. Less frequent are tel-
angiectatic osteosarcoma, small cell osteosarcoma, low-grade osteosarcoma, high-
grade osteosarcoma, parosteal osteosarcoma, and periosteal osteosarcoma [4, 9–11].
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Its incidence is about three to five cases per million population every year
worldwide with a propensity of aggressive biological behavior, local infiltrating
growth, and distant metastasis [1–3]. About 10–25% of patients are diagnosed with
pulmonary metastasis due to hematogenous dissemination, which is the main cause
of osteosarcoma mortality [12–14].

Despite its high mortality rates, the combination of ablative resection surgery
with chemotherapy or/and radiation therapy has elevated the cure rates of local
tumor from less than 20% during 1960s to 65–75% at present days [12–17].
However, patients with disseminated disease demonstrate a 5-year survival rate
around 11–30% due to resistance to chemotherapeutic regimens [16–18]. Therefore,
developing multimodal more effective treatments along with precise prognostic and
preventive biomarkers is imperative, and efforts are on the way to better
understand the molecular mechanisms involved in osteosarcoma pathogenesis and
define new therapeutic targets.

Recent studies have shown that molecules belonging to the nonprotein-coding
transcriptome may play essential roles in a wide range of biological processes
[19–21]. These molecules belong to the vast family of nonprotein-coding RNAs
which can be classified according to their size or function in two classes: the short
noncoding RNAs (sncRNAs) and the long noncoding RNAs (lncRNAs) [22, 23].

Short noncoding RNAs, with a length less than 200 nucleotides, such as
microRNAs (miRNAs), transfer RNAs, small interfering RNAs (siRNAs), piwi-
interacting RNAs, and some ribosomal RNAs, are estimated to be, till now, about
2500 different types. They are involved in gene expression regulation and have
been demonstrated to play important roles in cancer development, progression, and
chemoresistance of different tumors including osteosarcoma [22, 23].

On the other hand, lncRNAs are noncoding transcripts consisting of a diverse
and heterogeneous class of long RNAs of more than 200 nucleotides �100 kb in
length lacking the Kozak consensus sequence and without open reading frame.
Their transcription is processed through RNA polymerase II and is regulated by the
transcriptional activators of the nucleosome remodeling complex SWI/SNF [23–26].
They are divided in different categories such as intronic lncRNAs, intergenic
lncRNAs, UTR-associated lncRNAs, bidirectional lncRNAs, promoter-associated
lncRNAs, sense lncRNAs, and antisense lncRNAs [27, 28]. They participate in vital
biological processes, such as cell signal transduction, cell cycle and cell death regu-
lation, chromatin remodeling, transcriptional and posttranscriptional processing, as
well as in epigenetic gene regulation. They can act as decoys to compete with
different proteins, function as sponge to a large number of microRNAs, and interact
with RNA-binding proteins. In addition, lncRNAs demonstrate precise expression
patterns in specific tissues and cells and therefore play important roles in cell
differentiation and tissue development. [29–31]. LncRNA misregulation has been
implicated in cancer development, metastatic process, and drug resistance of dif-
ferent types of tumors, such as urothelial carcinoma, colon carcinoma, breast carci-
noma, and hepatocellular carcinoma. Aberrant expression of lncRNAs has been seen
in different human tumors, an observation that might be exploited for diagnostic,
prognostic, preventive, or therapeutic purposes [32–41]. Some of these lncRNAs
have also been reported to play a crucial role in osteosarcoma pathogenesis and
metastatic process as well as in chemotherapy drug resistance. Thus, they are
considered candidate molecules as prognostic or preventive biomarkers and/or
novel therapeutic targets [42–47].

In this chapter, we review the molecular mechanisms of lncRNA cell functions
and their involvement in the pathogenesis, progression, and metastasis of osteosar-
coma. We also review emerging clinical implications of lncRNA use as potential
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prognostic biomarkers and therapeutic targets, as well as their putative involvement
in drug resistance, in osteosarcoma progression, and in therapeutic interventions.

2. LncRNAs and signal transduction pathways in osteosarcoma

Osteosarcomagenesis is initiated in bone epiphyseal growth plates with rapid
turnover during childhood and adolescence and has also been observed in high
incidence in patients affected by Paget’s disease, a pathological entity characterized
by excessive osteoid formation and breakdown. These findings suggest that molec-
ular disturbances in osteoblast proliferation and differentiation are involved in
osteosarcoma pathogenesis through dysregulation of major signal transduction
pathways and osteogenic transcriptional factors [4, 42–47]. Several major signal
transduction pathways, mainly Wnt/β-catenin, bone morphogenetic protein
(BMP), Hedgehog, HIF1α, Notch, PI3K/Akt, JNK and NF-κB pathways are impli-
cated in osteosarcoma development and metastatic progression [48–50].

The canonical Wnt/β-catenin pathway, which plays a crucial role in osteoblast
differentiation, has been found to lead to osteoblast proliferation and suppression of
osteogenic differentiation in adult mesenchymal cells through expression of Wnt3a
[51–54]. Moreover, aberrations of Wnt signaling pathway have been associated with
osteosarcoma tumorigenesis and osteosarcoma drug resistance through upregulation
of factors, such as c-Met, leading to stem-cell phenotypes [4, 55–58]. LncRNA H19
has been found to increaseWnt signaling through epigenetical regulation of theWnt
pathway antagonist NKD1 via EZH2 recruitment [59]. Wnt pathway is also activated
through TCF7 whose expression is triggered by the recruitment of SWI/SNF
nucleosome remodeling complex to the TCF7 promoter by lncTCF7 [60, 61].

Hedgehog (Hh) signaling pathway plays a crucial role during vertebrate
embryogenesis acting as a morphogen and mitogen in different tissue development
including bone morphogenesis [62–66].

Dysregulation of Hh signaling pathway has been demonstrated to contribute to
promigratory effects in osteoblastic osteosarcoma and is related to poor prognosis
[67, 68]. Moreover Hedgehog signaling is upregulated in osteosarcoma leading to
overexpression of oncogenic yes-associated protein 1(Yap1) which in turn induces
the aberrant expression of lncRNA H19 [69].

Bone morphogenetic protein (BMP) signaling pathways synergistically act with
Runx2 factor, the most important regulator of bone development, leading to the
induction of many terminal differentiation factors and eventually to osteogenic
commitment of mesenchymal stem cells. This signaling cascade is initiated by BMP
ligand heterodimers (BMPR I and II) binding through Smad and mitogen-activated
protein kinase (MAPK) phosphorylation [70–73]. Suppression of osteoblast differ-
entiation has been observed, in one study, after BMP2 treatment of C3H10T1/2
MSCs by downregulation of mouselncRNA0231 and EGFR via Runx2 and osterix
regulation [74]. In another study, anti-differentiation lncRNA (ANCR) has been
found to suppress osteoblastogenesis through inhibition of Runx2 expression.
ANCR interacts with the enhancer of zeste homolog 2 (EZH2); this interaction leads
to H3K27me3 catalysis in Runx2 promoter resulting in inhibition of Runx2 expres-
sion [75]. Bone morphogenetic protein (BMP) signaling pathways play also an
important role in osteosarcoma through RhoA-ROCK-LIMK2 by promoting inva-
sion and metastasis [76, 77].

HIF1α expression levels are elevated in osteosarcoma tissues and are associated
with poorer prognosis. Moreover, HIF1α signaling pathway is implicated in osteo-
sarcoma cell invasion through induction of VEGF-A expression [78, 79]. A novel
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lncRNA, hypoxia-inducible factor-2α (HIF-2α) promoter upstream transcript
(HIF2PUT) has been demonstrated to regulate the expression of HIF-2α in osteo-
sarcoma stem cells. Overexpression of HIF2PUT significantly inhibited cell prolif-
eration and migration of MG63 osteosarcoma cells, while HIF2PUT knockdown led
to the opposite effect [80].

LncRNA hypoxia-inducible factor 1α-antisense 1 (HIF1α-AS1) is another
lncRNA involved in osteoblast differentiation. HIF1α-AS1 expression is repressed
by overexpression of histone deacetylase sirtuin 1 (SIRT1), a regulator of osteoblas-
togenesis, and lower levels of SIRT1 expression lead to upregulation of HIF1α-AS1
in bone marrow stem cells resulting in the activation of osteoblastogenesis [81].

Other studies have also shown the involvement of Notch and JNK signaling
pathways in osteosarcoma proliferation, metastasis, angiogenesis, and stemness-
associated factors [82, 83].

The phosphatidylinositol 3-kinase PI3K/Akt pathway is considered one of the
most critical pathways in osteosarcoma pathogenesis regulating osteosarcoma cell
proliferation, invasion, metastasis, and drug sensitivity or resistance [84, 85].

A large number of lncRNAs has been found to be differentially expressed in
osteosarcoma either with oncogenic or tumor suppressive activity. Particularly, in a
study by Li et al., 25,733 lncRNAs were detected, including 403 constitutively
upregulated in 34 pathways and 798 constitutively downregulated in 32 pathways
(twofold, P < 0.05) [86]. Among them metastasis-associated lung adenocarcinoma
transcript 1 (MALAT-1), a lncRNA involved in regulating the recruitment of pre-
mRNA-splicing factors to transcription sites, is overexpressed in osteosarcoma, and
its expression level is highly related to the metastatic potential of the tumor. In
another study, Dong et al. also found that MALAT-1 acts through the PI3K/Akt
pathway to promote osteosarcoma cell proliferation, migration, invasion, and pul-
monary metastasis [87]. MALAT-1 knockdown or siRNA interference experiments,
carried out by Dong et al. and Cai et al., respectively, showed that MALAT1 inhibi-
tion suppressed osteosarcoma cell proliferation and metastasis via the PI3K/Akt and
RhoA/ROCK signaling pathway by decreasing the expression levels of proliferating
cell nuclear antigen (PCNA), Act and phosphorylated PI3Kp85α, as well as MMP-9
metalloproteinase [87, 88].

Another lncRNA, named P50-associated COX-2 extragenic RNA (PACER), has
been found to be overexpressed in osteosarcoma clinical specimens and cell lines.
PACER has oncogenic effects in osteosarcoma functioning by activating COX-2
gene via the NF-κB signaling cascade [89]. Deregulated NF-κB has been linked to
osteosarcoma cell proliferation and metastatic process, and expression of NF-κB has
been observed to have clinical value in osteosarcoma patients [90, 91].

3. LncRNAs and regulation of cell growth/proliferation in osteosarcoma

Recent studies have demonstrated the involvement of lncRNAs in cell growth
and proliferation of osteosarcoma. Aberrant expression of lncRNAs is implicated in
osteosarcoma tumorigenesis through overexpression of oncogenic lncRNAs and
inhibition of tumor suppressive lncRNAs [42–44, 92]. These lncRNAs are summa-
rized in Table 1 along with their function and mechanisms.

3.1 Oncogenic lncRNAs

In recent years, a significant number of oncogenic lncRNAs such as 91H, HULC,
FGFR3-AS1, MALAT1, BCAR4, HIF2PUT, TUG1, UCA1, HOTTIP, and HOTAIR
have been identified to be implicated in cell growth and proliferation of osteosarcoma.
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lncRNA Chr.

locus

Transcript

length

Expression Function Mechanisms Refs

91H (H19) 11p15.5 2.3 kb Upregulated • Oncogenic
• Promotes cell proliferation
• Reduced levels
• Promote apoptosis

• IGF2 transcriptional regulation
• Imprinted gene
• miR-141 overexpression leads to OS
• Apoptosis through suppression of H19

[94, 95, 197]

BANCR 9q21.11 693 bp Upregulated • Promotes tumor growth,
invasion, and metastasis

— [198]

BCAR4 16p13.13 118 bp Upregulated • Oncogenic
• Promotes cell proliferation

• Activation of GLI2-dependent gene transcription [104, 105]

DANCR
(ANCR)

4q12 855 bp Upregulated • Oncogenic
• Suppresses osteogenic

differentiation
• Promotes cell proliferation and

metastasis

• Decoy for miR-335-5p and miR-1972
• Inhibits Runx2 expression
• Interacts with enhancer of EZH2
• Regulates the expression of p21, CDK2, and CDK4

[100, 101,
207]

FGFR3-AS1 4p16.3 — Upregulated • Oncogenic
• Promotes cell proliferation

• Increases FGFR3 mRNA stability
• Increases FGFR3 expression

[107]

HIF2PUT 2p21 Upregulated • Oncogenic • Involvement in HIF-2a and stemness-related genes (Oct4, Sox,
CD44) expression

[80, 112]

HOTAIR 12q13.13 2337 bp Upregulated • Oncogenic
• Promotes cell proliferation,

invasion, and metastasis

• Inhibits gene expression through histone H3K27 trimethylation by
binding PRC2 and LSD1/CoREST/REST complexes

• Upregulation of MMP-2 and MMP-9

[118, 119,
207]

HOTTIP 7p15.2 4.6 kb Upregulated • Oncogenic
• Promotes cell proliferation,

invasion, and metastasis

• Regulates EMT-related molecules (E-cadherin, Snail1, Slug), RNPs,
and HOXA genes

[121, 126,
127]

HULC 6p24.3 500 bp Upregulated • Oncogenic
• Promotes cell proliferation and

invasion

• Sponge for miR-200a-3p, miR-9, miR107 [135, 136]

loc285194 3q13.31 2105 bp Downregulated • Tumor suppressive
• Loss leads to osteoblast

proliferation

• Regulation of cell cycle and cell death genes
• Regulation of VEGF1 transcription
• Regulated by p53
• Represses miR-211

[171, 173,
174]
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lncRNA Chr.

locus

Transcript

length

Expression Function Mechanisms Refs

lncRNA-ATB 14q11.2 2.4 kb Upregulated • Promotes cell proliferation,
invasion, and metastasis

• Activated by TGFβ
• Enhances EMT
• Inhibits miR-200s
• Upregulates ZEB1/ZEB2–miR200s target genes

[208, 209,
211, 212]

MALAT-1
(NEAT-2)

11q13.1 8.7 kb Upregulated • Oncogenic
• Promotes cell proliferation,

invasion, and metastasis
• Inhibits apoptosis

• Acts through PI3K/Akt and RhoA/ROCK pathways
• Competes with miR-376a
• Promotes TGFa upregulation
• Regulated by Myc-6
• Upregulates MMP-9 and HDAC4
• Decoy for miR-140-5p

[87, 143,
144, 199]

MFI2 3q29 951 bp Upregulated • Oncogenic
• Promotes cell proliferation and

migration

• Enhances FOXP4 expression [166]

MEG3 14q32.3 1.6 kb Downregulated • Tumor suppressor • Implicated in Wnt/β-catenin pathway
• Regulated by lncRNA EWSAT1

[186, 221]

NKILA 2.5 kb Downregulated • Promotes invasion and
metastasis

• Regulates NF-κB activity through interaction with IκΒα [214]

ODRUL 16q24.1 319 bp Upregulated • Promotes invasion and
metastasis

• Competes with miR-3182
• Upregulates MMP2

[217]

PACER 1q31.1 793 bp Upregulated • Promotes cell proliferation,
invasion, and metastasis

• NF-Κb-dependent upregulation of COX-2
• Regulated by CTCF

[89]

SNHG12 1p35.3 1.3 kb Upregulated • Oncogenic
• Promotes cell proliferation,

invasion, and metastasis

• Increases angiomotin expression
• Upregulation of Notch2
• Sponge for miR-195-p2
• Upregulation of MMP-2 and MMP-9

[167, 168]

TUG1 22q12.2 7.1 kb Upregulated • Oncogenic
• Promotes cell proliferation and

invasion

• Interacts with PRC2
• Sponge for miR-9-5p
• Decreases POUF2F1 expression
• EZH2 upregulation via miR-144-3p
• Inhibition of miR-212-3p

[148–150]
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lncRNA Chr.

locus

Transcript

length

Expression Function Mechanisms Refs

TUSC7 3q13.31 2 kb Downregulated • Tumor suppressive • Affects proapoptotic proteins expression [189, 190]

UCA1 19p13 2314 bp Upregulated • Oncogenic
• Promotes cell proliferation
• Inhibits cell death
• Promotes invasion and

metastasis

• Interacts with CREB, BRG1, miR-216b, hnRNP1
• Involvement in PTEN/Akt/Bax/Bcl-2 pathway
• Involvement in miR-216b/FGFR1/ERK pathway

[157–161]

ZEB-AS1 2.6 kb 10p11.22 Upregulated • Oncogenic
• Promotes cell proliferation,

invasion, and metastasis

• Epigenetic regulation of ZEB1 transcription
• Sponge for miR-200s

[169, 170]

Table 1.

Expression, function, and mechanisms of lncRNAs in osteosarcoma.
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H19 antisense RNA (91H) has a transcript length of 2.3 kb and is transcribed
from the H19/IGF2 genomic imprinted cluster, and its gene is located on chromo-
some 11p15.5 [93]. It is involved in insulin-like growth factor 2 (IGF2) transcrip-
tional regulation [94, 95]. It has also been observed that the IGF2 and H19 genes are
imprinted in the majority of normal human tissues and IGF2 transcriptional repres-
sion is regulated through CTCF binding to the H19 imprinting control region [96].
On the other hand, imprinting is lost in various tumor types. Osteosarcoma speci-
mens show maintenance or loss of IGF2/H19 imprinting depending on allele-
specific differential methylation of the CTCF-binding regulatory site upstream of
H19 gene [97]. Loss of imprinting of IGF2 or H19 in osteosarcoma is mutually
exclusive [97]. H19 antisense RNA expression has been found to be elevated in
osteosarcoma clinical specimens and osteosarcoma cell line and was correlated with
advanced clinical stage. It was considered an independent prognostic factor for
overall survival in treated osteosarcoma patients [98]. Moreover, H19 antisense
RNA knockdown led to cell death promotion and inhibition of osteosarcoma prolif-
eration, the mechanism of which needs to be elucidated [98].

Antidifferentiation noncoding RNA (ANCR), also called DANCR, is a
lncRNA that has been found to suppress osteoblastogenesis through inhibition of
Runx2 expression. ANCR interacts with the enhancer of zeste homolog 2 (EZH2).
This interaction leads to H3K27me3 catalysis in Runx2 promoter resulting in inhi-
bition of Runx2 expression and suppression of osteogenic differentiation [99].
ANCR also controls the cell cycle progression of osteosarcoma cells through regula-
tion of expression levels of p21, CDK2, and CDK4 and other cell cycle-related pro-
teins as well [100, 101].

Breast cancer antiestrogen resistance 4 (BCAR4) is another lncRNA that has
been found to be involved in antiestrogen resistance in breast cancer cell lines
[102, 103]. It also promotes cell growth and proliferation as well as invasion and
metastasis in breast cancer cell lines, via the noncanonical Hedgehog/GLI2 pathway
[75, 98]. In osteosarcoma, BCAR4 exerts its oncogenic action by activating GLI2-
dependent gene transcription via direct promoter binding [104]. Upregulation of
BCAR4 has been observed in osteosarcoma pathological specimens and is correlated
with poor overall survival. Knockdown BCAR4 experiments have shown that sup-
pression of BCAR4 inhibits proliferation and migration in vitro and in vivo through
GLI2 target genes [105].

Fibroblast growth factor receptor 3 antisense transcript 1 (FGFR3-AS1),
previously known as lncRNA-BX537709, is complimentary to FGFR3 in an anti-
sense direction and increases the mRNA stability and expression of FGFR3 through
antisense pairing with the FGFR3 3΄UTR [106]. FGFR3-AS1 is upregulated in oste-
osarcoma along with FGFR3 and is correlated with poor clinical outcome. Knock-
down FGFR3-AS1 experiments in osteosarcoma cell lines have demonstrated that
suppression of FGFR3-AS1 function leads to inhibition of cell cycle progression and
cell proliferation [107].

HIF-2α promoter upstream transcript (HIF2PUT), also named as
TCONS_00004241, is located on chromosome 2p21 [80, 108]. It belongs to the class
of promoter upstream transcripts lncRNAs (PROMPTs) which regulate host gene
transcription [109–111]. In knockdown experiments, suppression of HIF2PUT led
to inhibition of expression of HIF-2α and stemness-related genes such as Oct4, Sox,
and CD44, resulting in inhibition of cancer stem-cell properties [112]. In osteosar-
coma, HIF-2α mRNA and HIF2PUT expression levels are increased and are corre-
lated with advanced clinical stage and poor disease-free and overall survival
[80, 108]. HIF2PUT action in osteosarcoma tumorigenesis needs further elucidation
in order to understand better its role in osteosarcoma cell self-renewal and
stemness.
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HOX transcript antisense RNA (HOTAIR) is a 2337-bp-long lncRNA with
high expression levels in osteosarcoma tissue clinical specimens [113]. It is impli-
cated in the pathogenesis of various tumors including hepatocellular carcinoma,
lung carcinoma, and breast and ovarian cancers [114–117]. It promotes tumor cell
growth and proliferation by inhibiting gene expression through histone H3K27
trimethylation, functioning as a modular scaffold by binding PRC2 through the 5΄
domain and LSD1/CoREST/REST complexes through the 3΄ domain [118, 119]. This
molecular mechanism is implicated in other cancer types but remains to be eluci-
dated in osteosarcoma. Interestingly, a genetic variant of HOTAIR, rs7958904, is
associated with decreased risk of osteosarcoma in a two-stage case-control study in
Chinese population with 900 osteosarcoma cases and 900 controls [120].

HOXA transcript at the distal tip (HOTTIP) is a lncRNA which is
overexpressed in osteosarcoma specimens and is correlated with advanced
clinical stage and high metastatic potential [121]. Elevated expression of HOTTIP
is associated with increased tumor cell proliferation, migration, and invasion in a
variety of malignant tumors [122–125]. It exerts its action through regulation of
(i) EMT-related molecules such as E-cadherin, Snail1, Slug, etc., (ii) RNA-binding
proteins, and (iii) HOXA genes such as HOXA13 [126, 127]. HOTTIP knockdown
inhibits cell proliferation, migration, and invasion in osteosarcoma cell lines
[42, 128].

Highly upregulated in liver cancer lncRNA (HULC) was initially identified to
be upregulated in human hepatocellular carcinoma which has an oncogenic func-
tion. Its gene is located on chromosomal locus 6p24.3, has a transcript length of
500 bp, and associates with ribosomes [129, 130]. HULC acts as a sponge for
different miRNAs, such as miR200a-3p, miR-9, and miR107, by reducing their
expression [131, 132]. It promotes tumor cell growth, invasion, and angiogenesis in
hepatocellular and colorectal carcinoma cell lines [133, 134]. HULC is overexpressed
in osteosarcoma cell lines and tissue specimens, and its overexpression is correlated
with advanced clinical stage and poor overall survival in osteosarcoma patients.
HULC inhibition reduces cell proliferation and invasion in osteosarcoma cell lines
[135, 136].

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), also
called noncoding nuclear-enriched abundant transcrip. 2 (NEAT-2), has a 8.7-kb
transcript, and its chromosomal locus is on 11q13 [137]. It is a nuclear lncRNA,
initially found to be upregulated in non-small cell lung adenocarcinoma [137, 138].
MALAT-1 functions as a competitive endogenous RNA (ceRNA) by binding to
different miRNAs that regulate the transcription of genes such as cell division cycle
2 (cdc2) through miR-1 in breast carcinoma cells [139], Slug through miR-204 in
lung adenocarcinoma [140] and metalloproteinase-14 (MMP14), and Snail through
miR-22 in melanoma [141]. MALAT-1 is highly expressed in osteosarcoma tissue
samples and is correlated with metastatic dissemination and advanced clinical stage
[142, 143]. MALAT-1 acts through the PI3K/Akt pathway to promote osteosarcoma
cell proliferation, migration, invasion, and pulmonary metastasis [87]. Further-
more, MALAT-1 inhibition suppressed osteosarcoma cell proliferation and metas-
tasis via the PI3K/Akt and RhoA/ROCK signaling pathway by decreasing the
expression levels of proliferating cell nuclear antigen (PCNA), Act and phosphory-
lated PI3Kp85α, as well as MMP-9 metalloproteinase, as mentioned in the signal
transduction section [87, 88]. In addition, MALAT-1 may contribute to osteosar-
coma tumorigenesis and progression by competing miR376A and promotes TGFα
upregulation [144]. MALAT-1 downregulation is also involved in Myc-6 osteosar-
coma suppressor activity in MG63 osteosarcoma cell line [145].

Taurine upregulated gene 1 (TUG1) is a 7.1-kb lncRNA, and its gene is located
on chromosomal locus 22q12.2 [146]. It seems to be induced by p53, interacts with
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polycomb repressive complex 2 (PRC2), and suppresses specific genes involved in
the G0/G1 cell cycle arrest, facilitating osteosarcoma tumorigenesis [147]. In this
context, TUG1 acts as a sponge for miR-9-5p and decreases the expression of POU
class 2 homeobox 1 (POUF2F1) supporting the presence of a competitive miR-
lncRNA regulatory network [148]. It also promotes osteosarcoma tumorigenesis
through EZH2 upregulation via miR-144-3p [149] . Additionally, TUG1 knockdown
represses the activation of Wnt/β-catenin pathway, which is reversed by EZH2
upregulation [149]. TUG1 is also involved in osteosarcoma cell proliferation and
invasion through inhibition of miR-212-3p [150]. Interestingly, osteosarcoma tissue
clinical samples exhibit high expression levels of TUG1, and impairment of TUG1
expression in osteosarcoma cell line U2OS inhibits cell proliferation and promotes
cell death [151]. TUG1 is overexpressed in osteosarcoma tissue specimens, and its
overexpression is associated with unfavorable prognosis [152].

Urothelial carcinoma associated 1 (UCA1) is a 2314-bp lncRNA located on
chromosome 19 and initially identified in bladder carcinoma [153]. It is upregulated
in many different tumor types including osteosarcoma, and its overexpression is
correlated with high tumor grade, distant metastatic dissemination, advanced clin-
ical stage, and poor clinical outcome [154–156]. Overexpression of UCA1 promotes
cancer cell proliferation through interactions with CREB, BRG1, miR-216b, or
hnRNP1 [158–161]. On the other hand, UCA1 overexpression inhibits cell death
through Akt/Bax/Bcl-2 signaling pathway and promotes migration, invasion, and
metastasis via the miR-216b/FGFR1/ERK signal transduction pathway [157–160].
UCA1 upregulation has also been found to be implicated in increased drug resis-
tance through SPRK1, Wnt6, and Wnt signaling pathways [162–164]. UCA1
knockdown experiments in osteosarcoma cell lines have shown that suppression of
UCA1 function leads to promotion of cell death and inhibition of cell cycle progres-
sion, cell proliferation, cell migration, and invasion, whereas UCA1 upregulation
displays opposite effects [160, 165].

Other lncRNAs that play important role in osteosarcoma cell proliferation and
display oncogenic properties are:

Modified frailty index 2 (MFI2) is implicated in osteosarcoma development
and proliferation by enhancing forkhead box P4 (FOXP4) expression [166].

Small nucleolar RNA host gene 12 (SNHG12) acts by increasing expression of
angiomotin gene in human osteosarcoma cell lines and through this action regulates
cell proliferation [167]. SNHG12 is also involved in the promotion of osteosarco-
magenesis and metastasis through upregulation of Notch2, acting as a sponge for
miR-195-p2 in 143B and U2OS osteosarcoma cells [168].

ZEB1 Antisense 1 (ZEB1-AS1) is upregulated in osteosarcoma and promotes
osteosarcoma cell proliferation via epigenetic regulation of ZEB1 transcription
[169]. ZEB1-AS1 also acts as a sponge for miR-200s and through this action reverses
the ZEB1 inhibition caused by miR-200s [170].

3.2 Tumor suppression lncRNAs

Another lncRNA category that plays a significant role in osteosarcoma tumori-
genesis includes lncRNAs with tumor suppressive properties such as Loc285194,
MEG3, and TUSC7. These lncRNAs are summarized in Table 1 along with their
function and mechanisms.

Loc285194, also named LSAMP antisense RNA3, is a 2105-bp lncRNA encoded
on chromosomal locus 3q13.31, also called as osteo3q13.31, a locus with frequent
copy number alterations and loss of heterozygocity in osteosarcoma [171, 172].
Loc285194 is downregulated in osteosarcoma cell lines and tissue specimens.
Loc285194 loss leads to increased osteoblast proliferation through regulation of cell
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cycle and cell death-related transcripts. It is also implicated in the regulation of
VEGF1 transcript [171]. Studies on HCT-116 colon cancer cell line have shown that
Loc285194 transcription is regulated by p53 [173, 174] and acts as a tumor suppres-
sor by direct repression of miR-211 in a reciprocal negative feedback loop [175].
This mechanism has not yet been established in osteosarcoma cell lines.

Maternally expressed gene 3 (MEG3) is a lncRNA transcribed by an imprinted
gene located on the chromosome 14q32.3 DLK1-MEG3 locus [176]. Reduced or loss
of MEG3 expression has been found in many different tumor types such as non-
small lung cancer, gastric cancer, colorectal cancer and bladder cancer [177]. The
underlying mechanism is through epigenetic promoter or intergenic
hypermethylation [178]. Induced expression of MEG3 in different cancer cell lines
leads to inhibition of cell proliferation, suppression of migration and invasion, and
promotion of apoptosis as well [179–182]. MEG3 overexpression also reduced the
expression level of miR21-5p in cervical cancer cells [183], increased the levels of
p53, and stimulated the transcription of p53-dependent genes such as MDM2 [184]
It is also implicated in the Wnt/β-catenin signaling pathway through regulation of
p53, β-catenin, and survivin [185, 186]. Osteosarcoma tissue samples display
reduced MEG3 expression levels, and its low expression is associated with distant
metastatic dissemination [187, 188]. Further studies are needed to confirm the role
of MEG3 in osteosarcoma pathogenesis.

Tumor Suppressor Candidate 7 (TUSC7) is a lncRNA which is downregulated
in osteosarcoma cell lines resulting in cell proliferation promotion and increased
colony formation in vitro. Decreased expression levels in osteosarcoma tissue spec-
imens are associated with poor survival in osteosarcoma patients. TUSC7 silencing
in HOS and MG63 osteosarcoma cells affects the expression of proapoptotic pro-
teins resulting in decreased levels, but with no effect on cell cycle regulation.
Moreover MG63 xenografts in nude mice showed tumor growth in vivo after
TUSC7 silencing [189, 190].

4. LncRNAs and cell death in osteosarcoma

It is well known that tumor cells enhance their viability by inhibiting apoptosis
and anoikis and can survive and metastasize in distant body sites and diverse
microenvironments. By inhibiting or reducing the activity of cell death machinery,
tumors become resistant to various therapeutic interventions and progress to
advanced clinical stages [191–194]. Recent studies have demonstrated the involve-
ment of lncRNAs in osteosarcoma cell death and make them putative therapeutic
targets for more efficient osteosarcoma treatment [195, 196].

Reduced 91H lncRNA expression levels promote osteosarcoma apoptosis via
upregulation of miR-141. Overexpression of miR-141 in hFOB1.19 cells leads to
osteosarcoma cell apoptosis through the suppression of H19 and miR-675 expression
resulting in reduced Bcl-2/Bax ratio and caspase-3 expression [197]. Moreover,
knockdown of H19 lncRNA leads to cell death promotion and inhibition of osteo-
sarcoma proliferation.

Inhibition of BRAF-activated noncoding RNA (BANCR) lncRNA suppresses
MG63 osteosarcoma cell proliferation and invasion in vitro and promotes cell death
as well [198].

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA
affects the apoptotic osteosarcoma cell machinery through the RhoA/ROCK signal
transduction pathway [88]. MALAT1also regulates osteosarcoma cell proliferation
and apoptosis through upregulation of histone deacetylase 4 (HDAC4) by decoying
miR-140-5p [199].
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Overexpression of MF12 lncRNA suppresses osteosarcoma cell apoptosis
through FOXP4 transcription regulation. Additionally, MF12 knockdown in MG-63
and Saos-2 osteosarcoma cell lines induces apoptosis and reduces cell growth,
migration and invasion. [166].

Taurine upregulated gene 1 (TUG1) lncRNA overexpression promotes osteo-
sarcoma tumorigenesis by suppressing specific genes involved in the G0/G1 cell
cycle arrest [147]. In this context, TUG1 acts as a sponge for miR-9-5p and decreases
the expression of POU class 2 homeobox 1 (POUF2F1) [148]. Suppression of TUG1
has been demonstrated that inhibits cell proliferation and significantly promotes
osteosarcoma apoptosis [151].

Silencing of tumor suppressor lncRNA TUSC7 in HOS and MG63 osteosarcoma
cells reduces the expression levels of proapoptotic proteins and results in apoptotic
cell reduction [189, 190].

Further studies are needed to explore the role and the precise mechanisms of
these lncRNAs in osteosarcoma cell death in an attempt to modulate their action for
therapeutic reasons.

5. LncRNAs and invasion/metastasis in osteosarcoma

Despite the introduction of modern treatment approaches by applying
multimodality therapies in osteosarcoma patients and the improvement in disease-
free survival, the overall long-term survival remains relatively low. In patients with
localized disease, the 5-year relapse-free survival is around 75–80% for the good
chemoresponders, compared with 45–55% for the poor chemoresponders, in the
adjuvant setting and after surgical removal of the bone tumor. The rest of the
patients will display mainly pulmonary metastasis by relapsing within the first 5
years, probably because of the presence of undetectable metastatic disease at the
time of the initial diagnosis. Approximately, 20–25% of newly diagnosed osteosar-
coma patients are presenting with metastatic disease at the initial diagnosis. These
patients have an unfavorable prognosis with overall survival rates around 10–30%.
It is obvious that the main cause of the high mortality seen in those patients is the
development of metastasis, mainly in the lungs [12–18]. Thus, it is important, in
order to improve the outcome of patients with metastatic disease, to get insight into
the underlying mechanism of osteosarcoma metastasis and develop new therapeutic
agents against the metastasis regulatory pathways.

The metastatic process may occur through three main pathways in general:
(1) direct invasion of adjacent organs or seeding of body cavities, (2) lymphatic
spread, and (3) hematogenous spread. The latter is the main pathway of osteosar-
coma metastatic dissemination. A major role in the metastatic cascade plays the
phenomenon of epithelial to mesenchymal transition (EMT) whereby epithelial
cells lose their epithelial features and acquire mesenchymal cells traits which allow
them to invade adjacent tissues and display migratory properties. The metastatic
cascade is a multistep complex process and can be divided in the following phases:
(1) invasion of the extracellular matrix (ECM) and degradation of ECM proteins
through the activity of matrix metalloproteinases (MMPs), (2) intravasation,
(3) resistance to anoikis and survival in the peripheral blood, (4) extravasation, and
(5) seeding of a distant body site by clones of neoplastic cells with high metastatic
potential [192, 200, 201]. A number of studies have shown the involvement of
lncRNAs in the metastatic progression of osteosarcoma through modulation of
metalloproteinase expression, especially MMP-2 and MMP-9 [202, 203].

Breast cancer antiestrogen resistance 4 (BCAR4) is a lncRNA whose expres-
sion has been found to be increased in osteosarcoma tissue specimen in patients
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with lung metastasis [204]. It acts through transcriptional activation of GLI2-
dependent genes via direct promoter binding. Suppression of BCAR4 leads to inhi-
bition of proliferation and migration of osteosarcoma cells in vitro and in vivo
through GLI2 target genes [104, 205].

Differentiation antagonizing non-protein coding RNA (DANCR), also
named ANCR, is a lncRNA that has been found to be overexpressed in osteosarcoma
tissue specimens and in osteosarcoma cell lines. It is involved in osteosarcoma cell
proliferation and metastasis through Rho-associated coiled-coil-containing protein
kinase 1 (ROCK1) mediation via decoying both miR-335-5p and miR-1972
microRNAs. In this context DANCR acts as a metastasis-promoting lncRNA by
playing the role of a competing endogenous RNA (ceRNA) [206].

HOX transcript antisense RNA (HOTAIR) is highly expressed in osteosar-
coma and is correlated with distant metastasis and advanced clinical stages. It
promotes osteosarcoma invasion through upregulation of metalloproteinases
MMP-2 and MMP-9 [207].

Highly up-regulated in liver cancer lncRNA (HULC) acts as a sponge for
different miRNAs, such as miR200a-2p, miR-9, and miR107, by reducing their
expression [131, 132]. HULC is overexpressed in osteosarcoma cell lines and tissue
specimens, and its overexpression is correlated with distant metastasis, advanced
clinical stage, and poor overall survival in osteosarcoma patients [135]. It promotes
tumor cell growth, invasion, and angiogenesis in different cell lines, and its
inhibition reduces cell proliferation and invasion in osteosarcoma cell lines [136].

Long noncoding RNA activated by transforming growth factor-β (lncRNA-
ATB) is a novel lncRNA which is activated by the TGF-β and plays a crucial role in
many cancers [208]. EMT, and thus invasiveness, can be enhanced by the involve-
ment of the lncRNA-ATB, which acts by interfering the action of miR-200s, a
microRNA that suppresses ZEB1 and ZEB2 action [209]. LncRNA-ATB expression
levels are high in hepatocellular carcinoma as compared to normal liver samples and
are correlated with vascular invasion [210]. Moreover, orthotopic mice injected by
hepatocellular carcinoma cells overexpressing lncRNA-ATB developed distant
metastasis [211]. LncRNA-ATB promotes osteosarcoma cell proliferation, migration
and invasion by inhibiting miR-200s and upregulating the ZEB1 and ZEB2
miR-200s target genes. LncRNA-ATB is also overexpressed in osteosarcoma tissue
samples and cell lines and positively correlated with advanced clinical stage, metas-
tasis, and recurrence [212]. The role of lncRNA-ATB in osteosarcoma metastasis is
not yet well established, and more studies need to be done in order to elucidate its
involvement.

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) facili-
tates osteosarcoma invasion and metastasis by suppressing the microRNA 376A
(miR376A) and promoting TGFα upregulation [144]. MALAT-1 also acts through
the PI3K/Akt pathway to promote osteosarcoma cell proliferation, migration, inva-
sion, and pulmonary metastasis. Furthermore, MALAT-1 knockdown or siRNA
interference experiments, carried out by Dong et al. and Cai et al., respectively,
showed that MALAT1 inhibition suppressed osteosarcoma cell proliferation and
metastasis via the PI3K/Akt and RhoA/ROCK signaling pathways by modulating the
expression of MMP-9 metalloproteinase [85, 87, 88]. MALAT-1 is highly expressed
in osteosarcoma tissue samples and is correlated with metastatic dissemination and
advanced clinical stage [142, 143].

Nuclear factor – κB interacting lncRNA (NKILA) is a 2.5-kb lncRNA that
negatively regulates the NF-κB pathway. NF-κB is a transcription factor that medi-
ates inflammatory signal transduction processes [213]. It is constitutively active in
various tumor types, and its activity can be modulated by interacting with NKILA
(nuclear factor-κB interacting lncRNA). NKILA regulates NF-κB activity via
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interaction with IκBα, a negative regulator of NF-κB translocation from the cyto-
plasm to the nucleus, thus preventing the transcriptional activation of NF-κB
dependent genes [214]. Loss or low expression of NKILA is correlated with
advanced clinical stage and metastatic dissemination in breast cancer patients [215].
The role of NKILA in osteosarcoma metastatic dissemination is not well known and
remains to be confirmed.

Osteosarcoma doxorubicin resistance-related up-regulated lncRNA
(ODRUL) expression levels have been found to be elevated in osteosarcoma tissue
specimens of patients with pulmonary metastasis [216]. ODRUL upregulates MMP2
expression through direct competing interaction with miR-3182 and thus promotes
invasion and metastasis [217]. ODRUL knockdown experiments in osteosarcoma
cell lines led to inhibition of tumor proliferation and invasion by decreasing matrix
metalloproteinase (MMP) expression, showing an important role in osteosarcoma
metastatic process [217].

P50-associated COX-2 extragenic RNA (PACER) is another lncRNA that acts
by promoting osteosarcoma invasion and metastasis through NF-κB-dependent
upregulation of COX-2 gene [89].

Small nuclear RNA host gene 12 (SNHG12) lncRNA has been demonstrated to
be implicated in the induction of osteosarcoma cell proliferation and migration
through the angiomotin upregulation which in turn controls the expression levels of
MMP-2 and MMP-9 [167]. SNHG12 is also involved in the promotion of osteosar-
comagenesis and metastasis through upregulation of Notch2, acting as a sponge for
miR-195-p2 in 143B and U2OS osteosarcoma cells [168].

Zinc finger E-box binding homeobox 1 Antisense 1 (ZEB1-AS1) has been
found to display elevated expression levels in metastatic osteosarcoma and regulate
the metastatic process by increasing ZEB1 transcription [169]. ZEB1, in turn, pro-
motes invasion and metastasis by inducing epithelial-mesenchymal transition
(EMT). ZEB1-AS1 also acts as a sponge for miR-200s and through this action
reverses the ZEB1 inhibition caused by miR-200s [170].

Other lncRNAs that play an important role in osteosarcoma invasion and
metastasis are:

LncRNAMF12 that has been shown to promote migration of osteosarcoma cells
via FOXP4 upregulation [166]. In addition, overexpression of urothelial carci-
noma associated 1 (UCA1) and BRAF-activated noncoding RNA (BANCR)
lncRNAs is correlated with metastasis in distant body sites [165, 198].

All the abovementioned lncRNAs are summarized in Table 1 along with their
function and mechanisms.

Further unraveling the mechanism of osteosarcoma invasiveness and metastatic
dissemination and the possible involvement of lncRNAs in this process will provide
useful insights to develop new therapeutic targets for the management of metastatic
osteosarcoma and improve the long-term survival of patients.

6. LncRNAs as prognostic biomarkers in osteosarcoma

The efficacy of osteosarcoma treatment and the accurate prognosis of the clinical
outcome depend on clinical, histopathological, and molecular factors, and there-
fore, it is important to identify and incorporate prognostic factors into a holistic
therapeutic strategy. Age, gender, anatomic location, tumor size, and a variety of
biological molecules have been used and proposed as a tool to predict the treatment
responsiveness and the clinical outcome/prognosis. Recent studies have indicated
that lncRNAs may be of clinical value and may be used as prognostic biomarkers in
osteosarcoma [106, 128, 218].
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Upregulation of fibroblast growth factor receptor 3 antisense transcript 1
(FGFR3-AS1) lncRNA is correlated with advanced Enneking surgical stage, large
tumor size, and poor clinical outcome and survival [107]. Based on these observa-
tions, its expression levels could serve as a prognostic factor.

Interestingly, in a two-stage case-control study in Chinese population performed
by Zhou et al., they found that a genetic variant of HOTAIR, rs7958904 the CC
genotype, was associated with decreased risk of osteosarcoma compared with the G
allele (OR, 0.77; 95% CI, 0.67–0.90; P = 6.77 � 10�4). About 900 osteosarcoma
patients and 900 control subjects have been evaluated, and the findings suggested
that HOTAIR rs7958904 CC genotype patients had significant lower HOTAIR
expression levels compared to other genotype patients, as well as lower osteosar-
coma risk. Therefore HOTAIR can be used as a prognostic factor for osteosarcoma
risk assessment [120].

HOXA transcript at the distal tip (HOTTIP) lncRNA overexpression in oste-
osarcoma human tissue specimens is associated with distant metastasis, advanced
clinical stage, and unfavorable prognosis. Elevated HOTTIP expression levels have
been demonstrated to correlate with poor overall survival and to be an independent
prognostic factor [121].

Highly upregulated in liver cancer (HULC) lncRNA is overexpressed in
osteosarcoma cell lines and tissue specimens, and its overexpression is correlated
with advanced clinical stage and poor overall survival in osteosarcoma patients
[135, 136]. HULC acts as a sponge for different miRNAs, such as miR200a-2p,
miR-9, andmiR107, by reducing their expression, and leads to increased cell
proliferation, cellmigration, and invasion in osteosarcomacell lines [131, 132, 134, 205].
Inactivation of HULC via knockdown experiments and/or upregulation of miR-122 via
transfection of osteosarcoma cell lines results in inactivation of PI3K/Act, Notch, and
Jak/Stat pathways leading in reduced proliferation, migration, and invasion [219].
Therefore, HULCcould be used as a prognostic factor for osteosarcomapatients as high
expression levels are positively correlatedwith distantmetastasis and advanced clinical
stage.

Activated by transforming growth factor beta (lncRNA-ATB) displays high
expression levels in osteosarcoma cell lines and tissues. Patients with osteosarcoma
have elevated serum expression levels of lncRNA-ATB, and this overexpression is
correlated with local recurrence, distant metastasis, and advanced clinical stage
[208, 212]. Thus, lncRNA-ATB could be used as a prognostic and recurrence mon-
itoring factor for osteosarcoma patients.

Maternally expressed gene 3 (MEG3) lncRNA expression levels are decreased
in osteosarcoma tissues compared with adjacent normal tissues and are associated
with distant metastasis, advanced clinical stage, and poor overall survival [177, 220].
Its expression is regulated by lncRNA Ewing sarcoma associated transcript 1
(EWSAT1) and downregulation of MEG3 in the presence of EWSAT1 induces oste-
osarcoma cell proliferation, invasion, and metastasis [221]. Therefore, high levels of
MEG3 could be an indicator of favorable prognosis in osteosarcoma patients.

Taurine upregulated gene 1 (TUG1) lncRNA has been found to be
overexpressed in osteosarcoma human samples compared with normal matched
tissues (P < 0.01), and expression levels were associated with tumor size, postop-
erative chemotherapy responsiveness and Enneking surgical stage [152]. Moreover,
TUG1 high expression levels were significantly correlated with unfavorable prog-
nosis and were an independent prognostic factor for disease-free survival
(HR = 1.81; 95% CI = 1.01–3.54; P = 0.037) and long-term overall survival
(HR = 2.78; 95% CI = 1.29–6.00; P = 0.009). Interestingly, TUG1 elevated plasma
levels are associated with disease progression or relapse [152]. Thus, TUG1 might be
used as a prognostic and monitoring biomarker for osteosarcoma patients.
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lncRNA Expression in

osteosarcoma

Clinical value Role in drug

resistance or

sensitivity

Mechanism of drug resistance or sensitivity Therapeutic

target

Agent

targeting

lncRNA

Refs

BCAR4 Upregulated Prognostic,
therapeutic

Yes Antagonist [105, 204,
205]

BANCR Upregulated Prognostic,
predictive

Adriamycin resistance — [198]

CASC2 Downregulated Prognostic,
therapeutic

Yes Agonist-
mimic

[242]

FENDRR Downregulated Predictive,
therapeutic

Doxorubicin
resistance

• Upregulated acts as a suppressor of doxorubicin resistance
by inhibiting ABCB1 and ABCC1 expression

Yes Agonist-
mimic

[229]

FGFR3-
AS1

Upregulated Prognostic [107]

FOXC2-
AS1

Upregulated Prognostic,
predictive

Doxorubicin
resistance

Induces ABCB1 gene expression [230]

GAS5 Downregulated Prognostic,
therapeutic

Yes Agonist-
mimic

[243, 244]

HOTAIR Upregulated Prognostic, risk
assessment

[120, 207]

HOTTIP Upregulated Prognostic,
predictive

Cisplatin resistance • Activates Wnt/β-catenin pathway [231]

HULC Upregulated Prognostic [135, 136]

LINC00161 Upregulated Predictive Cisplatin sensitivity • Promotes apoptosis
• Increases IFIT2 expression
• Sponge for miR-645

[232]

LncRNA-
ATB

Upregulated Prognostic,
monitoring
marker

[212]

LUCAT1 Upregulated Predictive Methotrexate
resistance

• Interacts with ABCB1 through miR-200c
• Regulates miR-200c expression

[235]
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lncRNA Expression in

osteosarcoma

Clinical value Role in drug

resistance or

sensitivity

Mechanism of drug resistance or sensitivity Therapeutic

target

Agent

targeting

lncRNA

Refs

MALAT-1 Upregulated Prognostic,
therapeutic

Yes Antagonist [142, 143,
246]

MEG3 Downregulated Prognostic [188, 220]

MF12 Upregulated Prognostic,
therapeutic

Yes Antagonist [166]

NBAT1 Downregulated Prognostic,
therapeutic

Yes Agonist-
mimic

[248]

NR-
036444

Upregulated Predictive Doxorubicin
resistance

Interacts with ABCB1, HIF1α, and FOXC2 [236]

ODRUL Upregulated Prognostic,
predictive

Doxorubicin
resistance

Induces ABCB1 gene expression [217, 237]

PANDA Upregulated Prognostic,
therapeutic

Doxorubicin
resistance

• Increased expression after doxorubicin and etoposide
treatment

• Depletion promotes apoptosis through upregulation of
APAF1, BIK, FAS, and LRDD

Yes Antagonist [249, 250]

PVT1 Upregulated Prognostic,
therapeutic

Yes Antagonist [251, 252]

TP73-AS1 Upregulated Prognostic,
therapeutic

Yes Antagonist [253, 254]

TUG1 Upregulated Prognostic,
monitoring
marker

[152]

ZEB1-AS1 Upregulated Prognostic [169]

Table 2.

Potential clinical value of lncRNAs in osteosarcoma.
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Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) has been
found to display elevated expression levels in metastatic osteosarcoma and regulate
the metastatic process by increasing ZEB1 transcription [169, 170]. Overexpression
of ZEB1-AS1 is associated with advanced clinical stage, large tumor size, distant
metastatic dissemination, and unfavorable progression-free and overall survival
[169]. In clinical setting, ZEB1-AS1 could serve as a prognostic marker for osteo-
sarcoma patients.

All the abovementioned lncRNAs are summarized in Table 2.

7. LncRNAs as predictive biomarkers and drug resistance in
osteosarcoma

A number of research teams have demonstrated the involvement of lncRNAs in
chemoresistance and chemosensitivity of different types of cancer [222–227]. In
osteosarcoma, chemotherapy plays an important role, but its efficacy is limited by
acquired resistance to different chemotherapeutic drugs, mainly cisplatin and
doxorubicin [228]. Recent studies have revealed the role of several lncRNAs that are
related to osteosarcoma drug resistance such as FENDRR, ENST00000563280,
HOTTIP, LINC00161, LUCAT1, NR-036444, and ODRUL [106].

FENDRR is another lncRNA which is significantly downregulated in
doxorubicin-resistant osteosarcoma cell lines compared with the doxorubicin-
sensitive counterparts (MG63/DXR vs. MG63, KH-OS/DXR vs. KH-OS, and U2-OS/
DXR vs. U2-OS). In a microarray study FENDRR displayed a 22-fold decrease of its
expression in doxorubicin-resistant MG63/DXR cells relative to their parental cell
line MG63. It has been demonstrated that it acts as a suppressor of doxorubicin drug
resistance by inhibiting ABCB1 and ABCC1 expressions [229].

Another lncRNA related with doxorubicin resistance in osteosarcoma cell lines is
forkhead box protein C2 antisense 1 (FOXC2-AS1) also known as
ENST00000563280. FOXC2-AS1 has been found to have elevated expression levels
in osteosarcoma tissues and osteosarcoma cell lines resistant to doxorubicin, such as
MG-63 and KH-OS. FOXC2-AS1 overexpression is associated with unfavorable
clinical outcome and promotion of doxorubicin resistance in cell cultures. FOXC2-
AS1 knockdown reversed the doxorubicin resistant phenotype and increased the
doxorubicin sensitivity in osteosarcoma cells resistant to doxorubicin [230]. In
addition, FOXC2 is overexpressed in osteosarcoma doxorubicin-resistant human
tissues and cell lines, such as MG63/DXR and KH-OS/DXR, and its levels show
positive correlation with FOXC2-AS1 expression. Both FOXC2-AS1 and FOXC2 are
involved in doxorubicin resistance by inducing the expression of ABCB1 multidrug
resistance gene [230]. Therefore, FOXC2-AS1 might serve as a predictive factor for
doxorubicin sensitivity or resistance in osteosarcoma patients.

HOTTIP lncRNA is overexpressed in osteosarcoma specimens and is correlated
with advanced clinical stage and high metastatic potential [121]. In a recent study,
Li et al. found that overexpression of HOTTIP confers resistance to cisplatin in
osteosarcoma cells in vitro through activation of the Wnt/β-catenin pathway.
Moreover, treatment with Wnt/β-catenin inhibitor XAV939 or downregulation of
HOTTIP reverses the cisplatin resistance [231]. Thus, HOTTIP expression levels
might serve as a predictive biomarker regarding cisplatin resistance in
osteosarcoma.

Long intergenic non-protein coding RNA 161 (LINC00161) is a lncRNA
located on chromosome 21q21 locus and has been found to be overexpressed in
cisplatin-treated osteosarcoma cells facilitating the cisplatin-induced apoptosis.
Upregulation of LINC00161 in osteosarcoma cells promotes apoptosis by increasing
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IFIT2 expression levels through the impairment of miR-645 action. In this context,
LINC00161 acts as a sponge for miR-645, a microRNA that controls IFIT2 tran-
scription [232].

Lung cancer associated transcript 1 (LUCAT1) lncRNA has been found to be
overexpressed in osteosarcoma tissue samples and in MG63 and HOX osteosarcoma
cell lines resistant to methotrexate, a drug that is used widely in osteosarcoma
patients [233–235]. MG63 and HOX, resistant to methotrexate, also overexpress the
ATP-binding cassette subfamily B member 1 (ABCB1), a drug resistance-related
protein. LUCAT1 interacts with ABCB1 through miR-200c binding to the 3΄UTR of
ABCB1. Moreover, miR-200c expression is regulated in a LUCAT1-dependent
manner. In addition, LUCAT1 knockdown experiments resulted in decreased
expression levels of drug resistance-related genes MDR1, MRP5, and LRP1 in
methotrexate-treated osteosarcoma cell lines and led to reduced osteosarcoma
cell invasiveness [235]. Therefore, LUCAT1 expression levels might be used as a
predictive biomarker providing information regarding methotrexate resistance or
sensitivity.

NR-036444 is another lncRNA involved in an lncRNA-mRNA coexpression
network and has been found to interact with doxorubicin-resistance related genes
such as ABCB1, HIF1A, and FOXC2 in osteosarcoma cells and thus could serve as a
predictive biomarker for chemoresistance [236].

Osteosarcoma doxorubicin resistance-related up-regulated lncRNA
(ODRUL) has been initially found to be highly upregulated in the human osteosar-
coma doxorubicin-resistant cell line MG63/DXR. Moreover ODRUL expression is
elevated in human tissue osteosarcoma specimens from patients with poor response
to doxorubicin therapy and lung metastasis. It has also been found that
doxorubicin-sensitive osteosarcoma cell lines have reduced ODRUL expression
levels. Additionally, ODRUL knockdown experiments in osteosarcoma cell lines led
to inhibition of tumor proliferation and invasion and partly reversed the doxorubi-
cin resistant phenotype through suppression of the multidrug resistance ABCB1
(ATP-binding cassette, subfamily B, member 1) gene [217, 237].

All the abovementioned lncRNAs are summarized in Table 2.
Further studies are needed to elucidate the role of lncRNAs in osteosarcoma

drug resistance and exploit their potential as predictive biomarkers and candidates
to develop novel therapeutic approaches in order to reverse the osteosarcoma resis-
tance to chemotherapy.

8. LncRNAs as therapeutic targets in osteosarcoma

Treating osteosarcoma is a challenge in the practice of oncology. The main
therapeutic approach is surgical removal of the tumor following by the application
of chemotherapeutic agents such as doxorubicin, cisplatin, methotrexate in combi-
nation with leucovorin (folinic acid), and ifosfamide [13, 233]. This multimodal
osteosarcoma management increased the progression-free survival rates from 10 to
20% up to 60% in recent years. Despite the relatively good cure rates of patients
with localized tumor, unfortunately a percentage of 20–25% of newly diagnosed
osteosarcoma patients are presenting with metastatic disease at the time of initial
diagnosis. These patients have an unfavorable prognosis with overall survival rates
around 10–30% [12–18]. In addition many patients develop resistance to available
chemotherapeutic modalities and subsequently metastatic dissemination with
unfavorable clinical outcome [228]. In recent years there are great efforts to exploit
the molecular mechanisms of the metastatic process and drug resistance of osteo-
sarcoma in order to develop novel therapeutic agents targeting biomolecules
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involved in these processes. Such biomolecules, among others, are the lncRNAs
which play important roles in the pathogenesis and progression of osteosarcoma
[238–240].

Breast cancer antiestrogen resistance 4 (BCAR4) is another lncRNA that
promotes cell growth and proliferation as well as invasion and metastasis in breast
cancer cell lines cultures, via the noncanonical Hedgehog/GLI2 pathway [103, 104].
In osteosarcoma, BCAR4 exerts its oncogenic action by activating GLI2-dependent
gene transcription via direct promoter binding [104]. Upregulation of BCAR4 has
been observed in osteosarcoma pathological specimens and is correlated with
advanced clinical stage, lung metastasis, and poor overall survival [105]. Knock-
down BCAR4 experiments have shown that suppression of BCAR4 leads to inhibi-
tion of cell proliferation and migration in vitro and in vivo through downregulation
of GLI2 target genes, such as IL-6, TGF-beta, RPS3, and MUC5AC [104]. Thus
BCAR4 could be used as a target in osteosarcoma therapeutic management [205].

Cancer susceptibility candidate 2 (CASC2) was first discovered in patients
with endometrial carcinoma as a potential tumor suppressor [241]. It is also signif-
icantly downregulated in osteosarcoma human specimens and various osteosarcoma
cell lines such as MG-63, Saos-2, U2OS, and SOSP-9607, and its low expression
levels correlate with poor survival and advanced clinical stage [241]. Interestingly,
overexpression of CASC2 results in inhibition of osteosarcoma cell proliferation,
colony formation, and invasion in vitro. Ectopic expression of CASC2 suppresses
miR-181a expression and leads to upregulation of miR-181a target genes such as
RASSF6, PTEN, and ATM in osteosarcoma cell lines. RASSF6 has been observed to
positively correlate with CASC2 expression levels, and low RASSF6 levels have been
found in osteosarcoma. In addition, in vivo implantation studies using pcDNA-
CASC2 resulted in reduced tumor growth, while experiments using short interfer-
ing CASC2 exhibited enhanced tumor growth [242]. Consequently, CASC2 mimics
might be of clinical value in osteosarcoma treatment in order to reduce tumor
growth and slow down adverse clinical progression.

LncRNA growth arrest-specific 5 (GAS5) functions as an oncosuppressor
lncRNA by repressing osteosarcoma cell proliferation and migration through
sponging of miR-203a. In addition, silencing of lncRNA GAS5 significantly pro-
motes osteosarcoma cell growth, migration, and invasion through upregulation of
Cyclin D1, Cyclin B1, CDK1, and CDK4 expressions. Moreover, suppression of miR-
203a leads to the reversion of GAS5 silencing effects [243]. GAS5 also functions as a
ceRNA by binding to miR-221 resulting in the suppression of epithelial-
mesenchymal transition and arrest of cell growth in osteosarcoma cell lines through
regulation of the miR-221/ARHI axis [244]. Thus, GAS5 mimics could be used to
slow down or suppress the osteosarcoma metastatic process.

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an
oncogenic lncRNA that is overexpressed in various osteosarcoma cell lines such as
U2OS, Saos-2, and HOS and in human osteosarcoma tissue samples as well. Its
overexpression is highly related to the metastatic potential of the tumor [142, 143].
MALAT1 acts through the PI3K/Akt and the RhoA/ROCK signaling pathway to
promote osteosarcoma cell proliferation, migration, invasion, and pulmonary
metastasis [87]. Downregulation of MALAT1 leads to reduced expression levels of
RhoA and ROCK1 and 2 in osteosarcoma cell lines [87, 88]. Moreover, MALAT1
knockdown induces cell cycle arrest at the G0/G1 to S phase leading to reduced cell
proliferation and invasion and enhanced apoptosis in HOS and U2OS cell lines. In
addition, MALAT1 knockdown affects negatively the ability of osteosarcoma cells
to form new blood circulatory networks in three-dimensional cell cultures [88, 245].
In addition, MALAT1 knockdown inactivates the Rac1/JNK signal transduction
pathway through activation of miR-509 and downregulation of high mobility group
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protein B1 (HMGB1) [246, 247]. It is obvious that inactivation of MALAT1 results
in inhibition of osteosarcoma cell proliferation and invasion and induces the apo-
ptotic machinery. Therefore, MALAT1 might be used as specific therapeutic target
to inhibit osteosarcoma progression.

MF12 is another lncRNA that is overexpressed in osteosarcoma human tissue
samples and is associated with cell proliferation, migration, and invasion in osteo-
sarcoma cell lines MG63 and Saos-2. It promotes osteosarcoma cell growth and
enhances invasiveness through regulation of FOXP4 [166]. In this context, targeting
MF12 could reduce osteosarcoma growth and clinical progression.

Neuroblastoma-associated transcript 1 (NBAT1) has been found to be
downregulated in osteosarcoma human samples and various osteosarcoma cell lines
such as MG-63, KHOA, U2OS, LM7, and 143b [248]. Clinically, low expression
levels of NBAT1 are associated with osteosarcoma metastatic dissemination and
unfavorable prognosis. NBAT1 knockdown or silencing leads to enhanced osteosar-
coma tumor growth, cell proliferation, migration and invasion in vitro. Induction of
NBAT1, in order to be overexpressed in vitro, results in the opposite effects. It has
also been demonstrated that NBAT1 positively regulates the transcription of PTEN,
PDCD4 and RECK, which act as tumor suppressor, and cell death and metastasis
suppressor genes, respectively, through miR-21 inactivation. Overexpression of
miR-21 leads to the opposite effect [248]. Thus, NBAT1 mimics might be used to
reduce osteosarcoma growth and metastatic ability.

p21-associated ncRNA DNA damage activated (PANDA) is a lncRNA which
is overexpressed in osteosarcoma tissue specimens and osteosarcoma cell lines
[249]. Its expression is induced up to 40-fold by DNA damage related to doxorubi-
cin and etoposide treatment and is positively regulated by p53. PANDA is involved
in positive regulation of the osteosarcoma cell cycle through p18 associated tran-
scriptional repression. Moreover, PANDA silencing results in cell cycle arrest in G1/
S transition through upregulation of cyclin-dependent kinase inhibitor p18 in U2OS
osteosarcoma cell line. Depletion of PANDA leads to cell death of doxorubicin
treated cells through upregulation of apoptotic activators APAF1, BIK, FAS, and
LRDD [249, 250]. Taken together, these findings imply that inhibition of PANDA
might serve as a therapeutic intervention to induce cell cycle arrest and apoptosis in
osteosarcoma.

PVT1 is another lncRNA that is overexpressed in osteosarcoma cell lines and
tissue specimens, and its upregulation is correlated with decreased survival in
osteosarcoma patients. PVT1 overexpression is associated with osteosarcoma cell
proliferation, migration, and invasion, and silencing of its function via siRNA has
the opposite effects and promotes apoptosis and cell cycle arrest as well. Moreover,
silencing of PVT1 by siRNA leads to downregulation of BCL2, CCND1, and FASN
expressions through miR-195 in osteosarcoma cells [251]. PVT1 is also involved in
the Warburg effect in osteosarcoma cells by promoting anaerobic glycolysis and
tumor progression through regulation of the miR-497/HK2 axis [252]. Taken
together, PVT1 could serve as a target in the therapeutic management of
osteosarcoma.

TP73 antisense RNA 1 (TP73-AS1) is a novel oncogenic long noncoding RNA
which is significantly overexpressed in osteosarcoma tissue samples and cell lines.
Moreover, high expression of TP73-AS1 is correlated with advanced clinical stage,
large tumor size, high metastatic potential, and poor overall survival [253]. TP73-
AS1 overexpression promotes osteosarcoma cell proliferation, migration, and inva-
sion by acting as a sponge for miR-142 to positively regulate Rac1 function [254].
TP73-AS1 might constitute a potential therapeutic target in the treatment of osteo-
sarcoma.

All the above mentioned lncRNAs are summarized in Table 2.
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Different methods and approaches could be used to inhibit or mimic the func-
tion of lncRNAs for therapeutic purposes, such as small molecule inhibitors,
inhibiting micropeptides; RNA interference silencing by small interfering RNAs
(siRNAs); or short hairpin RNAs (shRNAs), antisense oligonucleotide targeting;
ribozyme, deoxyribozyme, plasmid, or viral vector-based targeting; and gene
editing by CRISPR/Cas9 system [255].

In addition, a variety of delivery vehicles or carriers have been developed in an
effort to target lncRNAs, such as peptide nucleic acid (PNA), lipid-based
nanocarriers, poly(lactic-co-glycolic acid nanoparticles (PLGA), poly(amine-co-
ester) tetrapolymers (PACE), and pHlow insertion peptides (pHLIP) [256].

Several preclinical and phaseI/II clinical trials have been initiated by using the
abovementioned approaches, such as the use of plasmid BC-819 expressing diph-
theria toxin under the control of H19 lncRNA promoter to induce tumor reduction
after intratumoral injection in order to treat bladder, ovarian, and pancreatic carci-
nomas [256]. Modified oligonucleotides which target antisense lncRNAs, also
referred as AntagoNATs, have been tested in vitro and in vivo to modulate lncRNA
expression. Administration of antisense oligonucleotides (ASOs) against MALAT1
effectively achieved inhibition of lung cancer tumor growth in mice xenografts
[257]. Although ASO therapeutic approaches are promising, major obstacles, such as
inadequate intracellular uptake or chemical toxicity, should be considered and
taken into account. It should also be noted that although lncRNAs are regulated by
cis or trans mechanisms targeting specific genes, putative effects on global gene
expression should be very carefully considered.

9. Conclusions and future perspectives

In this chapter, we reviewed the involvement of lncRNAs in the pathogenesis,
metastatic process, and drug resistance of osteosarcoma and summarized in
Tables 1 and 2. We also summarized the possible roles of lncRNAs as prognostic
and predictive biomarkers and their putative usefulness as therapeutic targets in
osteosarcoma clinical management. However, more studies are needed to further
elucidate and confirm the precise molecular mechanisms underlying these effects
along with translational research in osteosarcoma metastasis and drug resistance.
Translational studies are crucial in understanding if lncRNA modulation is applica-
ble in the clinical setting and beneficial for the patients. Considering the difficulty
to get osteosarcoma tissue samples at different stages of disease, it would be useful
to detect lncRNA expression levels in body fluids, such as plasma or urine, provid-
ing a real-time monitoring of osteosarcoma progression [45, 258].

Studies of structural biology are also needed in order to determine the secondary
and tertiary structures of lncRNAs and elucidate the molecular interactions with
other biomolecules. Structural studies could provide useful knowledge for designing
lncRNA mimics or pharmaceutical agents against them.

Future research should also focus on better understanding the cross-talk
between different signaling pathways related to osteosarcoma development and the
role of lncRNAs in these molecular interactions.

We anticipate that lncRNA-based diagnostic approaches and therapeutic inter-
ventions will be more efficient in treating this debilitating tumor and will offer
significant benefit for osteosarcoma patients.
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