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Chapter

A Comparative Study of
Maximum Likelihood Estimation
and Bayesian Estimation for
Erlang Distribution and Its
Applications
Kaisar Ahmad and Sheikh Parvaiz Ahmad

Abstract

In this chapter, Erlang distribution is considered. For parameter estimation,
maximum likelihood method of estimation, method of moments and Bayesian
method of estimation are applied. In Bayesian methodology, different prior distri-
butions are employed under various loss functions to estimate the rate parameter of
Erlang distribution. At the end the simulation study is conducted in R-Software to
compare these methods by using mean square error with varying sample sizes. Also
the real life applications are examined in order to compare the behavior of the data
sets in the parametric estimation. The comparison is also done among the different
loss functions.

Keywords: Erlang distribution, prior distributions, loss functions, simulation
study, applications

1. Introduction

Erlang distribution is a continuous probability distribution with wide applica-
bility, primarily due to its relation to the exponential and gamma distributions.
The Erlang distribution was developed by Erlang [1] to examine the number of
telephone calls that could be made at the same time to switching station operators.
This distribution can be expressed as waiting time and message length in telephone
traffic. If the duration of individual calls are exponentially distributed then the
duration of succession of calls is the Erlang distribution. The Erlang variate becomes
gamma variate when its shape parameter is an integer (for details see Evans et al.
[2]). Bhattacharyya and Singh [3] obtained Bayes estimator for the Erlangian queue
under two prior densities. Haq and Dey [4] addressed the problem of Bayesian
estimation of parameters for the Erlang distribution assuming different indepen-
dent informative priors. Suri et al. [5] used Erlang distribution to design a simulator
for time estimation of project management process. Damodaran et al. [6] obtained
the expected time between failure measures. Further, they showed that the
predicted failure times are closer to the actual failure times. Jodra [7] showed the
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procedure of computing the asymptotic expansion of the median of Erlang
distribution.

The probability density function of an Erlang variate is given by

f x; λ; kð Þ ¼
λk

k� 1ð Þ!
xk�1e�λx forx>0, k∈Nandλ>0: (1)

where λ and k are the rate and the shape parameters, respectively, such that
is k an integer number.

1.1 Graphical representation of pdf for Erlang distribution

In this chapter, Erlang distribution is considered. Some structural properties of
Erlang distribution have been obtained. The parameter estimation of Erlang distri-
bution is obtained by employing the maximum likelihood method of estimation,
method of moments and Bayesian method of estimation in different sections of this
chapter. In Bayesian approach, the parameters are estimated by using Jeffrey’s and
Quasi priors under different loss functions (Figure 1).

1.2 Relationship of Erlang distribution with other distributions

i. The gamma distribution is a generalized form of the Erlang distribution.

ii. If the shape parameter k is 1, then Erlang distribution reduces to exponential
distribution.

iii. If the scale parameter is 2, then Erlang distribution reduces to Chi-square
distribution with 2 degrees of freedom.

Thus from the above descriptions, we can say that exponential distribution and
Chi-square distribution are the sub-models of Erlang distribution.

Figure 1.
Pdf’s of Erlang distribution for different values of lambda and k.
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2. Methods used for parameter estimation

In this chapter, we have used different approaches for parameter estimation.
The first two methods come under the classical approach which was founded by
Fisher in a series of fundamental papers round about 1930.

The alternative approach is the Bayesian approach which was first discovered by
Reverend Thomas Bayes. In this chapter, we have used two different priors for the
parameter estimation. Also three loss functions are used which are discussed in their
respective sections. A number of symmetric and asymmetric loss functions used by
various researchers; see Zellner [8], Ahmad and Ahmad [9], Ahmad et al. [10], etc.

These methods of estimations are elaborated in their respective sections
accordingly.

2.1 Maximum likelihood (MLH) estimation

The most general method of estimation is known as maximum likelihood (MLH)
estimators, which was initially formulated by Gauss. Fisher in the early 1920 firstly
introduced MLH as general method of estimation and later on developed by him in
a series of papers. He revealed the advantages of this method by showing that it
yields sufficient estimators, which are asymptotically MVUES. Thus the important
feature of this method is that we look at the value of the random sample and then
select our estimate of the unknown population parameter, the value of which the
probability of getting the observed data is maximum.

Suppose the observed data sample values are x1; x2;…; xnð Þ. When X is a discrete
random variable, we can write P X1 ¼ x1;X2 ¼ x2;…;Xn ¼ xnð Þ ¼ f x1; x2;…; xnð Þ,
which is the value of joint probability distribution at the sample point x1; x2;…; xnð Þ.
Since the sample values has been observed and are therefore fixed numbers, we
consider f x1; x2, ;…; xn; λð Þ as the value of a function of the parameter λ, referred to
as the likelihood function.

Similarly the definition applies when the random sample comes from a continu-
ous population but in that case f x1; x2, ;…; xn; λð Þ is the value of joint pdf at the
sample point x1; x2;…; xnð Þ. That is, the likelihood function at the sample value
x1; x2;…; xnð Þ which is given by

L x1; x2;…; xnjλð Þ ¼
Y

m

i¼1

f xi; λð Þ:

Since the principle of maximum likelihood consists in finding an estimator of the
parameter which maximizes the likelihood function for variation in the parameter.

Thus if there exists a function λ̂ ¼ λ̂ x1; x2;…; xnð Þ of the sample values which max-

imizes L xjλð Þ for variation in λ, then λ̂ is to be taken as the estimator of λ. Usually we

call λ̂ as ML estimators. Thus λ̂ is the solution

iff
∂L xjλð Þ

∂λ
¼ 0 and

∂
2L xjλð Þ

∂λ2
<0:

Since L xjλð Þ>0, so logL xjλð Þ which shows that L xjλð Þ and logL xjλð Þ attains

their extreme values at λ̂. Therefore, the equation becomes

1

L xjλð Þ

∂L xjλð Þ

∂λ
¼ 0 )

∂ logL xjλð Þ

∂λ
¼ 0

a form which is more convenient from practical point of view.
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The MLH estimation of the rate parameter of Erlang distribution is obtained in
the following theorem:

Theorem 2.1: Let x1; x2;…; xnð Þ be a random sample of size n from Erlang
density function Eq. (1), then the maximum likelihood estimator of λ is given by

λ̂ ¼
nk

∑n
i¼1xi

:

Proof: The likelihood function of random sample of size n having Erlang density
function Eq. (1) is given by

L x; λ; kð Þ ¼
λð Þk

k� 1ð Þ!

 !n
Y

n

i¼1

xi
k�1e

�λ ∑
n

i¼1
xi

: (2)

The log likelihood function is given by

logL x; λ; βð Þ ¼ nk log λþ k� 1ð Þ∑
n

i¼1
log xi � λ∑

n

i¼1
xi � n log k� 1ð Þ!: (3)

Differentiating Eq. (3) w.r.t. λ and equating to zero, we get

∂

∂λ
nk log λþ k� 1ð Þ∑

n

i¼1
log xi � λ∑

n

i¼1
xi � n log k� 1ð Þ!:

� �

¼ 0

λ̂ ¼
nk

∑n
i¼1xi

: (4)

2.2 Method of moments (MM)

One of the simplest and oldest methods of estimation is the method of moments.
The method of moments was discovered by Karl Pearson in 1894. It is a method of
estimation of population parameters such as mean, variance, etc. (which need not
be moments), by equating sample moments with unobservable population
moments and then solving those equations for the quantities to be estimated. The
method of moments is special case when we need to estimate some known function
of finite number of unknown moments.

Suppose f x; λ1; λ2;…; λp
� �

be the density function of the parent population with p

parameters λ1; λ2;…; λp
� �

. Let μ0s be the sth moment of a random variable about
origin and is given by

μ0s ¼

ð

∞

�∞

xsf x; λ1; λ2;…; λp
� �

; r ¼ 1, 2,…, p:

In general μ01; μ
0
2;…; μ0p

� �

will be the functions of parameters λ1; λ2;…; λp
� �

. Let

xi; i ¼ 1; 2;…; nð Þ be a random sample of size n from the given population. The

method of moments consists in solving the p-equations (i) for λ1; λ2;…; λp
� �

in terms

of μ01; μ
0
2;…; μ0p

� �

. Then replacing these moments μ0s; s ¼ 1; 2; 3;…; p
� �

by the sample

moments

e.g., λ̂i ¼ λ̂ μ01; μ
0
2;…; μ0p

� �

¼ λi m0
1;m

0
2; ::…;m0

p

� �

; i ¼ 1, 2,…, p:
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where mi is the ith moment about origin in the sample.

Then by the method of moments λ̂1; λ̂2;…; λ̂p
� �

are the estimators of respectively.
The MM estimation of the rate parameter of Erlang distribution is obtained in

the following theorem:
Theorem 2.2: Let x1; x2;…; xnð Þ be a random sample of size n from Erlang

density function Eq. (1), then the moment estimator of λ is given by

λ̂ ¼
k

x

� �

:

Proof: If the numbers x1; x2;…; xnð Þ represents a set of data, then an unbiased
estimator for the rth moment about origin is

m̂r ¼
1

n
∑
n

i¼1
xi (5)

where m̂r stands for the estimate of mr.
The rth moment of two parameter Erlang distribution about origin is given by

μ0r ¼

ð

∞

0

xrf x; λ; kð Þdx (6)

Using Eq. (5) in Eq. (6), we have

μ0r ¼
Γ rþ kð Þ

λr k� 1ð Þ!
: (7)

If r = 1 in Eq. (7), we get

μ01 ¼
k

λ
:

If r = 2, then Eq. (7) becomes

μ02 ¼
k kþ 1ð Þ

λ2
:

Thus the variance is given by σ2 ¼ k
λ2
.

When we divide σ2 by μ0 21 , we get an expression which is a function of k only and
is given by

σ2

μ0 21
¼

k
λ2

� �

k
λ

� �2

σ2

μ0 21
¼

1

k
: (8)

On taking the square roots of Eq. (8), we have the coefficient of variation

σ

μ01
¼

ffiffiffiffiffiffiffiffiffiffi

1

k

� �

s

: (9)

The rate parameter λ can be then estimated using the following equation
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m0
1 ¼ μ01:

If r = 1, in Eq. (5), then

m0
1 ¼ x:

Also if r = 1 in Eq. (7), then

μ01 ¼
k

λ
:

Thus,

m0
1 ¼ μ01

x ¼ k
λ
, where x is the mean of the data and

λ̂ ¼
k

x

� �

:

3. Bayesian method of estimation

Nowadays, the Bayesian school of thought is garnering more attention and at an
increasing rate. This thought of statistics was given by Reverend Thomas Bayes. He
first discovered the theorem that now bears his name. It was written up in a paper
“An Essay Towards Solving a Problem in the Doctrine of Chances.” This paper was
found after his death by his friend Richard Price, who had it published posthu-
mously in the Philosophical Transactions of the Royal Society in 1763. Bayes showed
how inverse probability could be used to calculate probability of antecedent events
from the occurrence of the consequent event. His methods were adopted by Laplace
and other scientists in the nineteenth century. By mid twentieth century interest in
Bayesian methods was renewed by De Finetti, Jeffreys and Lindley, among others.
They developed a complete method of statistical inference based on Bayes’ theorem.
Bayesian analysis is to be used by practitioners for situations where scientists have a
priori information about the values of the parameters to be estimated. In everyday
life, uncertainty often permeates our choices, and when choices need to be made,
past experience frequently proves a helpful aid. Bayesian theory provides a general
and consistent framework for dealing with uncertainty.

Within Bayesian inference, there are also different interpretations of probabil-
ity, and different approaches based on those interpretations. Early efforts to make
Bayesian methods accessible for data analysis were made by Raiffa and Schlaifer
[11], DeGroot [12], Zellner [13], and Box and Tiao [14]. The most popular inter-
pretations and approaches are objective Bayesian inference and subjective Bayesian
inference. Excellent expositions of these approaches are with Bayes and Price [15],
Laplace [16], Jeffrey’s [17], Anscombe and Aumann [18], Berger [19, 20], Gelman
et al. [21], Leonard and Hsu [22], De-Finetti [23]. Modern Bayesian data analysis
and methods based on Markov chain Monte Carlo methods are presented in
Bernardo and Smith [24], Robert [25], Gelman et al. [26], Marin and Robert [27],
Carlin and Louis [28]. Good elementary introductions to the subject are Ibrahim
et al. [29], Ghosh [30], Bansal [31], Koch [32], Hoff [33].

In Bayesian statistics probability is not defined as a frequency of occurrence but
as the plausibility that a proposition is true, given the available information. The
parameters are treated as random variables. The rules of probability are used
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directly to make inferences about the parameters. Probability statements about
parameters must be interpreted as “degree of belief.” We revise our beliefs about
parameters after getting the data by using Bayes’ theorem. This gives our posterior
distribution which gives the relative weights we give to each parameter value after
analyzing the data. The posterior distribution comes from two sources: the prior
distribution and the observed data. This means that the inference is based on the
actual occurring data, not all possible data sets that might have occurred.

In this section, posterior distribution of Erlang distribution is obtained by using
Jeffrey’s prior and Quasi prior. The rate parameter of Erlang distribution is esti-
mated with the help of different loss functions. For parameter estimation we have
used the approach as is used by Ahmad et al. [34], Ahmad et al. [35], etc. Some
important prior distributions and loss functions which we have used in this article
are given as below:

3.1 Prior distributions used

Prior distribution is the basic part of Bayesian analysis which represents all that
is known or assumed about the parameter. Usually the prior information is subjec-
tive and is based on a person’s own experience and judgment, a statement of one’s
degree of belief regarding the parameter.

Another important feature of the Bayesian analysis is the choice of the prior
distribution. If the data have sufficient signal, even a bad prior will still not greatly
influence the posterior. We can examine the impact of prior by observing the
stability of posterior distribution related to different choices of priors. If the poste-
rior distribution is highly dependent on the prior, then the data (the likelihood
function) may not contain sufficient information. However, if the posterior is
relatively stable over a choice of priors, then the data indeed contains significant
information.

Prior distribution may be categorical in different ways. One common
classification is a dichotomy that separated “proper” and “improper” priors.

A prior distribution is proper if it does not depend on the data and the value of

integral
Ð

∞

�∞

g λð Þdλ or summation ∑ g λð Þ is one. If the prior does not depend on the

data and the distribution does not integrate or sum to one then we say that the prior
is improper.

In this chapter, we have used two different priors Jeffrey’s prior and Quasi prior
which are given below:

3.1.1 Jeffrey’s prior

An invariant form for the prior probability in estimation problems is given by
Jeffery’s [36].

The general formula of the Jeffreys prior, which is defined by

g λð Þ∝
ffiffiffiffiffiffiffiffi

I λð Þ
p

∝ �E
∂
2 logL λjxð Þ

∂λ2

	 
� �
1
2

:

where I λð Þ is the Fisher information for the parameter λ.When there are multiple
parameters I is the Fisher information matrix, the matrix of the expected second
partials
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I λð Þ ¼ E
∂
2 logL λjxð Þ

∂λi∂λj

� �

:

In this situation, the Jeffreys prior is given by

g λð Þ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det I λð Þð Þ
p

:

Jeffrey suggested a thumb rule for specifying non-informative prior for param-
eter λ as

Rule 1: if λ∈ �∞;∞ð Þ take g λð Þ to be constant, i.e., λ to be uniformly distributed.

Rule 2: if λ∈ 0;∞ð Þ take g λð Þ∝ 1
λ
, i.e., log λ to be uniformly distributed.

Under linear transformation, rule 1 is invariant and under any power transfor-
mation of λ, rule 2 is invariant.

3.1.2 Quasi prior

When there is no more information about the distribution parameter, one may
use the Quasi density as given by g λð Þ ¼ 1

λd
; λ>0 and d>0:

3.2 Loss functions used

The concept of loss function is old as Laplace and was reintroduced in statistics
by Abraham Wald [37]. In statistics, typically a loss function is used for parameter
estimation, and the event in question is some function of the difference between
estimated and true values for an occurrence of data. In the context of economics,
loss function is usually economic cost. In optimal control, the loss is the penalty for
failing to achieve a desired value.

The word “loss” is used in place of “error” and the loss function is used as a
measure of the error or loss. Loss function is a measure of the error and presumably
would be greater for large error than for small error. We would want the loss to be
small or we want the estimate to be close to what it is estimating. Loss depends on
sample and we cannot hope to make the loss small for every possible sample but can
try to make the loss small on the average. Our objective is to select an estimator that
makes this error or loss small, also which makes the average loss (risk) small and
ideally select an estimator that has the small risk.

In this chapter, we have used three different Loss Functions which are as under:

3.2.1 Precautionary loss function (PLF)

The concept of precautionary loss function (PLF) was introduced by Norstrom
[38]. He introduced an alternative asymmetric loss function and also presented a
general class of precautionary loss functions as a special case. These loss functions
approach infinitely near the origin to prevent underestimation, thus giving conser-
vative estimators, especially when low failure rates are being estimated. These
estimators are very useful when underestimation may lead to serious consequences.
A very useful and simple asymmetric precautionary loss function (PLF) is

L λ̂; λ
� �

¼
λ̂ � λ
� �2

λ
:
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3.2.2 Al-Bayyati’s loss function (ALF)

The loss function proposed by Al-Bayyati [39] is an asymmetric loss function
and is given by

lA λ̂; λ
� �

¼ λc λ̂ � λ
� �2

cεR:

where λ and λ̂ represents the true and estimated values of the parameter. This
loss function is frequently used because of its analytical tractability in Bayesian
analysis.

3.2.3 LINEX loss function (LLF)

The idea of LINEX loss function (LLF) was founded by Klebanov [40] and used
by Varian [41] in the context of real estate assessment. The formula of LLF is given by

L λ̂; λ
� �

¼ exp a λ̂ � λ
� �� �

� a λ̂ � λ
� �

� 1
� �

where λ and λ̂ represents the true and estimated values of the parameter and the
constant c determines the shape of the loss function.

3.3 Posterior density under Jeffrey’s prior

Let x1; x2;…; xnð Þ be a random sample of size n having the Erlang density func-
tion Eq. (1) which is given by

f x; λ; kð Þ ¼
λk

k� 1ð Þ!
xk�1e�λx forx>0, k∈Nandλ>0

and the likelihood function Eq. (2) given as below

L x; λ; kð Þ ¼
λð Þk

k� 1ð Þ!

 !n
Y

n

i¼1

xi
k�1e

�λ ∑
n

i¼1
xi

:

Jeffreys’ non-informative prior for λ is given by

g λð Þ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det I λð Þð Þ
p

:

where I λð Þ ¼ �nE ∂
2 log f x;λ;kð Þ

∂λ2

h i

is the Fisher’s information matrix for the proba-

bility density function Eq. (1).
On solving the above expression, we have

g λð Þ ¼
1

λ
: (10)

By using the Bayes theorem, we have

π1 λjx
� �

∝L xjλð Þg λð Þ: (11)

Using Eqs. (2) and (10) in Eq. (11), we get
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π1 λjx
� �

∝
λð Þnk�1

k� 1ð Þ!

Y

n

i¼1

xi
k�1e

�λ ∑
n

i¼1
xi

π1 λjx
� �

¼ ρλnk�1e
�λ ∑

n

i¼1
xi

(12)

where ρ is independent of λ and

ρ�1 ¼

ð

∞

0

λnk�1e
�λ ∑

n

i¼1
xi
dλ

ρ ¼
∑n

i¼1xi
� �nk

Γnk
:

Using the value of ρ in Eq. (12)

π1 λjx
� �

¼
λnk�1e

�λ ∑
n

i¼1
xi

∑n
i¼1xi

� �nk

Γnk

0

B

@

1

C

A
: (13)

3.4 Posterior density under Quasi prior

Let x1; x2;…; xnð Þ be a random sample of size n having the Erlang density func-
tion Eq. (2) and the likelihood function Eq. (2).

The Quasi for λ is given by

g λð Þ ¼
1

λd
: (14)

By using the Bayes theorem, we have

π2 λjx
� �

∝L xjλð Þg λð Þ: (15)

Using Eqs. (2) and (14) in Eq. (15), we have

π2 λjx
� �

∝
λð Þnk�d

k� 1ð Þ!

Y

n

i¼1

xi
k�1e

�λ ∑
n

i¼1
xi

π2 λjx
� �

¼ ρλnk�de
�λ ∑

n

i¼1
xi

(16)

where ρ is independent of λ and

ρ�1 ¼

ð

∞

0

λnk�2ce
�λ ∑

n

i¼1
xi
dλ

ρ ¼
∑n

i¼1xi
� �nk�dþ1

Γ nk� dþ 1ð Þ
:

By using the value of ρ in Eq. (16), we have
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π2 λjx
� �

¼
λnk�de

�λ ∑
n

i¼1
xi

∑n
i¼1xi

� �nk�dþ1

Γ nk� dþ 1ð Þ

0

B

@

1

C

A
: (17)

4. Estimation of parameters under Jeffrey’s prior

In this section, parameter estimation of Erlang distribution is done by using
Jeffreys’ prior under different loss functions. The procedure of calculating the
Bayesian estimate is already defined in Section 3. The estimates are obtained in the
following theorems:

Theorem 4.1: Assuming the loss function Lp λ̂; λ
� �

, the Bayesian estimator of the

rate parameter λ, if the shape parameter k is known, is of the form

λ̂p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk nkþ 1ð Þ
p

∑n
i¼1xi

� � :

Proof: The risk function of the estimator λ under the precautionary loss function

Lp λ̂; λ
� �

is given by the formula

R λ̂
� �

¼

ð

∞

0

λ̂ � λ
� �

λ̂

2

π1 λjx
� �

dλ: (18)

Using Eq. (13) in Eq. (18), we get

R λ̂
� �

¼

ð

∞

0

λ̂ � λ
� �

λ̂

2
λnk�1 ∑n

i¼1xi
� �nk

e
�λ ∑

n

i¼1
xi

Γnk

0

B

@

1

C

A
dλ

R λ̂
� �

¼
∑n

i¼1xi
� �nk

Γnk
λ̂

ð

∞

0

λnk�1e
�λ ∑

n

i¼1
xi
dλþ

1

λ̂

ð

∞

0

λnkþ1e
�λ ∑

n

i¼1
xi
dλ� 2

ð

∞

0

λnke
�λ ∑

n

i¼1
xi
dλ

2

4

3

5

:

On solving the above expression, we get

R λ̂
� �

¼ λ̂ þ
1

λ̂

nk nkþ 1ð Þ

∑n
i¼1xi

� �2 �
2nk

∑n
i¼1xi

� � :

Minimization of the risk with respect to λ̂ gives us the optimal estimator i.e.,

∂

∂λ̂
R λ̂
� �� �

¼ 0

λ̂p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk nkþ 1ð Þ
p

∑n
i¼1xi

� � : (19)

Theorem 4.2: Assuming the loss function lA λ̂; λ
� �

, the Bayesian estimator of the

rate parameter λ, if the shape parameter k is known, is of the form

λ̂A ¼
nkþ cð Þ

∑n
i¼1xi

� � :
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Proof: The risk function of the estimator λ under the Al-Bayyati’s loss function

LA λ̂; λ
� �

is given by the formula

R λ̂
� �

¼

ð

∞

0

λc λ̂ � λ
� �2

π1 λjx
� �

dλ: (20)

On substituting Eq. (13) in Eq. (20), we have.

R λ̂
� �

¼

ð

∞

0

λc λ̂ � λ
� �2 λnk�1 ∑n

i¼1xi
� �nk

e
�λ ∑

n

i¼1
xi

Γnk

0

B

@

1

C

A
dλ

R λ̂
� �

¼
∑n

i¼1xi
� �nk

Γnk
λ̂
2
ð

∞

0

λnkþc�1e
�λ ∑

n

i¼1
xi
dλþ

ð

∞

0

λnkþcþ1e
�λ ∑

n

i¼1
xi
dλ� 2λ̂

ð

∞

0

λnkþce
�λ ∑

n

i¼1
xi
dλ

2

4

3

5

:

On solving the above expression, we get

R λ̂
� �

¼
λ̂2Γ nkþ cð Þ

Γnk ∑n
i¼1xi

� �c þ
Γ nkþ cþ 2ð Þ

Γnk ∑n
i¼1xi

� �cþ2 �
2λ̂Γ nkþ cþ 1ð Þ

Γnk ∑n
i¼1xi

� �cþ1 :

Minimization of the risk with respect to λ̂ gives us the optimal estimator i.e.,

∂

∂λ̂
R λ̂
� �� �

¼ 0

λ̂A ¼
nkþ cð Þ

∑n
i¼1xi

� � : (21)

Theorem 4.3: Assuming the loss function Ll λ̂; λ
� �

, the Bayesian estimator of the
rate parameter λ, if the shape parameter k is known, is of the form

λ̂l ¼

nk log 1þ a
∑n

i¼1 yið Þ

� �

a
:

Proof: The risk function of the estimator λ under the LINEX loss function

Ll λ̂; λ
� �

is given by the formula

R λ̂
� �

¼

ð

∞

0

exp a λ̂ � λ
� �� �

� a λ̂ � λ
� �

� 1
� �

π1 λjx
� �

dλ: (22)

Using Eq. (13) in Eq. (22), we have

R λ̂
� �

¼

ð

∞

0

exp a λ̂ � λ
� �� �

� a λ̂ � λ
� �

� 1
� � λnk�1 ∑n

i¼1xi
� �nk

e
�λ ∑

n

i¼1
xi

Γnk

0

B

@

1

C

A
dλ
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R λ̂
� �

¼
∑n

i¼1xi
� �nk

Γnk

exp aλ̂
� �

ð

∞

0

exp � aþ ∑
n

i¼1
xi

� �

λ

� �� �

λnk�1dλ� aλ̂

ð

∞

0

exp �∑
n

i¼1
xi

� �

λ

� �

λnk�1dλ

þa

ð

∞

0

exp �∑
n

i¼1
xi

� �

λ

� �

λnkdλ�

ð

∞

0

exp �∑
n

i¼1
xi

� �

λ

� �

λnk�1dλ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

On solving the above expression, we get

R λ̂
� �

¼
∑n

i¼1xi
� �nk

exp aλ̂
� �

aþ∑n
i¼1xi

� �nk
� aλ̂ þ

aΓ nkþ 1ð Þ

Γnk ∑n
i¼1xi

� �� 1:

Minimization of the risk with respect to λ̂ gives us the optimal estimator i.e.,

∂

∂λ̂
R λ̂
� �� �

¼ 0

λ̂l ¼

nk log 1þ a
∑n

i¼1xið Þ

� �

a
: (23)

5. Estimation of parameters under Quasi prior

In this section, parameter estimation of Erlang distribution is done by using
QUASI prior under different loss functions. The procedure for obtaining the Bayes-
ian estimate is available in Section 3. The estimates of parameter are obtained in the
following theorems.

Theorem 5.1: Assuming the loss function Lp λ̂; λ
� �

, the Bayesian estimator of the
rate parameter λ, if the shape parameter k is known, is of the form

λ̂p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk� dþ 1ð Þ nk� dþ 2ð Þ
p

∑n
i¼1xi

� � :

Proof: The risk function of the estimator λ under the precautionary loss function

Lp λ̂; λ
� �

is given by the formula

R λ̂
� �

¼

ð

∞

0

λ̂ � λ
� �

λ̂

2

π2 λjx
� �

dλ (24)

Using Eq. (17) in Eq. (24), we have

R λ̂
� �

¼

ð

∞

0

λ̂ � λ
� �

λ̂

2
λnk�d ∑n

i¼1xi
� �nk�dþ1

e
�λ ∑

n

i¼1
xi

Γ nk� dþ 1ð Þ

0

B

@

1

C

A
dλ

R λ̂
� �

¼
∑n

i¼1xi
� �nk�dþ1

Γ nk� dþ 1ð Þ
λ̂

ð

∞

0

λnk�de
�λ ∑

n

i¼1
xi
dλþ

1

λ̂

ð

∞

0

λnk�dþ2e
�λ ∑

n

i¼1
xi
dλ� 2

ð

∞

0

λnk�dþ1e
�λ ∑

n

i¼1
xi
dλ

2

4

3

5

:

On solving the above expression, we get
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R λ̂
� �

¼ λ̂ þ
1

λ̂

Γ nk� dþ 3ð Þ

Γ nk� dþ 1ð Þ ∑n
i¼1xi

� �2 �
2Γ nk� dþ 2ð Þ

Γ nk� dþ 1ð Þ ∑n
i¼1xi

� � :

Minimization of the risk with respect to λ̂ gives us the optimal estimator i.e.,

∂

∂λ̂
R λ̂
� �� �

¼ 0

λ̂p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk� dþ 1ð Þ nk� dþ 2ð Þ
p

∑n
i¼1xi

� � : (25)

Remark: Replacing d = 1 in Eq. (25), the same Bayes estimator is obtained as in
Eq. (19).

Theorem 5.2: Assuming the loss function lA λ̂; λ
� �

, the Bayesian estimator of the

rate parameter λ, if the shape parameter k is known, is of the form

λ̂A ¼
nk� dþ cþ 1ð Þ

∑n
i¼1xi

� � :

Proof: The risk function of the estimator λ under the Al-Bayyati’s loss function

LA λ̂; λ
� �

is given by the formula

R λ̂
� �

¼

ð

∞

0

λc λ̂ � λ
� �2

π2 λjx
� �

dλ: (26)

By using Eq. (17) in Eq. (26), we have.

R λ̂
� �

¼

ð

∞

0

λc λ̂ � λ
� �2 λnk�d ∑n

i¼1xi
� �nk�dþ1

e
�λ ∑

n

i¼1
xi

Γ nk� dþ 1ð Þ

0

B

@

1

C

A
dλ

R λ̂
� �

¼
∑n

i¼1xi
� �nk�dþ1

Γ nk� dþ 1ð Þ
λ̂
2
ð

∞

0

λnk�dþce
�λ ∑

n

i¼1
xi
dλþ

ð

∞

0

λnk�dþcþ2e
�λ ∑

n

i¼1
xi
dλ� 2λ̂

ð

∞

0

λnk�dþcþ1e
�λ ∑

n

i¼1
xi
dλ

2

4

3

5

:

On solving the above expression, we get

R λ̂
� �

¼
λ̂2Γ nk� dþ cþ 1ð Þ

Γ nk� dþ 1ð Þ ∑n
i¼1xi

� �c þ
Γ nk� dþ cþ 3ð Þ

Γ nk� dþ 1ð Þ ∑n
i¼1xi

� �cþ2 �
2λ̂Γ nk� dþ cþ 2ð Þ

Γ nk� dþ 1ð Þ ∑n
i¼1xi

� �cþ1

Minimization of the risk with respect to λ̂ gives us the optimal estimator, i.e.,
∂

∂λ̂
R λ̂
� �� �

¼ 0

λ̂A ¼
nk� dþ cþ 1ð Þ

∑n
i¼1xi

� � : (27)

Remark: Replacing d = 1 in Eq. (27), the same Bayes estimator is obtained as in
Eq. (21).

Theorem 5.3: Assuming the loss function Ll λ̂; λ
� �

, the Bayesian estimator of the
rate parameter λ, if the shape parameter k is known, is of the form
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λ̂l ¼

nk� dþ 1ð Þ log 1þ a
∑n

i¼1xið Þ

� �

a
:

Proof: The risk function of the estimator λ under the LINEX loss function

Ll λ̂; λ
� �

is given by the formula

R λ̂
� �

¼

ð

∞

0

exp a λ̂ � λ
� �� �

� a λ̂ � λ
� �

� 1
� �

π2 λjx
� �

dλ: (28)

Using Eq. (17) in Eq. (28), we have.

R λ̂
� �

¼

ð

∞

0

exp a λ̂ � λ
� �� �

� a λ̂ � λ
� �

� 1
� �

λnk�d ∑
n

i¼1
xi

� �nk�dþ1

e
�λ ∑

n

i¼1
xi

Γ nk� dþ 1ð Þ

0

B

B

B

@

1

C

C

C

A

dλ

R λ̂
� �

¼
∑n

i¼1xi
� �nk�dþ1

Γ nk� 2cþ 1ð Þ

exp aλ̂
� �

ð

∞

0

exp � aþ ∑
n

i¼1
xi

� �

λ

� �� �

λnk�ddλ� aλ̂

ð

∞

0

exp �∑
n

i¼1
xi

� �

λ

� �

λnk�ddλ

þ a

ð

∞

0

exp �∑
n

i¼1
xi

� �

λ

� �

λnk�dþ1dλ�

ð

∞

0

exp �∑
n

i¼1
xi

� �

λ

� �

λnk�ddλ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

On solving the above expression, we get

R λ̂
� �

¼
exp aλ̂

� �

∑n
i¼1xi

� �nk�dþ1

aþ∑n
i¼1xi

� �nk�dþ1
� aλ̂ þ

aΓ nk� dþ 2ð Þ

Γ nk� dþ 1ð Þ ∑n
i¼1xi

� �� 1:

Minimization of the risk with respect to λ̂ gives us the optimal estimator i.e.,

∂

∂λ̂
R λ̂
� �� �

¼ 0

λ̂l ¼

nk� dþ 1ð Þ log 1þ a
∑n

i¼1xið Þ

� �

a
: (29)

Remark: Replacing d = 1 in Eq. (29), the same Bayes estimator is obtained as in
Eq. (23).

6. Entropy estimation of Erlang distribution

The concept of entropy was introduced by Claude. Shannon [42] in the paper
“A Mathematical theory of Communication.” This concept of Shannon’s entropy is
the central role of information theory, sometimes referred as measure of uncer-
tainty. Shannon entropy provides an absolute limit on the best possible lossless
encoding or compression of any communication, assuming that the communication
may be represented as a sequence of independent and identical distributed random
variables. Entropy is typically measured in bits, when the log is to the base 2, and
nats, when the log is to the base n.
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Shannon’s definition of entropy, when applied to an information source, can
determine the minimum channel capacity required to reliably transmit the source as
encoded binary digit. The entropy of a random variable is defined in terms of its
probability distribution and can be shown to be a good measure of randomness or
uncertainty. For deriving the entropy of probability distributions, we need the
following two definitions that are more discussed in Cover et al. [43].

Definition (i): The entropy of the discrete random variable defined on the
probability space is given by

HP fð Þ ¼ �∑
n

i¼1
p f ¼ að Þ log p f ¼ að Þð Þ:

It is obvious that HP fð Þ≥0.
Definition (ii): The entropy of the continuous random variable defined on the

real line is given by

H fð Þ ¼ E � log xð Þð Þ ¼ �

ð

∞

�∞

f xð Þ log f xð Þdx:

In this section, entropy estimation of two parameter Erlang distribution is
discussed which given as below.

Theorem 6.1: Let x1; x2;…; xnð Þ be n positive independent and identically dis-
tributed random samples drawn from a population having Erlang density function
Eq. (2), then the Shannon’s entropy of two parameter Erlang distribution is given by

H f x; α; βð Þð Þ ¼ � log
λk

k� 1ð Þ!

� �

� k� 1ð Þ ψ kð Þ � log λð Þ þ k:

Proof: Shannon’s entropy for a continuous random variable is defined as

H f x; λ; kð Þð Þ ¼ Eð� log f xð Þð Þ ¼ �

ð

∞

�∞

f xð Þ log f xð Þdx (30)

Using Eq. (1) in Eq. (30), we have

H f x; α; βð Þð Þ ¼ E � log
λk

k� 1ð Þ!
xk�1e�λx

� �
 �

H f x; α; βð Þð Þ ¼ � log
λk

k� 1ð Þ!

� �

� k� 1ð ÞE log xð Þð Þ þ λE xð Þ: (31)

Now

E log xð Þð Þ ¼

ð

∞

0

log xð Þf xð Þdx

E log xð Þð Þ ¼
λk

k� 1ð Þ!

ð

∞

0

log xð Þxk�1e�λxdx

Put λx ¼ t ) ∂x ¼
∂t

λ
; as x ! 0, t ! 0 and as x ! ∞, t ! ∞
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E log xð Þð Þ ¼
λk�1

k� 1ð Þ!

ð

∞

0

log
t

λ

� � t

λ

� �k�1

e�tdt

E log xð Þð Þ ¼
1

k� 1ð Þ!

ð

∞

0

log t tð Þk�1e�tdt� log λ

ð

∞

0

tð Þk�1e�t dt

2

4

3

5

E log xð Þð Þ ¼
Γ
0 kð Þ

Γk
� log λ

E log xð Þð Þ ¼ ψ kð Þ � log λð Þ: (32)

Also

E xð Þ ¼

ð

∞

0

xf x; λ; kð Þdx

E xð Þ ¼
λk

k� 1ð Þ!

ð

∞

0

xke�λxdx

E xð Þ ¼
λk

k� 1ð Þ!

Γ kþ 1ð Þ

λkþ1

E xð Þ ¼
k

λ
: (33)

Substitute the value of Eqs. (32) and (33) in Eq. (31), we have.

H f x; α; βð Þð Þ ¼ � log
λk

k� 1ð Þ!

� �

� k� 1ð Þ ψ kð Þ � log λð Þ þ k: (34)

7. AIC and BIC criterion for Erlang distribution

For model selection the approach of Akaike information criterion (AIC) and
Bayesian information criterion (BIC) based on entropy estimation are used. The
Akaike information criterion (AIC) was introduced by Hirotsugu Akaike [44] and
proposed it as a measure of goodness of fit of an estimated statistical model. It is a
measure of the relative quality of a statistical model for a given set of data. It has
been found in information theory that it offers a relative estimate of the informa-
tion lost when a given model is used to represent the process that generates the data.

The AIC is not a test of the model in the sense of hypothesis testing; rather it is a
test between models—a tool for model selection. Given a data set, several compet-
ing models may be ranked according to their AIC, with the one having the lowest
AIC being the best.

The formula for AIC is given by

AIC ¼ 2K � 2 log L λ̂
� �� �

:

where K is the number of parameters and L λ̂
� �

is the maximized value of the
likelihood function for the estimated model.
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AICC was first introduced by Hurvich and Tsai [45] and its different derivations
were proposed by Burnham and Anderson [46]. AICC is AIC with a correction for
finite sample sizes and is given by

AICC ¼ AICþ
2K K þ 1ð Þ

n� K � 1ð Þ
:

Burnham and Anderson [47] strongly recommended that we should use AICC
instead of AIC when the sample size is small or if K is large. Since AICC converges
to AIC as the sample size is getting large. Using AIC, instead of AICC, when the
sample size is not many times larger than K2, increases the probability of selecting
models that have too many parameters, i.e., of over fitting. The probability of AIC
over fitting can be substantial, in some cases.

The Bayesian information criterion (BIC) also known as Schwarz Criterion is
used as a substitute for full calculation of the Bayes’ factor since it can be calculated
without specifying prior distribution. In BIC, the penalty for additional parameters
is stronger than that of the AIC.

The formula for the BIC is given by

BIC ¼ K log n� 2 log L λ̂
� �� �

:

where K is the number of parameters, n is the sample size and L λ̂
� �

is the

maximized value of the likelihood function.
The AIC and BIC of two parameter Erlang distribution are obtained in this

section, which are given below.
The Shannon’s entropy of two parameter Erlang distribution is given by

SH EDð Þ ¼ log k� 1ð Þ!� log λk � k� 1ð ÞE log xð Þ þ λE xð Þ

Ĥ EDð Þ ¼ log k� 1ð Þ!� log λk � k� 1ð Þ log xþ λx: (35)

Also

ll x; λ; kð Þ ¼ n log λk � n log k� 1ð Þ!þ k� 1ð Þ∑
n

i¼1
log xi � λ∑

n

i¼1
xi � ll x; λ̂; k̂

� �

¼ n log k� 1ð Þ!� log λk � k� 1ð Þ log xþ λx
� �

:

(36)

Comparing Eqs. (35) and (36), we have

ll x; λ̂; k̂
� �

¼ �nĤ EDð Þ:

The AIC and BIC methodology attempts to find the model that best explains the
data with a minimum of their values, we have.

ll x; λ̂; k̂
� �

¼ �nĤ EDð Þ, then for Erlang family we have

AIC ¼ 2K þ 2nĤ EDð Þ (37)

or

AIC ¼ 2K � 2ll

and
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BIC ¼ K log nþ 2nĤ EDð Þ (38)

or

BIC ¼ K log n� 2ll:

8. Simulation study of Erlang distribution

We have generated the data for Erlang distribution of different sample sizes
(15, 30 and 60) in R Software for each pairs of λ; kð Þ, where k ¼ 1; 2ð Þ and
λ ¼ 0:5; 1:0ð Þ. The value for the loss parameter (C1 = �1, 1) and (a = 0.5, 1.0). The
values of extension are (C = 0.5, 1.0). The estimates of rate parameter for each
method are calculated. The results are presented in the following tables.

N k λ λ̂ML λ̂p λ̂A λ̂ l

c = �1 c = 1 a = 0.5 a = 1.0

15 1 0.5 0.15350 0.16179 0.10530 0.18428 0.13350 0.12597

2 1.0 0.51869 0.54673 0.43100 0.58896 0.47443 0.44430

30 1 0.5 0.03480 0.03238 0.03238 0.03266 0.04191 0.03259

2 1.0 0.06850 0.04258 0.07049 0.02085 0.03077 0.02171

60 1 0.5 0.03910 0.03320 0.02856 0.03488 0.03110 0.03060

2 1.0 0.10349 0.09918 0.08981 0.10244 0.09398 0.09200

ML = maximum likelihood estimate, p = precautionary LF, A = Al-Bayyati’s LF, l = LINEX LF.

Table 1.
Mean squared error for λ̂ under Jeffrey’s prior.

N k λ d λ̂ML λ̂p λ̂A λ̂ l

c = �1 c = 1 a = 0.5 a = 1.0

15 1 0.5 0.5 0.15350 0.14710 0.11081 0.18979 0.13901 0.13148

1.0 0.15350 0.16179 0.10530 0.18428 0.13350 0.12597

2 1.0 0.5 0.51869 0.51528 0.43951 0.59747 0.48294 0.45281

1.0 0.51869 0.54673 0.43100 0.58896 0.47443 0.44430

30 1 0.5 0.5 0.03480 0.03286 0.02179 0.02206 0.21630 0.02200

1.0 0.03480 0.03238 0.03238 0.03266 0.04191 0.03259

2 1.0 0.5 0.06850 0.05828 0.06361 0.01397 0.02389 0.01483

1.0 0.06850 0.04258 0.07049 0.02085 0.03077 0.02171

60 1 0.5 0.5 0.03910 0.03206 0.03206 0.03534 0.03156 0.03106

1.0 0.03910 0.03320 0.02856 0.03488 0.03110 0.03060

2 1.0 0.5 0.10349 0.09641 0.09021 0.10284 0.09439 0.09241

1.0 0.10349 0.09918 0.08981 0.10244 0.09398 0.09200

ML = maximum likelihood estimate, p = precautionary LF, A = Al-Bayyati’s LF, l = LINEX LF.

Table 2.
Mean squared error for λ̂ under Quasi prior.
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9. Comparison of Erlang distribution (ED) with its sub-models

The flexibility and potentiality of the Erlang distribution is compared with its
sub models, which is examined by using different criterions like AIC, BIC and AICC
with the help of the following illustration.

Illustration I:
We provide the compatibility of the Erlang distribution (ED) with their sub-

models; Chi square and exponential distributions. For this purpose, we generated
the data set for Erlang distribution of large sample size (i.e., 200) in R Software for
each pairs of λ; kð Þ, where k ¼ 2ð Þ and λ ¼ 2:5ð Þ. The data analysis is given in the
following table:

Illustration II:
The data set is taken from Lawless [48]. The observations involves the number

of million revolutions between failures for each of 23 ball bearings, the individual
bearings were inspected periodically to determine whether “failure” had occurred.
Treating the failure times as continuous, the 23 failure times are:

(17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.02, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40)

Model Parameter estimate Standard error Measures

� log l AIC BIC AICC

Exponential λ̂ = 0.5945 0.04203 315.6853 633.3705 636.6689 581.9245

Chi-square k = 1.090 0.0586 312.3096 625.6346 628.9329 633.3902

Erlang k = 2 289.9327 581.8654 585.1637 625.6543

λ̂ = 1.1890 0.0594

Table 3.
AIC, BIC and AICC criterion for different sub-models of ED.
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10. Results and discussion

We primarily studied the maximum likelihood (MLH) estimation and Bayesian
estimation to estimate the rate parameter of Erlang distribution. In Bayesian
method, we use Jeffreys’ prior and Quasi prior under three different loss functions.
These methods are compared through simulation technique and the results are
presented in the Tables 1 and 2 respectively.

From the results obtained in Tables 1 and 2, we observe that in most of the
cases, Bayesian estimator under Al-Bayyati’s loss function has the smallest mean
squared error (MSE) values for Jeffrey’s prior and Quasi prior as compared to other
loss functions and the maximum likelihood estimator. Thus we can conclude that
Bayes estimator under Al-Bayyati’s loss function is efficient when the loss parame-
ter C is �1.

Also we estimated the unknown parameters of sub-models of Erlang distribu-
tion. The Akaike information criterion (AIC), Bayesian information criterion (BIC),
and the corrected Akaike information criterion (AICC) are used to compare the
candidate distributions. The best distribution corresponds to lower �logL, AIC,
BIC, AICC statistics value.

From the results obtained in Tables 3 and 4, we observe that the Erlang distri-
bution is a competitive distribution as compared to its sub-models (i.e., exponential
distribution and Chi-square distribution). In fact, based on the values of the AIC,
BIC and AICC criteria, it shows clear picture that the Erlang distribution provides
the best fit for these data among all the models considered.

11. Conclusions

In this paper we have generated three types of data sets with varying sample
sizes for Erlang distribution. These data sets were simulated and behavior of the
data was checked in case of parameter estimation for Erlang distribution in R
Software. By the virtue of the data analysis we are able predict the estimate of rate
parameter for Erlang distribution under three different functions by using two
different prior distributions. With the help of these results we can also do compar-
ison between loss functions and the priors.

Also the comparison of Erlang distribution with its sub-models was carried out.
The results acquired in Tables 3 and 4, it shows the clear picture that Erlang
distribution performs better as compared to its sub-models. Thus we can say that
Erlang distribution is efficient as compared to its sub-models (i.e., exponential
distribution and Chi-square distribution) on the basis of the above procedures.

Model Parameter estimate Standard error Measures

� log l AIC BIC AICC

Exponential λ̂ = 0.01387 0.002877 121.4324 244.8648 246.0003 245.0248

Chi-square k = 2.9420 1.1745 177.5835 357.1670 358.3025 357.327

Erlang k = 1 113.0298 230.0597 232.3307 230.5212

λ̂ = 0.05577 0.01683

Table 4.
AIC, BIC and AICC criterion for different sub-models of ED.
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