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Chapter

Cyclotomic and Littlewood
Polynomials Associated to
Algebras
José-Antonio de la Peña

Abstract

Let A be a finite dimensional algebra over an algebraically closed field k.
Assume A is a basic connected and triangular algebra with n pairwise non-isomorphic
simple modules. We consider the Coxeter transformation ϕA Tð Þ as the automorphism
of the Grothendieck group K0 Að Þ induced by the Auslander-Reiten translation τ in

the derived category Db modAð Þ of the module category modA of finite dimensional
left A-modules. In this paper we study the Mahler measureM χAð Þ of the Coxeter
polynomial χA of certain algebras A. We consider in more detail two cases: (a) A is
said to be cyclotomic if all eigenvalues of χA are roots of unity; (b) A is said to be of
Littlewood type if all coefficients of χA are�1,0 or 1. We find criteria in order thatA is
of one of those types. In particular, we establish new records according to
Mossingshoff’s list of Record Mahler measures of polynomials q with 1<M qð Þ as small
as possible, ordered by their number of roots outside the unit circle.

Keywords: finite dimensional algebra, coxeter transformation, derived category,
accessible algebra, characteristic polynomial, cyclotomic polynomial, littlewod type

1. Introduction

Assume throughout the paper that K is an algebraically closed field. We assume
thatA is a triangular finite dimensional basic K-algebra, that is, of the formA ¼ KQ=I,
where I is an ideal of the path algebra KQ for Q a quiver without oriented cycles.
In particular, A has finite global dimension. The Coxeter transformation ϕA is the
automorphism of the Grothendieck group K0 Að Þ induced by the Auslander-Reiten

translation τ in the derived category Db Að Þ see [1]. The characteristic polynomial χA
of ϕA is called the Coxeter polynomial χA of A, or simply χA see [15, 17]. It is a monic

self-reciprocal polynomial, therefore it is χA ¼ a0 þ a1T þ a2T
2 þ…þ an�2T

n�2þ

an�1T
n�1 þ anT

n ∈Z T½ �, with ai ¼ an�i for 0≤ i≤ n, and a0 ¼ 1 ¼ an.
Consider the roots λ1,…, λn of χA, the so called spectrum of A. There is a number

of measures associated to the absolute values ∣λ∣ for λ in the spectrum Spec ϕAð Þ of
A. For instance, the spectral radius of A is defined as ρA ¼ max jλj : λ∈ Spec ϕAð Þf g

and the Mahler measure of χA defined as M χAð Þ ¼ max 1;
Q

∣λ∣> 1jλj
n o

. Recently,

some explorations on the relations of the Mahler measure M χAð Þ and properties of
the algebra A have been initiated.

For a one-point extension A ¼ B N½ �, we show thatM χBð Þ≤M χAð Þ. The strongest
statements and examples will be given for the class of accessible algebras. We say
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that an algebra A is accessible from B if there is a sequence B ¼ B1, B2,…, Bs ¼ A of
algebras such that each Biþ1 is a one-point extension (resp. coextension) of Bi for
some exceptional Bi-moduleMi. As a special case, a K-algebra A is called accessible if
A is accessible from the one vertex algebra K.

We say that A is of cyclotomic type if the eigenvalues of ϕA lie on the unit circle.
Many important finite dimensional algebras are known to be of cyclotomic type:
hereditary algebras of finite or tame representation type, canonical algebras, some
extended canonical algebras and many others. On the other hand, there are well-
known classes of algebras with a mixed behavior with respect to cyclotomicity. For
instance, in Section 6 below we consider the class of Nakayama algebras. Let N n; rð Þ
be the quotient obtained from the linear quiver with n vertices

•!
x

•!
x

⋯•!
x

•

with relations xr ¼ 0. The Nakayama algebras N n; 2ð Þ are easily proven to be of
cyclotomic type, while those of the form N n; 3ð Þ are of cyclotomic type as conse-
quence of lengthly considerations in [18]. The case r ¼ 4 is more representative:
N n;4ð Þ is of cyclotomic type for all 0≤ n≤ 100 except for n ¼ 10; 22; 30;42; 50;

62; 70; 82 and 90. Clearly, if A is of cyclotomic type then ∣Tr ϕAð Þk∣ ≤ n, for k≥0.
We show the following theorem.

Theorem 1: Let M be an unimodular n� n-matrix. The following are equivalent:

a.M is of cyclotomic type;

b.for every positive integer 0≤ k≤ n, we have ∣Tr Mk
� �

∣ ≤ n.

We also consider algebras A of Littlewood type where χA has all its coefficients in
the set �1;0; 1f g. Among other structure results, we prove.

Proposition. The closure P of the set P of roots of Littlewood polynomials, equals the
set R of roots of Littlewood series.

Our results make use of well established techniques in the representation theory of
algebras, as well as results from the theory of polynomials and transcendental number
theory, where Mahler measure has its usual habitat. We stress here the natural
context of these investigations on the largely unexplored overlapping area of these
important subjects. Hence, rather than a comprehensive study we understand our
work as a preliminary exploration where examples are most valuable.

2. Measures for polynomials

2.1 Self-reciprocal polynomials

A polynomial p zð Þ of degree n is said to be self-reciprocal if p zð Þ ¼ znp 1=zð Þ. The
following table displays the number a nð Þ of polynomials p of degree n (for small n)
with p 0ð Þ non-zero, b nð Þ is the number of such polynomials which are additionally
self-reciprocal, and c nð Þ is the number of those which are self-reciprocal and where
p �1ð Þ is the square of an integer.

n 1 2 3 4 5 6 7 8 9 10 11 12 15 20 25

a nð Þ 2 6 10 24 38 78 118 224 330 584 838 1420 4514 30,532 152,170

b nð Þ 1 5 5 19 19 59 59 165 165 419 419 1001 2257 20,399 76,085

c nð Þ 1 3 5 12 19 34 59 99 165 244 419 598 2257 12,526 76,085
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Indeed, there is an efficient algorithm to determine such polynomials of given

degree n, based on a quadratic bound for n≤4f nð Þ2 in terms of Euler totient
function, f nð Þ.

Cyclotomic polynomials Φn and their products are a natural source for self-
reciprocal polynomials. Clearly, Φ1 zð Þ ¼ z� 1 is not self-reciprocal, but all

remaining Φn (with n≥ 2) are. Hence, exactly the polynomials z� 1ð Þ2k
Q

n≥ 2Φ
en
n

with natural numbers k and en are self-reciprocal with spectral radio one and
without eigenvalue zero.

It is not a coincidence that in the above tables we have b nð Þ ¼ c nþ 1ð Þ for n even
and b nð Þ ¼ c nð Þ for n odd. Indeed, if p is self-reciprocal of odd degree then
p �1ð Þ ¼ 0, hence p zð Þ ¼ zþ 1ð Þq zð Þ where q is also self-reciprocal.

2.2 Mahler measure

Let A be a finite dimensional K-algebra with finite global dimension. The
Grothendieck group K0 Að Þ of the category modA of finite dimensional (right)
A-modules, formed with respect to short exact sequences, is naturally isomorphic to
the Grothendieck group of the derived category, formed with respect to exact
triangles.

The Coxeter transformation ϕA is the automorphism of the Grothendieck group
K0 Að Þ induced by the Auslander-Reiten translation τ. The characteristic polynomial
χA Tð Þ of ϕA is called the Coxeter polynomial χA Tð Þ of A, or simply χA. It is a monic

self-reciprocal polynomial, therefore it is χA Tð Þ ¼ a0 þ a1T þ a2T
2 þ…þ

an�2T
n�2 þ an�1T

n�1 þ anT
n ∈Z T½ �, with ai ¼ an�i for 0≤ i≤ n, and a0 ¼ 1 ¼ an.

Consider the roots λ1 Að Þ,…, λn Að Þ of χA, the so called spectrum of A. In [15], a
measure for polynomials was introduced. Namely, the Mahler measure of χA is
M χAð Þ ¼ max 1;

Qn
i¼1 jλij

� �

. By a celebrated result of Kronecker [9], see also [7,

Prop. 1.2.1], a monic integral polynomial p, with p 0ð Þ 6¼ 0, hasM pð Þ ¼ 1 if and only
if p factorizes as product of cyclotomic polynomials. As observed in [18], A is of
cyclotomic type if and only if M χAð Þ ¼ 1, that is, χA Tð Þ factorizes as product of
cyclotomic polynomials.

2.3 Spectral radius one, periodicity

If the spectrum of A lies in the unit disk, then all roots of χA lie on the unit circle,
hence A has spectral radius ρA ¼ 1. Clearly, for fixed degree there are only finitely
many monic integral polynomials with this property.

The following finite dimensional algebras are known to produce Coxeter
polynomials of spectral radius one:

1. hereditary algebras of finite or tame representation type;

2. all canonical algebras;

3. (some) extended canonical algebras;

4.generalizing (2), (some) algebras which are derived equivalent to categories of
coherent sheaves.

We put vn ¼ 1þ xþ x2 þ…þ xn�1. Note that vn has degree n� 1. There are
several reasons for this choice: first of all vn 1ð Þ ¼ n, second this normalization yields
convincing formulas for the Coxeter polynomials of canonical algebras and
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hereditary stars, third representing a Coxeter polynomial — for spectral radius
one — as a rational function in the vn‘s relates to a Poincaré series, naturally
attached to the setting.

Dynkin type Star symbol v-factorization Cyclotomic factorization Coxeter number

An n½ � vnþ1
Q

d∣n, d> 1 Φd nþ 1

Dn 2; 2; n� 2½ � v2 v2vn�2ð Þ
v2vn�2ð Þvn�1

v2 n�1ð Þ Φ2

Y

d∣2 n� 1ð Þ

d 6¼ 1, d 6¼ n� 1

Φd
2 n� 1ð Þ

E6 2; 3; 3½ � v2v3 v3ð Þ
v3ð Þv4v6

v12 Φ3Φ12 12

E7 2; 3; 4½ � v2v3 v4ð Þ
v4ð Þv6v9

v18 Φ2Φ18 18

E8 2; 3; 5½ � v2v3v5
v6v10v15

v30 Φ30 30

In the column ‘v-factorization’, we have added some extra terms in the nomina-
tor and denominator which obviously cancel.

Inspection of the table shows the following result:
Proposition. Let k be an algebraically closed field and A be a connected, hereditary

k-algebra which is representation-finite. Then the Coxeter polynomial χA determines A
up to derived equivalence. □

2.4 Triangular algebras

Nearly all algebras considered in this survey are triangular. By definition, a finite
dimensional algebra is called triangular if it has triangular matrix shape

A1 M12 ⋯ M1n

0 A2 ⋯ M2n

⋱ ⋮

0 0 ⋯ An

2

6

6

6

4

3

7

7

7

5

where the diagonal entries Ai are skew-fields and the off-diagonal entries Mij,
j> i, are Ai, Aj-bimodules. Each triangular algebra has finite global dimension.

Proposition. Let A be a triangular algebra over an algebraically closed field K. Then
χA �1ð Þ is the square of an integer.

Proof. Let C be the Cartan matrix of A with respect to the basis of indecompos-
able projectives. Since A is triangular and K is algebraically closed, we get detC ¼ 1,
yielding

χA ¼ xI þ C�1C t
�

�

�

� ¼ C�1
�

�

�

� � xCþ C tj j ¼ C t þ xCj j:

Hence χA �1ð Þ is the determinant of the skew-symmetric matrix S ¼ Ct � C.
Using the skew-normal form of S, see [16, Theorem IV.1], we obtain S0 ¼ UtSU for
some U ∈GLn Zð Þ, where S0 is a block-diagonal matrix whose first block is the zero

matrix of a certain size and where the remaining blocks have the shape
0 mi

�mi 0

� �

with integers mi. The claim follows. □

Which self-reciprocal polynomials of spectral radius one are Coxeter polynomials?
The answer is not known. If arbitrary base fields are allowed, we conjecture that all
self-reciprocal polynomials are realizable as Coxeter polynomials of triangular

4
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algebras. Restricting to algebraically closed fields, already the request that χA �1ð Þ
is a square discards many self-reciprocal polynomials, for instance the
cyclotomic polynomials Φ4, Φ6, Φ8, Φ10. Moreover, the polynomial f ¼ x3 þ 1,
which is the Coxeter polynomial of the non simply-laced Dynkin diagram B3,
does not appear as the Coxeter polynomial of a triangular algebra over an
algebraically closed field, despite of the fact that f �1ð Þ ¼ 0 is a square. Indeed,
the Cartan matrix

1 a b

0 1 c

0 0 1

2

6

4

3

7

5

yields the Coxeter polynomial f ¼ x3 þ αx2 þ αxþ 1, where α ¼ abc� a2 � b2�

c2 þ 3. The equation a2 þ b2 þ c2 � abc ¼ 3 ofHurwitz-Markov type does not have an
integral solution. (Use that reductionmodulo 3 only yields the trivial solution in F3.)

2.5 Relationship with graph theory

Given a (non-oriented) graph Δ, its characteristic polynomial κΔ is defined as the
characteristic polynomial of the adjacency matrix MΔ of Δ. Observe that, since MΔ

is symmetric, all its eigenvalues are real numbers. For general results on graph
theory and spectra of graphs see [4].

There are important interactions between the theory of graph spectra and the
representation theory of algebras, due to the fact that if C is the Cartan matrix of

A ¼ K Δ
!h i

, then MΔ is determined by the symmetrization Cþ C t of C, since

MΔ ¼ Cþ C t � 2I. We shall see that information on the spectra of MΔ provides
fundamental insights into the spectral analysis of the Coxeter matrix ΦA and the
structure of the algebra A.

A fundamental fact for a hereditary algebra A ¼ K Δ
!h i

, when Δ
!
is a bipartite

quiver, that is, every vertex is a sink or source, is that Spec ΦAð Þ⊂S
1∪Rþ. This was

shown as a consequence of the following important identity.

Proposition. [2] Let A ¼ K Δ
!h i

be a hereditary algebra with Δ
!
a bipartite quiver

without oriented cycles. Then χA x2ð Þ ¼ xnκΔ xþ x�1ð Þ, where n is the number of vertices

of Δ
!
and κΔ is the characteristic polynomial of the underlying graph Δ of Δ

!
.

Proof. Since Δ
!
is bipartite, we may assume that the first m vertices are sources

and the last n�m vertices are sinks. Then the adjacency matrix A of Δ and the
Cartan matrix C of A, in the basis of simple modules, take the form: A ¼ N þNt,
C ¼ In �N, where

N ¼
0 D

0 0

	 


for certain m�m-matrix D. Since N2 ¼ 0, then C�1 ¼ In þN. Therefore

det x2In �ΦA

� �

¼ det x2In þ In �Nð Þ In þNð Þt
� �

det In �Ntð Þ

¼ det x2In � x2Nt þ In �Nð Þ
� �

¼ xndet xþ x�1
� �

In � xNt � x�1N
� �

¼ xndet xþ x�1
� �

In � A
� �

:

□
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The above result is important since it makes the spectral analysis of bipartite
quivers and their underlying graphs almost equivalent. Note, however, that the
representation theoretic context is much richer, given the categorical context
behind the spectral analysis of quivers. The representation theory of bipartite
quivers may thus be seen as a categorification of the class of graphs, allowing
a bipartite structure.

Constructions in graph theory. Several simple constructions in graph theory
provide tools to obtain in practice the characteristic polynomial of a graph. We
recall two of them (see [4] for related results):

a. Assume that a is a vertex in the graph Δ with a unique neighbor b and
Δ

0(resp.Δ00) is the full subgraph ofΔwith verticesΔ0\ af g (resp.Δ0\ a; bf g), then

κΔ ¼ xκΔ0 � κΔ00

b.Let Δi be the graph obtained by deleting the vertex i in Δ. Then the first
derivative of κΔ is given by

κ0
Δ
¼ ∑

i
κΔi

The above formulas can be used inductively to calculate the characteristic poly-
nomial of trees and other graphs. They immediately imply the following result that
will be used often to calculate Coxeter polynomials of algebras.

Proposition. Let A ¼ K Δ
!h i

be a bipartite hereditary algebra. The following holds:

i. Let a be a vertex in the graph Δ with a unique neighbor b. Consider the algebras B
and C obtained as quotients of A modulo the ideal generated by the vertices a and
a, b, respectively. Then

χA ¼ xþ 1ð ÞχB � xχC

ii. The first derivative of the Coxeter polynomial satisfies:

2xχA
0

¼ nχA þ x� 1ð Þ∑
i
χA ið Þ

where A ið Þ ¼ K Δ
!
\ if g

h i

is an algebra obtained from A by ‘killing’ a vertex i.

Proof. Use the corresponding results for graphs and A’Campo’s formula for the

algebras A and its quotients A ið Þ. □

3. Important classes of algebras

In this section we give the definitions and main properties of such classes of finite
dimensional algebras where information on their spectral properties is available.

3.1 Hereditary algebras

Let A be a finite dimensional K-algebra. For simplicity we assume A ¼ K Δ
!h i

=I

for a quiver Δ
!
without oriented cycles and I an ideal of the path algebra. The

following facts about the Coxeter transformation ΦA of A are fundamental:

6
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i. Let S1,…, Sn be a complete system of pairwise non-isomorphic simple A-
modules, P1,…, Pn the corresponding projective covers and I1,…, In the
injective envelopes. Then ϕA is the automorphism of K0 Að Þ defined by
ΦA Pi½ � ¼ � Ii½ �, where X½ � denotes the class of a module X in K0 Að Þ.

ii. For a hereditary algebra A ¼ K Δ
!h i

, the spectral radius ρA ¼ ρΦA
determines

the representation type of A in the following manner:

a.A is representation-finite if 1 ¼ ρA is not a root of the Coxeter
polynomial χA.

b.A is tame if 1 ¼ ρA ∈Roots χAð Þ.

c.A is wild if 1< ρA. Moreover, if A is wild connected, Ringel [20] shows
that the spectral radius ρA is a simple root of χA. Then Perron-Frobenius
theory yields a vector yþ ∈K0 Að Þ⊗ ZR with positive coordinates such
that ΦAy

þ ¼ ρA yþ. Since χA is self reciprocal, there is a vector

y� ∈K0 Að Þ⊗ ZR with positive coordinates such that ΦAy
� ¼ ρ�1

A y�. The
vectors yþ, y� play an important role in the representation theory of

A ¼ K Δ
!h i

, see [5, 17].

Explicit formulas, special values. We are discussing various instances where an
explicit formula for the Coxeter polynomial is known.

star quivers. Let A be the path algebra of a hereditary star p1;…; pt
� �

with respect
to the standard orientation, see

Since the Coxeter polynomial χA does not depend on the orientation of A we will
denote it by χ p1;…;pt½ �. It follows from [11, prop. 9.1] or [2] that

χ p1;…; pt½ � ¼
Y

t

i¼1

vpi xþ 1ð Þ � x ∑
t

i¼1

vpi�1

vpi

 !

: (1)

In particular, we have an explicit formula for the sum of coefficients of
χ ¼ χ p1;…;pt½ � as follows:

χ 1ð Þ ¼
Y

t

i¼1

pi 2� ∑
t

i¼1
1�

1

pi

	 
	 


: (2)

This special value of χ has a specific mathematical meaning: up to the factor
Qt

i¼1 pi this is just the orbifold-Euler characteristic of a weighted projective line X of

weight type p1;…; pt
� �

. Moreover,

1. χ 1ð Þ>0 if and only if the star p1;…; pt
� �

is of Dynkin type, correspondingly the
algebra A is representation-finite.
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2. χ 1ð Þ ¼ 0 if and only if the star p1;…; pt
� �

is of extended Dynkin type,
correspondingly the algebra A is of tame (domestic) type.

3. χ 1ð Þ<0 if and only if p1;…; pt
� �

is not Dynkin or extended Dynkin,
correspondingly the algebra A is of wild representation type.

The above deals with all the Dynkin types and with the extended Dynkin dia-

grams of type ~Dn, n≥4, and ~En, n ¼ 6; 7; 8. To complete the picture, we also

consider the extended Dynkin quivers of type ~An (n≥ 2) restricting, of course, to
quivers without oriented cycles. Here, the Coxeter polynomial depends on the
orientation: If p (resp. q) denotes the number of arrows in clockwise (resp. anti-
clockwise) orientation (p, q≥ 1, pþ q ¼ nþ 1), that is, the quiver has type A p; qð Þ,
the Coxeter polynomial χ is given by

χ p; qð Þ ¼ x� 1ð Þ2 vpvq: (3)

Hence χ 1ð Þ ¼ 0, fitting into the above picture.
The next table displays the v-factorization of extended Dynkin quivers.

Extended Dynkin type Star symbol Weight symbol Coxeter polynomial

~Ap,q
— p; qð Þ x� 1ð Þ2vp vq

~Dn, n≥4 [2,2,n-2] 2; 2; n� 2ð Þ x� 1ð Þ2v22vn�2

~E6
3; 3; 3½ � 2; 3; 3ð Þ x� 1ð Þ2v2v

2
3

~E7
2; 4; 4½ � 2; 3;4ð Þ x� 1ð Þ2v2v3v4

~E8
2; 3; 6½ � 2; 3; 5ð Þ x� 1ð Þ2v2v3v5

Remark: As is shown by the above table, proposition 2.3 extends to the tame
hereditary case. That is, the Coxeter polynomial of a connected, tame hereditary
K-algebra A (remember, K is algebraically closed) determines the algebra A up to
derived equivalence. This is no longer true for wild hereditary algebras, not even
for trees.

3.2 Canonical algebras

Canonical algebras were introduced by Ringel [19]. They form a key class to
study important features of representation theory. In the form of tubular canonical
algebras they provide the standard examples of tame algebras of linear growth.
Up to tilting canonical algebras are characterized as the connected K-algebras with
a separating exact subcategory or a separating tubular one-parameter family
(see [12]). That is, the module category mod� Λ accepts a separating tubular family
T ¼ Tλð Þλ∈P1K

, where Tλ is a homogeneous tube for all λ with the exception of

t tubes Tλ1 ,…, Tλt with Tλi of rank pi (1≤ i≤ t).
Canonical algebras constitute an instance, where the explicit form of the Coxeter

polynomial is known, see [11] or [10].
Proposition. Let Λ be a canonical algebra with weight and parameter data (p,λ).

Then the Coxeter polynomial of Λ is given by

□χΛ ¼ x� 1ð Þ2
Y

t

i¼1

vpi : (4)

8
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The Coxeter polynomial therefore only depends on the weight sequence p.
Conversely, the Coxeter polynomial determines the weight sequence — up to
ordering.

3.3 Incidence algebras of posets

Let X be a finite partially ordered set (poset). The incidence algebra KX is
the K-algebra spanned by elements exy for the pairs x≤ y in X, with
multiplication defined by exyezw ¼ δyzexw. Finite dimensional right modules over
KX can be identified with commutative diagrams of finite dimensional K-vector
spaces over the Hasse diagram of X, which is the directed graph whose vertices
are the points of X, with an arrow from x to y if x< y and there is no z∈X
with x< z< y.

We recollect the basic facts on the Euler form of posets and refer the reader to
[6] for details. The algebra KX is of finite global dimension, hence its Euler form
is well-defined and non-degenerate. Denote by CX, ΦX the matrices of the bilinear
form and the corresponding Coxeter transformation with respect to the basis of
the simple KX-modules.

The incidence matrix of X, denoted 1X, is the X � X matrix defined by 1Xð Þxy ¼ 1

if x≤ y and otherwise 1Xð Þxy ¼ 0. By extending the partial order on X to a linear

order, we can always arrange the elements of X such that the incidence matrix is
uni-triangular. In particular, 1X is invertible over Z. Recall that the Möbius function

μX : X � X ! Z is defined by μX x; yð Þ ¼ 1Xð Þ�1
xy .

Lemma. a. CX ¼ 1�1
X .

b. Let x, y∈X. Then ΦXð Þxy ¼ �∑z:z≥ xμX y; zð Þ.

Proposition. If X and Y are posets, then CX�Y ¼ CX ⊗CY and ΦX�Y ¼ �ΦX ⊗ΦY .

4. Cyclotomic polynomials and polynomials of Littlewood type

4.1 Cyclotomic polynomials

We recall some facts about cyclotomic polynomials.
The n-cyclotomic polynomial Φn Tð Þ is inductively defined by the formula

Tn � 1 ¼
Y

d∣n

Φd Tð Þ: (5)

The Möbius function is defined as follows:

μ nð Þ ¼
0 if n is divisible by a square

�1ð Þr if n ¼ p1,… pr is a factorization into distinct primes:

	

A more explicit expression for the cyclotomic polynomials is given by

Φn Tð Þ ¼
Y

1≤ d< n

d∣n

vn=d Tð Þμ dð Þ (6)

for n≥ 2, where vn ¼ 1þ T þ T2 þ…þ Tn�1.

9
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4.2 Hereditary stars

A path algebra KΔ is said to be of Dynkin type if the underlying graph ∣Δ∣ of Δ
is one of the ADE-series, that is, of type, An,Dn, for some n≥ 1 or Ek, for k ¼ 6; 7; 8.

There are various instances where an explicit formula for the Coxeter polyno-
mial is known.

Let A be the path algebra of a hereditary star p1;…; pt
� �

with respect to the

standard orientation, see [13].

Since the Coxeter polynomial χA does not depend on the orientation of A we will
denote it by χ p1;…;pt½ �. It follows that

χ p1;…;pt½ � ¼
Y

t

i¼1

vpi T þ 1ð Þ � T ∑
t

j¼1

vpj�1

vpj

 !

:

In particular, we have an explicit formula for the sum of coefficients of χ p1;…;pt½ �
as follows:

∑
n

i¼0
ai ¼ χ p1;…;pt½ � 1ð Þ ¼

Y

t

i¼1

pi 2� ∑
t

i¼1
1�

1

pi

	 
	 


:

4.3 Wild algebras

Let c be the real root of the polynomial T3 � T � 1, approximately c ¼ 1:325. As
observed in [21], a wild hereditary algebra A associated to a graph Δ without
multiple arrows has spectral radius ρA > c unless Δ is one of the following graphs:

In these cases, for m≥ 8

c> ρ 2;4;5½ � > ρ 2;3;m½ � > ρ 2;3;7½ � ¼ μ0

where μ0 ¼ 1:176280… is the real root of the Coxeter polynomial

T10 þ T9 � T7 � T6 � T5 � T4 � T3 þ T þ 1

associated to any hereditary algebra whose underlying graph is 2; 3; 7½ �. Observe
that in these cases, the Mahler measure of the algebra equals the spectral radius.

4.4 Lehmer polynomial

In 1933, D. H. Lehmer found that the polynomial

T10 þ T9 � T7 � T6 � T5 � T4 � T3 þ T þ 1

10
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has Mahler measure μ0 ¼ 1:176280…, and he asked if there exist any smaller
values exceeding 1. In fact, the polynomial above is the Coxeter polynomial of the
hereditary algebra whose underlying graph 2; 3; 7½ � is depicted below.

We say that a matrix M is of Mahler type (resp. strictly Mahler type) if either
M Mð Þ ¼ 1 or M Mð Þ≥ μ0 (resp. M Mð Þ> μ0). Earlier this year, Jean-Louis Verger-
Gaugry announced a proof of Lehmer’s conjecture, see https://arxiv.org/pdf/
1709.03771.pdf. The key result (Theorem 5.28, p. 122) is a Dobrowolski type
minoration of the Mahler Measure M βð Þ. Experts are still reading the arguments,
but there is no conclusive opinion.

4.5 Happel’s trace formula

In [8], Happel shows that the trace of the Coxeter matrix can be expressed as
follows:

�Tr ϕAð Þ ¼ ∑
∞

k¼0

�1ð ÞkdimKH
k Að Þ (7)

where Hk Að Þ denotes the k-th Hochschild cohomology group. In particular, if

the Hochschild cohomology ring H ∗ Að Þ is trivial, that is, Hi Að Þ ¼ 0 for i>0 and

H0 Að Þ ¼ K, then Tr ϕAð Þ ¼ �1.
For an algebra A and a left A-module N we call

A N½ � ¼
A 0

N K

� �

the one-point extension of A by N. This construction provides an order of vertices
to deal with triangular algebras, that is, algebras KQ=I, where I is an ideal of the path
algebra KQ for Q a quiver without oriented cycles.

4.6 One-point extensions

Let B be an algebra and M a B-module. Consider the one-point extension
A ¼ B N½ �. In [19] it is shown the Coxeter transformations of A and B are related by

ϕA ¼
ϕB �CT

Bn
T

�nϕB nCT
Bn

T � 1

 !

(8)

where CB is the Cartan matrix of B which satisfies ϕB ¼ �C�T
B CB and n is the

class of N in the Grothendieck group K0 Bð Þ. In case A ¼ B N½ � with N an exceptional
module, it follows that

Tr ϕAð Þ ¼ Tr ϕBð Þ

We recall that the Euler quadratic form is defined as qA xð Þ ¼ xCt
Ax

t. Assume that
A ¼ B M½ � for an algebra B and an indecomposable moduleM. In many cases, we get
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that qA mð Þ>0, for m the dimension vector ofM (for instance, ifM is preprojective,
or if qA coincides with the Tits form of A...)

Proposition. Let A be an accessible algebra, such that qA mð Þ>0 for m the dimension
vector of M, where A ¼ B M½ � for certain algebra B and an indecomposable module M.
Then the following happens:

a. Tr ϕAð Þ≥ � 1;

b. if Tr ϕBð Þ ¼ �1 and qB mð Þ ¼ 1, then Tr ϕAð Þ ¼ �1.

Proof. Assume that A ¼ B M½ � for an algebra B and an indecomposable module M
such that qA mð Þ>0 for m the dimension vector of M. Then B is also accessible. By
induction hypothesis, Tr ϕBð Þ≥ � 1. Then

Tr ϕAð Þ ¼ Tr ϕBð Þ þ mCT
Bm

T � 1
� �

≥ � 1þ mCT
Bm

T � 1
� �

¼ �1þ qB mð Þ � 1
� �

≥ � 1

This shows (a).
For (b) assume that Tr ϕBð Þ ¼ �1 and qB mð Þ ¼ 1, then

Tr ϕAð Þ ¼ Tr ϕBð Þ þ mCT
Bm

T � 1
� �

¼ �1þ mCT
Bm

T � 1
� �

¼ �1þ qB mð Þ � 1
� �

¼ �1

□

4.7 Strongly accessible algebras

Theorem: A finite dimensional accessible algebra A then it is strongly accessible if
and only if Tr ϕAð Þ ¼ �1.

Proof. Assume A is strongly accessible from A0. Since qA mð Þ≥ 1, for A ¼ B M½ � a
one-point extension of the subcategory B of A by the exceptional module M (since
then qA mð Þ ¼ dimKEndA Mð Þ). By the Proposition above

Tr ϕAð Þ ¼ Tr ϕAn�1

� �

¼ … ¼ Tr ϕA0

� �

¼ �1

Conversely, assume that Tr ϕAð Þ ¼ �1 and write A ¼ B M½ � as a one-point
extension of the subcategory B of A by the module M. We shall prove that M is
exceptional.

�1 ¼ Tr ϕAð Þ ¼ Tr ϕBð Þ þ mCT
Bm

T � 1
� �

≥ � 1þ mCT
Bm

T � 1
� �

¼ �1þ qB mð Þ � 1
� �

≥ � 1

Equality holds and qB mð Þ ¼ 1, since M is indecomposable, it follows that the
extension ring of M is trivial. □

4.8 Stable matrices

The following statement is Theorem 1 for stable matrices.
Proposition. Suppose M is a stable unimodular n� n-matrix. Let χM ¼ c0 þ c1Tþ

c2T
2 þ…þ cn�2T

n�2 þ cn�1T
n�1 þ cnT

n be its characteristic polynomial.

Suppose that 0<TrMk ≤m for p≤ k≤ pþ n� 1 and certain integers 1≤ p and m.

Then 0<TrMk ≤m for all integers p≤ k.
In particular, M is of cyclotomic type.
Proof. Consider the coefficients c0, c1,…cn of χM. Since M is stable then

cn ¼ 1, cn�1 <0, cn�2 >0 and the signs alternate until we meet a j with cjc0 <0.
Cayley-Hamilton theorem states that χM Mð Þ ¼ 0. Then
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0 ¼ c01n þ c1Mþ c2M
2 þ…þ cn�1M

n�1 þ cnM
n

Then

c01n þ c2M
2 þ…þ c2mM

2m ¼ c1Mþ c3M
3 þ…þ c2m�1M

2m�1 þ c2 mþrð Þ�1M
2 mþrð Þ�1

Let c>0 be the common value of the trace of this matrix.
Write n ¼ 2mþ r for r ¼ 0 or 1. Consider the matrices

P ¼
1

c
c01n þ c2M

2 þ…þ c2mM
2m

� �

Q ¼ �
1

c
c1Mþ c3M

3 þ…þ c2m�1M
2m�1 þ c2 mþrð Þ�1M

2 mþrð Þ�1

 �
 �

so that we get two expressions of P as positive linear combinations of powers ofM.
Suppose that n ¼ 2mþ 1. By hypothesis we have Tr Pð Þ≤ n. Moreover, since

cn ¼ 1 then

Tr Mnð Þ≤Tr Qð Þ ¼ Tr Pð Þ≤ n

The claim follows by induction.
Otherwise, n ¼ 2m. The claim follows similarly. □

4.9 Theorem 1

Proof of Theorem 1. Observe that M ¼ ϕA is a real unimodular matrix. One

implication of the Theorem was shown before. Suppose that ∣Tr Mk
� �

∣ ≤ n or equiv-

alently, �n≤Tr Mk
� �

≤ n for 0≤ k≤ n. The Proposition above yields that M is
cyclotomic. □

4.10 Polynomials of Littlewood type

An integral self-reciprocal polynomial p tð Þ ¼ p0 þ p1tþ…þ pn�1t
n�1 þ pnt

n is
of Littlewood type if every coefficient non-zero pi has modulus 1. A polynomial p tð Þ
of Littlewood type with all pi 6¼ 0, for i ¼ 0, 1,…, n, is said to be Littlewood.

Lemma. If z is a root of a polynomial of Littlewood type, then

1=2< ∣z∣< 2

Proof. Suppose z is a root of a polynomial of Littlewood type. Then

1 ¼ ϵ1zþ ϵ2z
2 þ…þ ϵnz

n

for some ϵi ∈ �1;0; 1f g.

If ∣z∣< 1 then 1≤ ∣z∣þ zj j2 þ…þ zj jn < ∣z∣= 1� jzjð Þ so ∣z∣> 1=2. Since z is the root
of a polynomial of Littlewood type if and only if z�1 is, then 1=2< ∣z∣< 2.

Moreover, if ∣z∣> 1, then 1=∣z∣< 1 and 1=2< 1=∣z∣< 2. Hence 1=2< ∣z∣< 2. □

4.11 Littlewood series

Definition. A Littlewood series is a power series all of whose coefficients are
1,0 or �1.

Let P ¼ z∈C : zf is the root of some Littlewood polynomial g.
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Remarks:

a. Littlewood series converge for ∣z∣< 1.

b. A point z∈Cwith ∣z∣< 1 lies in P if and only if some Littlewood series vanishes
at this point.

c. A Littlewood polynomial is not a Littlewood series. But any Littlewood poly-

nomial, say p zð Þ ¼ a0 þ…þ adz
d yields a Littlewood series having the same roots z

with ∣z∣< 1: indeed, consider the series

P zð Þ ¼ p zð Þ= 1� zdþ1
� �

¼ a0 þ…þ adz
d þ a0z

dþ1 þ…þ adz
2dþ1 þ a0z

2dþ2 þ…

Thus P⊂R, where R is the set of roots of Littlewood series. We shall show the
Proposition at the Introduction.

Proof. Let L be the set of Littlewood series. Then L ¼ �1;0; 1f gℕ, so with the
product topology it is homeomorphic to the Cantor set. Choose 0< r< 1. Let F be
the space of finite multisets of points z with ∣z∣< r, modulo the equivalence relation
generated by S ffi S∪X when ∣X∣ ¼ r .

Claim. Any Littlewood series has finitely many roots in the disc ∣z∣ ≤ r. The
map f : L ! F sending a Littlewood series to its multiset of roots in this disc
is continuous.

Since L is compact, the image of f is closed. From this we can show that R, the
set of roots of Littlewood series, is closed. Since Littlewood polynomials are densely
included in L and f is continuous, we get that P, the set of roots of Littlewood

polynomials, is dense in R. It follows that P ¼ R, as we wanted to show. □

5. An example

5.1 Construction

For m a natural number and let n ¼ 3þ 6m. Let Rn be an algebra formed by n
commutative squares. Consider the one-point extension Am ¼ Rn Pn½ � with Pn the
unique indecomposable projective Rn-module of K-dimension 2. Observe that Am

(resp. Cn�1) is given by the following quiver with nþ 1 vertices and commutative
relations (resp. n� 1 vertices and relations):

We claim:

a. χAm
¼ Tn þ Tn�1 � T3 χAm�1

þ T þ 1, for all n≥ 1. As consequence, the algebras
Am and Cn are of Littlewood type;

b.the number of eigenvalues of ϕAm
not lying in the unit disk is at least m;

c.M χAm

� �

≤ 8.
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Proof. (a): Consider m≥ 1, n ¼ 3þ 6m and the algebra Bn ¼ R3þ6m such that

Am ¼ Bn Pn½ � and the perpendicular category P⊥
n in Db Bnð Þ is derived equivalent to

mod Cn�1ð Þ where Cn�1 is a proper quotient of an algebra derived equivalent to
R2þ6m. Therefore

χAmþ1
¼ T þ 1ð ÞχRnþ6

� TχCnþ5

¼ T þ 1ð Þ Tnþ6 þ Tnþ5 þ T þ 1
� �

� T3 T þ 1ð ÞχRn
� TχCnþ5

We shall calculate χC2þ6m
. Observe that C2þ6m is tilting equivalent to the

one-point extension R1þ6m P1½ �. Hence

χC2þ6m
¼  T þ 1ð ÞχR1þ6m

� TχR6m
¼ T2þ6m þ T1þ6m � T3 T þ 1ð ÞχR1þ6 m�1ð Þ

� T χR6 m�1ð Þ

n o

þ T þ 1 ¼ T2þ6m þ T1þ6m � T3χC2þ6 m�1ð Þ
þ T þ 1

which implies

χAmþ1
¼  T þ 1ð Þ Tnþ6 þ Tnþ5 þ T þ 1

� �

� T3 T þ 1ð ÞχRn
� T Tnþ5 þ Tnþ4 þ T þ 1

� �

� T3TχCn�1
¼ Tnþ7 þ Tnþ6 � T3χAm

þ T þ 1

as claimed.
As consequence of formula (a) we observe the following:

(a0) L χAm

� �

¼ 4mþ 5.

(b) By induction, we shall construct polynomials rm representing χAm
.

For m ¼ 0, we have χA0
¼ T4 þ T3 þ T2 þ T þ 1, which is represented by the

polynomial r0 ¼ T4 � 3T2 þ 1.

Observe that Tn�1 þ 1
� �

¼ vn � Tvn�2 then Tn þ Tn�1 þ T þ 1 ¼

T þ 1ð Þ Tn�1 þ 1
� �

is represented by wn ¼ T un�1 � un�3ð Þ.

For n ¼ 4þ 6m, we define rm ¼ wn � T3rm�1. We verify by induction on m that
rm represents χAm

:

χAm
T2
� �

¼ T2 þ 1
� �

T2n�2 þ 1
� �

� T6 χAm�1
T2
� �

¼ Tnwn T þ T�1
� �

� T6Tn�6 rm�1 T þ T�1
� �

¼ Tn rm T þ T�1
� �

For instance.

r1 ¼ w10 � T3r0 ¼ T T9 � 8T7 þ 21T5 � 20T3 þ 5T
� �

� T7 � 6T5 þ 10T3 � 4T
� �� �

� T3 T4 � 3T2 þ 1
� �

¼ T10 � 9T8 � T7 þ 27T6 þ 3T5 � 30T4 � T3 þ 9T2

which has ξ r1ð Þ ¼ 4 changes of sign in the sequence of coefficients. According to
Descartes rule of signs, r1 has at most ξ r1ð Þ ¼ 4 positive real roots. Since r1 represents
χA1

, then χA1
has at most 2ξ r1ð Þ ¼ 8 roots in the unit circle. That is, χA1

has at least 2
roots z with ∣z∣ 6¼ 1.

We shall prove, by induction, that rm has at most ξ rmð Þ ¼ 2 mþ 1ð Þ positive real
roots. Indeed, write

rm ¼ Tn � n� 1ð ÞTn�2 � T3qm þ n� 1ð ÞT2
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for some polynomial qm of degree n� 6 with signs of its coefficients

þ��þþ��⋯� so that ξ qm
� �

¼ 2m. Then

rmþ1 ¼ wnþ6 � T3rm ¼ Tunþ5 � Tunþ3 � T3rm

an addition of three polynomials with signs of coefficients given as follows:

þ 0 � 0 þ 0 � 0 ⋯ þ 0 0

� 0 þ 0 � 0 ⋯ þ 0 0

� þ þ � � ⋯ 0 0 0

Hence rmþ1 ¼ Tnþ6 � nþ 5ð ÞTnþ4 � T3qmþ1 þ nþ 5ð ÞT2 where the polynomial

qmþ1 of degree n has signs of its coefficients þ��þþ��⋯� so that

ξ qmþ1

� �

¼ ξ qm
� �

þ 2 ¼ 2 mþ 1ð Þ. Hence ξ rmð Þ ¼ 2þ ξ qm
� �

¼ 2 mþ 1ð Þ.

By the Lemma below, χAm
has at most 4 mþ 1ð Þ roots in the unit circle. Equiva-

lently, χAm
has at least 4þ 6m� 4 mþ 1ð Þ ¼ 2m roots outside the unit circle. Hence

χAm
has at least m roots z satisfying ∣z∣> 1.
Lemma. Let q be a polynomial representing the polynomial p. Assume q accepts at

most s positive real roots, then p has at most 2 s roots in the unit circle.
Proof. Let μ1,…, μs be the positive real roots of q. Let z ¼ aþ ib be a root of pwith

a2 þ b2 ¼ 1. Consider w ¼ cþ id a complex number with w2 ¼ z. Then
0 ¼ p zð Þ ¼ wnq wþw�1ð Þ where wþw�1 ¼ cþ idð Þ þ c� idð Þ ¼ 2c. Then 2c ¼ ϵλj

for some ϵ∈ 1;�1f g and 1≤ j≤ s. Hence

z ¼ w2 ¼
1

2
λ2j � 1

	 


þ i 2ϵλj

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ2j

q
 �

can be selected in two different ways. □

(c) For n ¼ 6mþ 4 we have χAm
¼ Tn þ Tn�1 � T3 χAm�1

þ T þ 1. Then

χAm
¼ ξm þ �1ð Þm�1T2mþ4χ10,where ξm ¼ Tn þ Tn�1 � T3 ξm�1 þ T þ 1

for m≥ 2 and ξ1 ¼ 0.
We observe that ξm is a product of cyclotomic polynomials. Indeed, since

ξm �1ð Þ ¼ 0 we can write

ξm ¼ T þ 1ð Þσm and σm ¼ Tn�1 � T3σm�1 þ 1

for m≥ 2 and σ1 ¼ 0.

Recall Φ2s�1 ¼ Ts�1 þ Ts�2 þ…T þ 1 and Φ2s Tð Þ ¼ Φs �Tð Þ. Moreover,

Φ3p Tð Þ ¼ Φp T3
� �

, if p is a power of 2. Altogether this yields

Φ6 22 mþ1ð Þ�1ð Þ Tð Þ ¼ Φ2 22 mþ1ð Þ�1ð Þ T3
� �

¼ Φ22 mþ1ð Þ�1 �T3
� �

¼ T6mþ3 � T6m þ…� T3 þ 1 ¼ σm

hence

ξm ¼ Φ2Φ6 22 mþ1ð Þ�1ð Þ

confirming the claim.

We estimate the Mahler measure of χAm
¼ ξm þ �1ð Þm�1T2mþ4χA10

. Write
χAm

¼ fm þ gm, where fm is the cyclotomic summand. Observe that

L gm
� �

¼ L χA10

� �

¼ 8 and apply Lemma (3.4) with M fm
� �

¼ 1 to get
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M χAm

� �

≤M fm
� �

L gm
� �

¼ 8

With the help of computer programs we calculate more accurate values of the
Mahler measure of some of the above examples:

No. vertices No. roots outside unit disk Mahler measure

178 29 1:28368024451292

184 30 1:28327850483340

190 31 1:28386917621114

196 32 1:28395305512596

Comparing with the list of Record Mahler measures by roots outside the unit circle in
Mossinghoff’s web page we see:

i. for the entry 29 the Mahler measure is the same in both tables;

ii. the entries 30 and 31 have a smaller Mahler measure in our table, establishing
new records;

iii. the entry 32 of our table seems to be new. Further entries could be
calculated.

6. Coefficients of Coxeter polynomials

6.1 Derived tubular algebras

There are interesting invariants associated to the Coxeter polynomial of a trian-
gular algebra A ¼ k Δ½ �=I. For instance, the evaluation of the Coxeter polynomial
χA �1ð Þ ¼ m2 for some integer m. Clearly, this number is a derived invariant. A
simple argument yields that m ¼ 0 in case Δ has an odd number of vertices. In [14],
it was shown that for a representation-finite accessible algebra A with gl.dim A≤ 2
the invariant χA �1ð Þ equals zero or one. The criterion was applied to show that a
canonical algebra is derived equivalent to a representation-finite algebra if and only
if it has weight type 2; p; pþ kð Þ, where p≥ 2 and k≥0. In particular, the tubular
canonical algebra of type 3; 3; 3ð Þ is not derived equivalent to a representation-finite
algebra, while the tubular algebras of type 2;4;4ð Þ or 2; 3; 6ð Þ are.

6.2 Strong towers

Recall from [14] that a strong tower T ¼ A0 ¼ k;A1;…;An ¼ Að Þ of access to A
satisfies that Aiþ1 ¼ Ai Mi½ � or Mi½ �Ai for some exceptional module Mi in such a way

that, in case Aiþ1 ¼ Ai Mi½ � (resp. Aiþ1 ¼ Mi½ �Ai), the perpendicular category M⊥
i

(resp. ⊥Mi) ofMi in modAi
is equivalent to modCi�1 for some accessible algebra Ci�1,

i ¼ 1,…, n� 1. In the extension situation the perpendicular category M⊥
i (resp. ⊥Mi

in the coextension situation) in Db modAi
ð Þ is equivalent to Db modCi�1ð Þ and Biis

derived equivalent to a one-point (co-)extension of Ci�1. An algebra Ci as above is
called an i-th perpendicular restriction of the tower T, observe that it is well-defined
only up to derived equivalence. We denote by si the number of connected compo-
nents of the algebra Ci; in particular, s1 ¼ 1.
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There are many examples of strongly accessible algebras, that is, algebras derived
equivalent to algebras with a strong tower of access. The following are some
instances:

a. A canonical algebra C of weight p1;…; pt
� �

is strongly accessible if and only if
t ¼ 3, in that case, C is derived-equivalent to a representation-finite algebra if
and only if the weight type does not dominate 3; 3; 3ð Þ.

b.The following sequence of poset algebras defines strong towers of access:

6.3 Towering numbers

Consider a strong tower T ¼ A0 ¼ k;A1;…;An ¼ Að Þ of access to A such
that Aiþ1 is an one-point (co)extension of Ai by Mi and Ci�1 the
corresponding i-th perpendicular restriction of T. Let Ci�1 have si�1 connected
components, i ¼ 2,…, n� 1. Define the first towering number of T as the sum

sT Að Þ ¼ ∑n�2
i¼1 si.

Theorem. Let A be a strongly accessible algebra with n vertices, then the first

towering number sT Að Þ ¼ ∑n�2
i¼1 si of T is a derived invariant, that is, depends only on the

derived class of A. It is sT Að Þ ¼ n� 1� a2, where a2 is the coefficient of the quadratic
term in the Coxeter polynomial of A.

Proof. Assume A ¼ An and B ¼ An�1 such that A ¼ B M½ � for M an exceptional
B-module and let C ¼ Cn�2 be the algebra such that modC is derived equivalent to

the perpendicular category M⊥ formed in Db modBð Þ. Then

χA tð Þ ¼ 1þ tð ÞχB tð Þ � tχC tð Þ. Write χB tð Þ ¼ 1þ tþ∑n�3
i¼2 bit

i þ tn�2 þ tn�1 and

χC tð Þ ¼ 1þ∑n�3
i¼1 cit

i þ tn�2. By induction hypothesis we may assume that
s Bð Þ ¼ n� 2� b2. Then a2 ¼ b2 þ 1� c1. Moreover, since C is a direct sum accessi-

ble algebras, then c1 ¼ ∑n�2
i¼0 �1ð ÞidimkH

i Cð Þ ¼ dimkH
0 Cð Þ ¼ sn�2. Hence

a2 ¼ n� 1� s Bð Þ � sn�2 ¼ n� 1� s Að Þ. □

Corollary. Let T ¼ A1 ¼ k;…;An ¼ Að Þ be a strong tower of access to A. Let
A ¼ B M½ � for B ¼ An�1 with M exceptional and C a perpendicular restriction of B via

M. Consider the Coxeter polynomials χA tð Þ ¼ 1þ tþ a2t
2 þ…þ an�2t

n�2 þ tn�1 þ tn

and χB tð Þ ¼ 1þ tþ b2t
2 þ…þ bn�3t

n�3 þ tn�2 þ tn�1, then a2 ≤ b2, with equality if
and only if C is connected. In particular, a2 ≤ 1.

Proof. First recall that for a connected accessible algebra the linear term of the
Coxeter polynomial has coefficient 1. Let
χC tð Þ ¼ 1þ c1tþ c2t

2 þ…þ cn�4t
n�4 þ cn�3t

n�3 þ tn�2 be the Coxeter polynomial of
C. If C is the direct sum of connected accessible algebras C1,…, Cs, then c1 ¼ s.
Therefore, a2 ¼ b2 þ b1 � c1 ¼ b2 � s� 1ð Þ≤ b2. By induction hypothesis, we get
a2 ≤ 1. □

Let A be the algebra given by the following quiver with relation γβα ¼ 0:
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which is derived equivalent to the quiver algebra B with the zero relation as
depicted in the second diagram. Clearly, A ¼ A0 M½ �, where A0 is a quiver algebra of

type A4 and M is an indecomposable module with M⊥ the category of modules of
the disconnected quiver • ! • •, that is s3 Að Þ ¼ 2. Moreover s2 Að Þ ¼ s2 A0ð Þ ¼ 1 and
s Að Þ ¼ 4. On the other hand B ¼ N½ �B0 such that B0 is not hereditary. A calculation
yields s3 Bð Þ ¼ 1 and s2 Bð Þ ¼ s2 B0ð Þ ¼ 2, obviously implying that s Bð Þ ¼ 4.

Some properties of the invariant s:

i. Let A and B be accessible algebras and A be accessible from B, then
s Bð Þ≤ s Að Þ. Equality holds exactly when A ¼ B.

ii. Let A be an accessible schurian algebra (that is for every couple of vertices i, j,
dimkA i; jð Þ≤ 1), then for every convex subcategory B we have s Bð Þ≤ s Að Þ.

6.4 Totally accessible algebras

An accessible algebra A with n ¼ 2rþ r0 vertices, and r0 ∈ 0; 1f g, is said to be
totally accessible if there is a family of (not necessarily connected) algebras

C nð Þ ¼ A0, C n�2ð Þ, C n�4ð Þ,…, C r0ð Þ satisfying:

a.A is derived equivalent to A0;

b.for each 0≤ i ¼ n� 2j≤ n, there is a strong tower T jð Þ ¼ C j;1ð Þ ¼ k;…;C j;ið Þ ¼



C ið ÞÞ of access to C ið Þ;

c.C i�2ð Þ is an i� 1-th perpendicular restriction of T jð Þ, that is, C ið Þ is a one-point

(co)extension of C j;i�1ð Þ by a module Ni�1 and C i�2ð Þ is a perpendicular

restriction of C j;i�1ð Þ via Ni�1.

The tower T jð Þ is said to be a j-th derivative of the tower T 0ð Þ.
Examples that we have encountered of totally accessible algebras are:

i. Hereditary tree algebras: since for any conneceted hereditary tree algebra A
with at least 3 vertices, there is an arrow a ! bwith a a source (or dually a sink)
and A ¼ B Pb½ � such that the perpendicular restriction of B via Pb is the algebra
hereditary tree algebra C obtained from A by deleting the vertices a, b.

ii. Accessible representation-finite algebras A with gl.dim A≤ 2, since then the
perpendicular restrictions of any strong tower (which exists by [14]) satisfy
the same set of conditions.

iii. Certain canonical algebras: for instance the tame canonical algebra A of
weight type 2;4;4ð Þ is an extension A ¼ B M½ � of a hereditary algebra B of
extended Dynkin type 2;4;4½ � by a module M in a tube of rank 4, then the
perpendicular restriction of B via M is the hereditary algebra C of extended
Dynkin type 3; 3; 3½ �, see for example [?](10.1). Since C is totally accessible, so
A is. Moreover s Að Þ ¼ 8.

iv. Let A be an accessible algebra of the form A ¼ B M½ � for an algebra B and an
exceptional module M and let C the perpendicular restriction of B via M. If A
is totally accessible, then B and C are totally accessible.
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The following results extend some of the features observed in the examples
above.

Proposition. a. Assume that A is a totally accessible algebra, then χA �1ð Þ∈ 0; 1f g.

b. Assume that A is an accessible but not totally accessible algebra
with gl.dim A≤ 2, then one of the following conditions hold:

i. for every exceptional B-module such that A ¼ B M½ � and any perpendicular
restriction C of B via M, then C is not accessible;

ii. there exists a homological epimorphism ϕ : A ! B such that χB �1ð Þ> 1.

Proof. (a): Consider the perpendicular restriction C of B via M, such that
χA tð Þ ¼ 1þ tð ÞχB tð Þ � tχC tð Þ. Therefore χA �1ð Þ ¼ χC �1ð Þ and moreover, C is totally
accessible. Then by induction hypothesis, χA �1ð Þ ¼ χC mð Þ �1ð Þ for a totally accessible

algebra C mð Þ with number of vertices m ¼ 1 or m ¼ 2. Clearly, C mð Þ is either k, k⊕ k
or hereditary of type A2, which yields the desired result.

(b): Assume A is an accessible algebra with gl.dim A≤ 2 and such that for every
homological epimorphism ϕ : A ! B we have χB �1ð Þ∈ 0; 1f g. Let A ¼ B M½ � for an
accessible algebra B and an exceptional B-module M such that C is a perpendicular
restriction of B via M. Since gl.dim A≤ 2 then there is a homological epimorphism
A ! C and gl.dim C≤ 2. Observe that for every homological epimorphism
ψ : B ! B0 (resp. ψ : C ! C0) there is a homological epimorphism ϕ : A ! B0 (resp.
ϕ : A ! C0), hence χB0 �1ð Þ (resp. χC0 �1ð Þ) is 0 or 1. By induction hypothesis, B is
totally accessible. Moreover if C is accessible, then the induction hypothesis yields
that C is totally accessible and also A is totally accessible, a contradiction. Therefore
C is not accessible. □

7. On the quadratic coefficient of the Coxeter polynomial of a totally
accessible algebra

7.1 Derived algebras of linear type

Recall that an extended canonical algebra of weight type p1;…; pt
� �

is a one-point

extension of the canonical algebra of weight type p1;…; pt
� �

by an indecomposable

projective module. As in (1.3), the extended canonical algebras of type p1; p2; p3
� �

is
strongly accessible. Moreover, the extended canonical algebra A of type 3;4; 5h i

(with 12 points) has Coxeter polynomial 1þ tþ t2 þ…þ t12 which is also the
Coxeter polynomial of a linear hereditary algebra H with 12 vertices. Clearly A and
H are not derived equivalent.

The following generalizes a result of Happel who considers the case of Coxeter
polynomials associated to hereditary algebras [8].

Theorem 1. Let A be a totally accessible algebra with n vertices and let

χA tð Þ ¼ ∑n
i¼0ait

i be the Coxeter polynomial of A. The following are equivalent:

i. a2 ¼ 1;

ii. let T ¼ A1 ¼ k;…;An�1;An ¼ Að Þ be a strong tower of access to A and Ci the i-th
perpendicular restriction of T, for all 1≤ i≤ n� 2, then the algebras Ci are
connected;

iii.A is derived equivalent to a quiver algebra of type An.
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Proof. (i)⇔ (ii): Let T ¼ A1 ¼ k;…;An ¼ Að Þ be a strong tower of access to A. In
case each Ci is connected, then s Að Þ ¼ n� 2, that is a2 ¼ 1. If a2 ¼ 1, then

n� 2 ¼ sT Að Þ ¼ ∑n�2
i¼1 si with each si ≥ 1. (i) ⇔ (iii): We know that an algebra A

derived equivalent to a quiver algebra of type An has χA tð Þ ¼ ∑n
i¼0t

i, in particular,
a2 ¼ 1. Assume that an accessible algebra A has the quadratic coefficient of its
Coxeter polynomial a2 ¼ 1. Let A ¼ B M½ � for an accessible algebra B ¼ An�1 and an
exceptional module M. Since B is also totally accessible with a tower

T
0

¼ A1 ¼ k;…;An�1 ¼ Bð Þ satisfying (ii), then the quadratic coefficient of the
Coxeter polynomial of B is b2 ¼ 1 and we may assume that B is derived equivalent to
a quiver algebra of type An�1. In particular, B is representation-finite with a
preprojective component P such that the orbit graph O Pð Þτ is of type An�1 (recall
that the orbit graph has vertices the τ-orbits in the quiver P with Auslander-Reiten
translation τ and there is an edge between the orbit of X and the orbit of Y if there is

some numbers a, b and an irreducible morphism τaX ! τbY). Observe that for any

X in Db modAð Þ not in the orbit ofM, there is some translation τaX belonging toM⊥,

implying that in case Mτ has two neighbors in the orbit graph then M⊥ is not
connected, that is sn�2 > 1 and a2 ¼ n� 1� s Að Þ≤0, a contradiction. Therefore, Mτ

has just one neighbor in O Pð Þτ, hence A is derived of type An. □

7.2 Theorem 2

Consider a tower A1,…, An ¼ A of accessible algebras where Aiþ1 is a one-point

(co)extension of Ai by the indecomposable Mi and Ci is such that M⊥
i is derived

equivalent to Db modCi
ð Þ. Assume that C

jð Þ
i , for 1≤ j≤ si, are the connected compo-

nents of the category Ci. Consider the corresponding Coxeter polynomials:

χAi
tð Þ ¼ 1þ tþ ∑

i�2

j¼2
a

ið Þ
j tj þ ti�1 þ ti,

χCi
tð Þ ¼ 1þ sitþ ∑

ni�2

r¼2
ci, rt

r þ sit
ni�1 þ tni ,

χ
C

jð Þ
i

tð Þ ¼ 1þ tþ ∑
ni, j�2

s¼2
c
jð Þ
i, st

s þ tni, j�1 þ tni, j ,

where clearly, ∑si
j¼1ni, j ¼ ni.

Lemma. (α) For every 1≤ j≤ i� 2, we have a ið Þ
j ≤ 1.

(αα) For every 1≤ j≤ i� 2, we have a ið Þ
j ≤ ci, j and a

ið Þ
j ≤ a

i�1ð Þ
j .

Proof. We shall check that (α) implies (αα), then we show that (a’) holds by
induction on j.

Indeed, assume that (α) holds and proceed to show (αα) by induction on j. If

j ¼ 0, 1, then a
ið Þ
j ¼ 1 ¼ a

ið Þ
i�j. Assume that 2≤ j≤ i� 2 and a

ið Þ
j ≤ ci, j and a

ið Þ
j ≤ a

i�1ð Þ
j .

Then

a
ið Þ
jþ1 ¼ a

i�1ð Þ
jþ1 þ a

i�1ð Þ
j � cj, i�1


 �

≤ a
i�1ð Þ
jþ1 ≤…≤ a

jþ1ð Þ
jþ1 ¼ 1:

Let 0≤ j≤ i� 2. If j ¼ 0, 1 we have a
ið Þ
0 ¼ 1 ¼ ci,0 and a

ið Þ
1 ≤ s1 Að Þ ¼ ci,1. Moreover

a
ið Þ
1 ¼ a

i�1ð Þ
1 . Assume (α) holds for j≥ 2, then.

21

Cyclotomic and Littlewood Polynomials Associated to Algebras
DOI: http://dx.doi.org/10.5772/intechopen.82309



a
ið Þ
jþ1 ¼ a

i�1ð Þ
jþ1 þ a

i�1ð Þ
j � cj, i�1


 �

≤ a
i�1ð Þ
jþ1 ,

a
ið Þ
jþ1 � ci, jþ1 ¼ a

ið Þ
jþ2 � a

i�1ð Þ
jþ2 ≤0: □

Theorem 2. Let A be a totally accessible algebra with Coxeter polynomial

χA tð Þ ¼ 1þ tþ a2t
2 þ…þ an�2t

n�2 þ tn�1 þ tn, then:

a. aj ≤ 1, for every 2≤ j≤ n� 2;

b.if for some 2≤ j≤ n� 2, we have aj ¼ 1 then A is derived equivalent to a hereditary

algebra of type An.

Proof. Keep the notation as in (4.1). Then (a) is the case i ¼ n of the Lemma
above.

We shall prove (b) by induction on n the number of vertices of A. Let j ¼ 2 and
assume a2 ¼ 1, then (3.1) implies that A is derived equivalent to An. Consider now
2< j< n� 2 and assume that aj ¼ 1, we get:

1 ¼ a
nð Þ
j ¼ a

n�1ð Þ
j þ a

n�1ð Þ
j�1 � cn�1, j�1


 �

≤ a
n�1ð Þ
j ≤ 1

The last inequality due to (a), hence a n�1ð Þ
j ¼ 1. Induction hypothesis yields that

An�1 is derived equivalent to An�1 and its Auslander-Reiten quiver consists of a

preprojective component P. In particular, a
n�1ð Þ
2 ¼ 1, which implies that

sn�3 An�1ð Þ ¼ 1, that is, A ¼ An�1 M½ � for some exceptional moduleM such thatM⊥ is
derived equivalent to modC for a connected algebra C, that is, s Að Þ ¼ n� 2 and by
(3.1), A ¼ B M½ � is derived equivalent to a hereditary algebra of type An. □

7.3 Examples

If A is a representation-finite accessible algebra with gl.dim A≤ 2, then A is
totally accessible. On the other hand the algebra B with quiver:

1!
x
2!

x
3!

x
4… !

x
11!

x
12

and x3 ¼ 0 is representation-finite and accessible (but not gl.dim B≤ 2). The
Coxeter polynomial of B is:

χB tð Þ ¼ 1þ t� t3 � t4 þ t6 � t8 � t9 þ t11 þ t12:

Then observe that the 6-th coefficient is 1 but the algebra B is not derived
equivalent to Dynkin type A12.

8. On the traces of Coxeter matrices

Let A be an algebra such that not all roots of χA are roots of unity. By the result of
Kronecker [36], not all of the spectrum of A lies in the unit disk. Equivalently, the
spectral radius ρA ¼ max jλj : λ eigenvalue  of ϕAf g> 1. Arrange the eigenvalues of
ϕA so that μ1, μ2,…, μn have absolute values ρA ¼ r1 > r2 >…> rs and multiplicities
m1,…, ms, respectively. Therefore s≥ 2 and
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∣detϕA∣ ¼ rm1
1 rm2

2 …rms
s ¼ 1:

We define the critical power κ Að Þ as the minimal k such that

∣Tr ϕk
A

� �

∣> n

Since r1 is a simple eigenvalue of ϕA, then it follows that κ Að Þ is well defined due
to the existence of k satisfying the following chain of inequalities:

∣Tr ϕk
A

� �

∣ ¼ ∣ ∑
n

j¼1
μkj ∣ ≥ rkm1

1 � ∑
s

j¼2
r
kmj

j ≥ rk1 � n� 1ð Þrk2 > n:

The following is a reformulation of Theorem 2.
Theorem. Let A be an algebra such that not all roots of χA are roots of unity. We

have κ Að Þ≤ n:
Proof. Indeed, suppose that A is not of cyclotomic type and κ Að Þ> n, that is,

∣Tr ϕk
A

� �

∣ ≤ n for all 0≤ k≤ n. Observe that M ¼ ϕA is a unimodular matrix and

therefore, Theorem 2 implies that M is of cyclotomic type, which yields a contra-
diction. □

Remark:We consider explicitly the case n ¼ 2 in the above Theorem. Obvi-
ously, the Cartan matrix of A is of the form

C ¼
1 a

0 1

	 


ϕA ¼ �C�1CT ¼
a2 � 1 a

�a �1

	 


for some a≥ 1. Then ϕA has the indicated shape. If A is not cyclotomic, then a≥ 3

and Tr ϕ2
A

� �

¼ a2 � 2ð Þ
2
� 2> 2.

9. Stability of a real matrix

9.1 Stability of matrices and the Lyapunov criterion

Let M be a real invertible n� n-matrix with eigenvalues λj ¼ rje
i θj , for some

numbers θj ∈ 0; 2π½ Þ and j ¼ 1,…, n. We will say thatM is stable (resp. semi-stable) if

the real part Re ei θj
� �

¼ cos θj of the argument of the eigenvalue λj is positive (resp.
non-negative), for every j ¼ 1,…, n. The following is well-known, we sketch a proof
for the sake of completeness.

Proposition. Let M be a stable (resp. semi-stable) n� n-matrix. Then the charac-

teristic polynomial χM ¼ Tn þ an�1T
n�1 þ…þ a1T þ a0 has coefficients satisfying

�1ð Þn�jaj >0 (resp. ≥0), for j ¼ 0, 1,…, n;

Proof. Observe that �1ð Þnp �Tð Þ is the product of polynomials T � α with α∈R

and T � αþ iβð Þð Þ T � α� iβð Þð Þ ¼ T2 � 2αT þ α2 þ β2
� �

with 0 6¼ β, α∈R. Stability

(resp. semi-stability) implies that α<0 (resp. α≤0) above. Therefore, �1ð Þnp �Tð Þ
is product of polynomials with positive coefficients. □

Remark: In most of the literature the stability concept we use goes by the name
of positive stability, while the stability name is used also as Hurwitz stability, or
Lyapunov stability.

The system of differential equations

y0 tð Þ ¼ �My tð Þ
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is said to be stable if for every vector d ¼ d1;…; dnð Þ, the solution v tð Þ ¼ e�tMd of
the above system has the property that limt!∞ v tð Þ ¼ 0.

We recall here the celebrated.
Lyapunov criterion: The system y0 tð Þ ¼ �My tð Þ is stable if and only if M is a

stable matrix, equivalently there is a real positive definite matrix P such that

MTPþ PM ¼ In:

It is not hard to see that givenM, the corresponding P is unique. A proof
of the criterion and its equivalence to other stability conditions are considered in [13].

9.2 Semi-stable powers

Let μ1,…, μn be the eigenvalues of the real matrix M with μj ¼ ρje
2πiθj in polar

form. Observe that μkj , for j ¼ 1,…, n, are the eigenvalues of Mk and

TrMk ¼ ∑
n

j¼1
ρkj cos kθj

� �

≤ ∑
n

j¼1
∣μkj k cos kθj

� �

∣

Lemma. For a positive integer k≥ 1 the following assertions are equivalent:

a. Mk is a semi-stable matrix;

b. Tr Mk
� �

¼ ∑n
j¼1 μj

�

�

�

�

�

�

k
∣ cos kθj

� �

∣.

Proof. IfMk is a semi-stable matrix, then μk ¼ ρkj cos kθj
� �

þ i sin kθj
� �� �

has

cos kθj
� �

≥0. SinceM is a real matrix then Tr Mk
� �

¼ ∑n
j¼1 ρ

k
j cos kθj

� �

≥0. Therefore

Tr Mk
� �

¼ ∑
n

j¼1
ρkj ∣ cos kθj

� �

∣:

Assume that Tr Mk
� �

¼ ∑n
j¼1 λj

�

�

�

�

k
∣ cos kθj

� �

∣. Since ∣λkj ∣ ≥ ρkj cos kθj
� �

for

j ¼ 1,…, n, adding up, we get

Tr Mk
� �

≥ ∑
n

j¼1
ρkj cos kθj

� �

¼ Tr Mk
� �

Hence we have equalities ∣λkj k cos kθj
� �

∣ ¼ ρkj cos kθj
� �

for j ¼ 1,…, n. Then Mk is

semi-stable. □

We say that k is a stable power (resp. semi-stable power) of M if Mk is a stable
(resp. semi-stable) matrix.

10. Nakayama algebras

10.1 Cyclotomic Nakayama algebras

As a well-understood example the representation theory of the Nakayama alge-
bras stands appart. Let N n; rð Þ be the quotient obtained from the linear quiver with
n vertices with radical radA of nilpotency index r.

For instance, for A ¼ N 6; 3ð Þ the Cartan matrix C and Coxeter matrix ϕ are:
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C ¼

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

and ϕ ¼

�1 1 0 �1 1 1

�1 0 1 �1 0 1

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0

0 0 0 �1 1 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

whose characteristic polynomial is cyclotomic as we know from [18] or might be

verified calculating Tr ϕk
B

� �

≤ n, for 1≤ k≤ 72 and applying the criterion of Theorem
1. Indeed, for.

k ¼ TrχkA ¼

11 �1

1; 2; 5; 7; 9; 10; 13; 14; 17 ¼ 1

3; 6; 15 ¼ 2

4; 8; 16 ¼ 3

12 ¼ 6

Starting with k ¼ 17 the sequence of traces repeats cyclically. Therefore,

Tr χkA
� �

≤ 6 for all 0≤ k. Then N 6; 3ð Þ is of cyclotomic type.

10.2 An example

We recall in some length the argument given in [18] for the cyclotomicity of
N n; 3ð Þ, for all n≥ 1.

Consider the algebra R2n with 2n vertices and whose quiver is given as

with all commutative relations. The corresponding Coxeter polynomial

χR2n
¼ χAn

⊗ χA2
¼ vnþ1 ⊗ v3

is a product of cyclotomic polynomials, therefore χR2n
is a cyclotomic polyno-

mial. In fact R2n ¼ An ⊗A2, where As is the hereditary algebra associated to the
linear quiver 1 ! 2 ! ⋯ ! s.

For 2mþ 1 odd, we consider.

The following holds for the sequence of algebras Rn and its Coxeter polynomials
χRn

:

a.Rn is derived equivalent to N n; 3ð Þ.
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b.χRn
¼ Tn þ Tn�1 � T3 χRn�6

þ T þ 1, for all n≥ 6;

c.M χRn

� �

¼ 1.

Observe that the sequence of algebras Rnð Þ forms an interlaced tower of algebras,
that is, it is a sequence of triangular algebras R1,…, Rn, such that Rs is a basic algebra
with s simple modules and, among others, the condition

χRsþ1
¼ T þ 1ð ÞχRs

� TχRs�1

is satisfied for s ¼ 1,…, n� 1. Moreover, Asþ1 is a one-point extension (or
coextension) of an accessible algebra As by an exceptional As- module Ms such that

the perpendicular category M⊥
s formed in the derived category is triangular equiv-

alent to mod As�1ð Þ, for s ¼ mþ 1,…, n� 1.
The following was shown in [18]: Consider an interlaced tower of algebras

Am,…, An with m≤ n� 2. If SpecϕAn
is contained in the union of the unit circle and the

semi-ray of positive real numbers then either all Ai are of cyclotomic type or

M χAm

� �

<M χAn

� �

. In the latter case, M χAn

� �

<

Qn�1
s¼m M χAs

� �

.

Since we know that M χR2n

� �

¼ 1, for all n≥0, we conclude that M χRn

� �

¼ 1, for
all n≥0. That is the Nakayama algebras of the form N n; 3ð Þ are of cyclotomic type.

10.3 Non-cyclotomic Nakayama algebras

Calculation of Trϕk
A for A ¼ N n; rð Þ and k in intervals, for data sets n; r; kð Þ, yield

interesting information. Namely,

a.Many Nakayama algebras are of cyclotomic type;

b.Not all Nakayama algebras are of cyclotomic type. The case r ¼ 4 illustrates
this claim:

N n;4ð Þ is of cyclotomic type for all 0≤ n≤ 100 except for
n ¼ 10; 22; 30;42; 50; 62; 70; 82 and 90

c. A canonical algebra C of weight p1;…; pt
� �

is strongly accessible if and only if

t ¼ 3, in that case, C is derived-equivalent to a representation-finite algebra if
and only if the weight type does not dominate 3; 3; 3ð Þ.
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