
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Scalar Conservation Laws
Baver Okutmuştur

Abstract

We present a theoretical aspect of conservation laws by using simplest scalar
models with essential properties. We start by rewriting the general scalar conserva-
tion law as a quasilinear partial differential equation and solve it by method of
characteristics. Here we come across with the notion of strong and weak solutions
depending on the initial value of the problem. Taking into account a special initial
data for the left and right side of a discontinuity point, we get the related Riemann
problem. An illustration of this problem is provided by some examples. In the
remaining part of the chapter, we extend this analysis to the gas dynamics given in
the Euler system of equations in one dimension. The transformations of this system
into the Lagrangian coordinates follow by applying a suitable change of coordinates
which is one of the main issues of this section. We next introduce a first-order
Godunov finite volume scheme for scalar conservation laws which leads us to write
Godunov schemes in both Eulerian and Lagrangian coordinates in one dimension
where, in particular, the Lagrangian scheme is reformulated as a finite volume
method. Finally, we end up the chapter by providing a comparison of Eulerian and
Lagrangian approaches.

Keywords: conservation laws, Burgers’ equation, shock and rarefaction waves,
weak and strong solutions, Riemann problem, Euler system, Godunov schemes,
Eulerian coordinates, Lagrangian coordinates

1. Introduction

We present a general form of scalar conservation laws with further properties
including some basic models and provide examples of computational methods for
them. The equations described by

∂tuþ ∂x f uð Þ ¼ 0, t.0, x∈R (1)

in one dimension are known as scalar conservation laws where u ¼ u t; xð Þ is
the conserved quantity and f ¼ f uð Þ is the associated flux function depending on t
and x. Whenever an initial condition u 0; xð Þ ¼ u0 xð Þ is attached to Eq. (1), the
problem is called the Cauchy problem the solution of which is a content of this
chapter. The outlook of chapter is as follows. We introduce basic concepts and
provide particular examples of scalar conservation laws in the first part. The equa-
tion of gas dynamics in Eulerian coordinates in one dimension is the main issue
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of the second part. After providing further instruction for these equations, we
provide a transformation of the Eulerian equations in the Lagrangian coordinates.
In the final part, we give as an example of computational methods for conservation
laws, the Godunov schemes for the Eulerian, and the Lagrangian coordinates,
respectively.

1.1 Conservation laws: integral form and differential form

We start by investigating the relation of the equations in gas dynamics with
conservation laws. We take into account the equation of conservation of mass in
one dimension. The density and the velocity are assumed to be constant in the tube
where x is the distance and ρ t; xð Þ is the density at the time t and at the point x. Then

if we integrate the density on x1; x2½ �, we get total mass
R x2
x1

ρ t; xð Þdx at time t.

Assigning the velocity by u t; xð Þ, then mass flux at becomes ρ t; xð Þu t; xð Þ: It follows
that the rate of change of the mass in x1; x2½ � is

d

dt

Z x2

x1

ρ t; xð Þdx ¼ ρ t; x1ð Þu t; x1ð Þ � ρ t; x2ð Þu t; x2ð Þ: (2)

The last equation is called integral form of conservation law. Integrating this
expression in time from t1 to t2, we get

Z x2

x1

ρ t2; xð Þdx�
Z x2

x1

ρ t1; xð Þdx ¼
Z t2

t1

ρ t; x1ð Þu t; x1ð Þdt�
Z t2

t1

ρ t; x2ð Þu t; x2ð Þdt:

(3)

Using the fundamental theorem of calculus after reduction of Eq. (3), it follows
that

ρ t; x2ð Þu t; x2ð Þ � ρ t; x1ð Þu t; x1ð Þ ¼
Z x2

x1

∂x ρ t; xð Þu t; xð Þð Þdx: (4)

As a result, we get

Z t2

t1

Z x2

x1

∂tρ t; xð Þ þ ∂xρ t; xð Þu t; xð Þf g dx dt ¼ 0: (5)

Here the end points of the integrations are arbitrary; that is, for any x1; x2½ � and
t1; t2½ �, the integrant must be zero. It follows that the conservation of mass yields

∂tρþ ∂x uρð Þ ¼ 0, (6)

which is said to be the differential form of the conservation law.

1.2 A first-order quasilinear partial differential equations

A general solution to a quasilinear partial differential equation of the form

a t; x; uð Þ∂tuþ b t; x; uð Þ∂xu ¼ c t; x; uð Þ (7)

where a, b, c are non-zero and smooth on a given domain D∈R3 follows by the
characteristic method where the characteristic curves are defined by
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dt

a t; x; uð Þ ¼
dx

b t; x; uð Þ ¼
du

c t; x; uð Þ : (8)

By applying a parametrization of c, the relation (8) is transformed to a system of
ordinary differential equation (ODE):

dt

dc
¼ a t; x; uð Þ, dx

dc
¼ b t; x; uð Þ, du

dc
¼ c t; x; uð Þ: (9)

In addition to these equations, if an initial condition u0 ¼ u x0ð Þ is also given,
then by the existence theorem of ODE, there is a unique characteristic curve passing
from each point t0; x0; u0ð Þ leading to an integral surface which is the solution
to Eq. (7).

Observe that the scalar conservation law (1) is a particular example of Eq. (7) if
we assign a t; x; uð Þ ¼ 1, b t; x; uð Þux ¼ f uð Þð Þx, and c t; x; uð Þ ¼ 0. The conserved
quantity can be observed by integrating equation (1) over x0; x1½ �. Indeed

d

dt

Z x1

x0

u t; xð Þdx ¼
Z x1

x0

∂tu t; xð Þdx ¼ �
Z x1

x0

f u t; xð Þð Þxdx

¼ f u t; x1ð Þð Þ � f u t; x0ð Þð Þ

¼ inflow at the point x1½ � � outflow at the point x0½ �:

(10)

This means, the quantity u t; xð Þ is conserved so that it depends on the difference
of the flux functions between the points x0 and x1:

1.3 Strong (classical) solutions

We consider the initial value problem

∂tuþ ∂x f uð Þð Þ ¼ 0, t.0, x∈R

u 0; xð Þ ¼ u0 xð Þ, x∈R
(11)

where the initial data is assumed to be continuously differentiable, that is,

u0 xð Þ∈C1
Rð Þ. Applying the chain rule to the relation (11), it follows that

∂tuþ f 0 uð Þ∂xu ¼ 0, t.0, x∈R,

u 0; xð Þ ¼ u0 xð Þ, x∈R,
(12)

where we define characteristic curves of Eq. (12) to be the solution of
d
dt x tð Þ ¼ f 0 u t; x tð Þð Þð Þ ¼ f 0 uð Þ. Then a solution to the system (12) in a domain Ω∈R

is said to be a strong (or classical) solution if it satisfies Eq. (11), and it is continu-
ously differentiable on a domain Ω∈R: Let u be a strong solution and the initial data
u0 be differentiable. Observe that (12) is equivalent to a quasilinear form:

∂tuþ λ uð Þ∂xu ¼ 0, (13)

with λ uð Þ ¼ f 0 uð Þ. Applying the method of characteristics to Eq. (13), the partial
differential equation is transformed to a system of ordinary differential equations.
We consider the characteristic curve passing through the point 0; x0ð Þ:
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∂tx ¼ λ u t; x tð Þð Þð Þ
x 0ð Þ ¼ x0:

(14)

Along this characteristic curve,

∂tu t; x tð Þð Þ ¼ ∂tu t; x tð Þð Þ þ ∂tx∂xu t; x tð Þð Þ ¼ ∂tuþ λ uð Þ∂xu ¼ 0 (15)

is satisfied, that is, u is constant. Hence, the characteristic curves are straight
lines satisfying

x ¼ x0 þ λ u0 x0ð Þð Þt ¼ 0: (16)

Hence we can define smooth solutions by u t; xð Þ ¼ u0 x0ð Þ. If the slope of the
characteristics is mchar ¼ 1

λ u0 xið Þð Þ , then depending on the behavior of λ, the solution

takes different forms. If λ u0 xð Þð Þ is increasing, then the slopes of the characteristics
are decreasing. As a result, the characteristics do not intersect, and thus solution can
be defined for all t which is greater than zero. On the other hand, if λ u0 xð Þð Þ is
decreasing, then the slopes of the characteristics will be increasing which implies
that the characteristics intersect at some point. But at the intersection point, solu-
tion cannot take both values u0 x1ð Þ and u0 x2ð Þ. Therefore, we cannot define the
strong solution for all t.0.

1.4 Linear advection equation

The basic example of the scalar conservation law is the linear advection equa-
tion. It can be obtained by setting a t; x; uð Þ ¼ 1, b t; x; uð Þ ¼ λ, and c t; x; uð Þ ¼ 0 in
Eq. (7). The flux function takes the form f uð Þ ¼ λu where λ is a constant. Then the
following quasilinear partial differential equation

∂tuþ λ∂xu ¼ 0 (17)

is a linear advection equation. Similar to Eqs. (11) and (12), an initial value
problem for linear advection equation is described by

∂tuþ ∂xf uð Þ ¼ 0, �∞, x,∞, t≥0,

u 0; xð Þ ¼ u0 xð Þ ¼ f x0ð Þ, �∞, x,∞:
(18)

Applying the method of characteristics, it follows that dt
1 ¼ dx

λ
¼ du

0 or equivalently

u ¼ c1,
dx

dt
¼ λ ¼ c1, x ¼ c1tþ c2, (19)

where c1 and c2 are constant and x� λt ¼ c2: As a conclusion, the solution is

u t; xð Þ ¼ u0 x� λtð Þ, t≥0: (20)

Here λ is the wave speed, and the characteristic lines x� λt ¼ c2 are wavefronts
which are constants.

1.5 Burgers’ equation

Burgers’ equation is the simplest nonlinear partial differential equation and is
the one of the most common models used in the scalar conservation laws and fluid
dynamics. The classical Burgers’ equation is described by
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∂tuþ u∂xu ¼ ν∂xxu, (21)

where ν∂xxu is the viscosity term. Equation (21) can be considered as a combi-
nation of nonlinear wave motion and linear diffusion term so that it is balance
between time evolution, nonlinearity, and diffusion. The term u∂xu is a convection
term that may have an effect to wave breaking, and the term ν∂xxu is a diffusion
term that may cause to efface the wave breaking and to flatten discontinuities, and
thus we expect to achieve a smooth solution. We try to find a traveling wave
solution of Eq. (21) of the form

u t; xð Þ ¼ g ξð Þ ¼ g x� λ tð Þ, with ξ ¼ x� λt, (22)

where g and λ are to be determined. Applying the chain rule, we get

∂tu ¼ �λ g0 ξð Þ, ∂xu ¼ g0 ξð Þ, ∂xxu ¼ g″ ξð Þ: (23)

Plugging these terms in Eq. (21), we get

�λ g0 ξð Þ þ g ξð Þg0 ξð Þ � ν g″ ξð Þ ¼ 0: (24)

Taking integration with respect to ξ gives

�λ g þ 1

2
g2 � ν g0 ¼ C, C : constant: (25)

Rewriting Eq. (25) by

g � g1
� �

g � g2
� �

¼ g2 � 2 λ g � 2C ¼ 2ν dg=dξ, (26)

it follows that g1, 2 ¼ λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
2 þ 2C

p

. Supposing that g1, g2 are real implies g1. g2.

Using separation of variable and then integrating equation (26), we get

g ξð Þ ¼ g1 þ g2e
g1�g2
2νð Þξ

1þ e
g1�g2
2νð Þξ ¼ g1 þ g2

2
� g1 � g2

2
tan h

g1 � g2
4ν

ξ
� �

(27)

As a result the explicit form of traveling wave solution of Eq. (21) becomes

u t; xð Þ ¼ λ� g1 � g2
2

tan h
1

4ν
g1 � g2
� �

x� λtð Þ
� �

(28)

where λ ¼ g1þg2
2 is the wave speed. We can observe that limξ!�∞ g ξð Þ ¼ g1 and

limξ!∞ g ξð Þ ¼ g2 with g0 ξð Þ,0 for all ξ. This means the solution g ξð Þ decreases
monotonically with ξ from the value g1 to g2. At ξ ¼ 0, u ¼ g1þg2

2 ¼ λ, that is the wave
form g ξð Þ travels from left to right with speed λ equal to the average value of its
asymptotic values. The solution resembles to a shock form as it connects the asymp-
totic states g1 and g2. Without the viscosity term, the solutions to Burgers equation
allow shock forms which finally break. The diffusion term prevents incrementally
deformation of the wave and its breaking by withstanding the nonlinearity. As a
conclusion, there exists a balance between nonlinear advection term and the linear
diffusion term. The wave form is notably affected by the diffusion coefficient ν. If ν
is smaller, then the transition layer between two asymptotic values of solution is
sharper. In the limit ν ! 0, the solutions converge to the step shock wave solutions
to the inviscid Burgers’ equation.
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Remark. If the initial data is smooth and very small, then the uxx term is negligi-
ble compared to other terms before the beginning of wave breaking. As the wave
breaking starts, the uxx term raises faster than ux term. After a while, the term uxx
becomes comparable to the other terms so that it keeps the solution smooth, giving
rise to avoid breakdown solutions.

1.6 Inviscid Burgers’ equation

Whenever ν ¼ 0, Eq. (21) is called the inviscid Burgers’ equation. This equation
can be obtained by substituting f uð Þ ¼ u2=2 in the scalar conservation law (1),
that is

∂tuþ ∂x u2=2
� �

¼ ∂tuþ u∂xu ¼ 0: (29)

Observe that f uð Þ is a nonlinear function of u; thus, the inviscid Burgers’ equa-
tion is a nonlinear equation. Equation (29) is now equivalent to Eq. (17) with λ ¼ u.
We know the solution of Eq. (17); so, plugging λ ¼ u into the relation (20) implies
that the solution of Eq. (29) is

u t; xð Þ ¼ f x� utð Þ ¼ u0 x� utð Þ: (30)

Recall that the characteristic speed λ is constant for linear advection equation;
that is, the characteristic curves become parallel for Eq. (17). In contrast, for the
inviscid Burgers’ equation (29), the characteristic speed λ ¼ u depends on u. As a
result the characteristic lines are not parallel. If we apply the implicit function
theorem to Eq. (29), the solution can be written as a function of t and x as u0 is
differentiable. More particularly, differentiating Eq. (30) with respect to t, we get

∂tu ¼ �u00 uttþ uð Þ ) ∂tu ¼ � u00u

1þ u00t
; (31)

and differentiating equation (30) with respect to x, we get

∂xu ¼ u00 1� uxtð Þ ) ∂xu ¼ u00
1þ u00t

: (32)

Thus, substituting Eqs. (31) and (32) in (29), we can recover the inviscid
Burgers’ equation. Consequently, the relations (31) and (32) imply that the solu-
tions of Eq. (1) and particularly of Eq. (29) depend on the initial value u0. It can be
observed that whenever u00 xð Þ.0, then by Eq. (32), ∂xu decreases in time because
1þ u00 t.0 for t.0. In other words, the profile of the wave flattens as time
increases. On the other hand, whenever u00 xð Þ,0, then ∂xu increases in time as
1þ u0t,0: Hence ux in Eq. (32) tends to ∞ as 1þ u00t approaches to zero. As a
result, wave profile become sharp after some time. For further details on the
Burgers’ equations, we refer the reader to [12, 13, 22] and the references therein.

1.7 Shock waves

Let the constants uL and uR are given with a linear function, φ tð Þ ¼ λt. Then

u t; xð Þ ¼
uR if x. λt,

uL if x, λt,

	

(33)
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is a simple example of discontinuous solution of the conservation law (11). If
uL 6¼ uR, the relation (33) is called a shock wave connecting uL to uR with shock
speed λ. As an example, if we take into account the characteristics of the inviscid

Burgers’ equations which are of the form dx
dt ¼ u t; xð Þ, it follows that

x tð Þ ¼ u0 x0ð Þtþ x0 (34)

where u0 xð Þ ¼ u 0; xð Þ and x0 ¼ x 0ð Þ; thus, the characteristics are straight
lines. Depending on the behavior of these characteristics, we have two cases. If
uL. uR, characteristics intersect, the solution will have an infinite slope, and the
wave will break; as a result a shock is obtained. This is illustrated in Figure 1. On
the other hand, if uR. uL, the characteristics do not intersect, and hence a region
without characteristic will appear which is physically unacceptable. This is shown in
Figure 2. We get rid of this by introducing the rarefaction waves.

1.8 Rarefaction waves

A rarefaction wave is a strong solution which is a union of characteristic lines.
A rarefaction fan is a collection of rarefaction waves. These waves are constant on

the characteristic line x� x0 ¼ αt. Here α∈ f 0 uLð Þ; f 0 uRð Þ
� �

where uL and uR are the

values of u at the edge of the rarefaction wave fan. If moreover f 0 is invertible, then
the solution u ¼ u t; xð Þ satisfies

u x; tð Þ ¼ f 0
� ��1 x� x0

t

� �

: (35)

If, for instance, f is convex, then the rarefaction waves are increasing. If we
consider again the inviscid Burgers’ equation with the initial values, then the region
without characteristics in Figure 2 will be covered by rarefaction solution which is
described by

u t; xð Þ ¼
uL if x=t≤ f 0 uLð Þ,
f 0
� ��1

x=tð Þ if f 0 uLð Þ≤ x=t≤ f 0 uRð Þ,
uR if f 0 uRð Þ≤ x=t:

8

>

<

>

:

(36)

Figure 1.
For the initial value uL. uR, characteristics, and shock wave.

Figure 2.
For the initial value uR. uL, characteristics and rarefaction waves.
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An illustration of rarefaction waves and rarefaction fan in Eq. (36) is given in
Figure 3.

Remark. Whenever characteristics intersect, we may have multiple valued
solution or no solution; but we have no more classical (strong) solution. To get rid
of this situation, we introduce a more wide-ranging notion of solution, the weak
solution, in the next part. By this arrangement, we may have non-differentiable and
even discontinuous solutions.

1.9 Weak solution

Weak solutions occur whenever there is no smooth (classical) solution. These
solutions may not be differentiable or even not continuous. Considering
ϕ : R� Rþ ! R as a smooth test function with a compact support and multiplying
the scalar conservation law (1) by this test function ϕ, it follows after integration by
parts that

Z ∞

0

Z ∞

�∞

ϕ∂tuþ ϕ∂xf uð Þdxdt

¼
Z ∞

�∞
ϕu









∞

0
dx�

Z ∞

0

Z ∞

�∞
u∂tϕdxdtþ

Z ∞

0
ϕf uð Þ










∞

�∞
dt�

Z ∞

0

Z ∞

�∞
f uð Þ∂xϕdxdt

¼ �
Z ∞

0

Z ∞

�∞
u∂tϕdxdt�

Z ∞

0

Z ∞

�∞
f uð Þ∂xϕdxdt�

Z ∞

�∞
uϕ













t¼0

dx:

(37)

Putting the initial condition u0 xð Þ ¼ u 0; xð Þ to the above relation, it follows that

Z ∞

0

Z ∞

�∞
uϕt þ f uð Þϕxdxdtþ

Z ∞

�∞
u 0; xð Þϕ xð Þdx ¼ 0: (38)

Observe that there are no more derivatives of u and f which may lead less
smoothness. In other words, the smoothness requirement is reduced for finding a
solution. Thus, the function u t; xð Þ is said to be the weak solution of the initial value
problem (11) if the relation (38) satisfied for all test function ϕ:Here it is significant
to note that u needs not be smooth or continuous to satisfy Eq. (38). Consequently,
by weak solutions, we extend the solutions so that discontinuous solutions may also
be covered. However, in general weak solutions are not unique. We can also notice

Figure 3.
Rarefaction fan.
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that strong solutions are also weak solutions and a weak solution which is continu-
ous and piecewise differentiable is also strong solution.

1.10 Riemann problem

The Riemann problem is a Cauchy problem with a particular initial value which
consists a conservation law together with piecewise constant data having a single
discontinuity. We consider the Riemann problem for a convex flux described by

∂tuþ ∂x f uð Þð Þ ¼ 0, x∈R, t∈Rþ,

u 0; xð Þ ¼
uL if x,0,

uR if x.0:

(

(39)

The solution is a set of shock and rarefaction waves depending on the relation
between uL and uR: There are two cases to investigate:

Case 1: uL. uRð Þ A shock is obtained because the left-hand side wave moves
faster than the right-hand side one. Thus the solution

u t; xð Þ ¼
uL if x=t, λ,

uR if x=t. λ,

	

(40)

is a shock wave satisfying the shock speed λ ¼ f uRð Þ�f uLð Þ
uR�uL

:

Case 2: (uL, uR) The solution given in Case 1 is also a solution for this case. In
addition, we have rarefaction solutions of the form (36) illustrated by Figure 3.

1.11 Rankine-Hugoniot jump condition

A jump discontinuity along the characteristic line is controlled by the Rankine-
Hugoniot jump condition. Integrating the scalar conservation law (1) in x1; x2½ �, it
follows that

d

dt

Z x2

x1

u t; xð Þdxþ f uð Þ









x2

x1
¼ 0: (41)

Suppose that there is a discontinuity at the point x ¼ ξ tð Þ∈ x1; x2ð Þ where u and
u0 are continuous on the x1; ξ tð Þ½ Þ and ξ tð Þ; x2ð �, respectively. Suppose also that

whenever x1 ! ξ tð Þ� and x2 ! ξ tð Þþ, their limits exist. Next, Eq. (41) can be
rewritten as

d

dt

Z ξ tð Þ

x1

u t; xð Þdxþ d

dt

Z x2

ξ tð Þ
u t; xð Þdx ¼ � f t; x2ð Þ � f t; x1ð Þð Þ: (42)

By the fundamental theorem of calculus, the relations (41) and (42) yield

u ξ�; xð Þξ0 tð Þ � u ξþ; xð Þξ0 tð Þ þ d

dt

Z ξ tð Þ

x1

ut t; xð Þdxþ d

dt

Z x2

ξ tð Þ
ut t; xð Þdx: (43)

Taking the limit whenever x1 ! ξ tð Þ� and x2 ! ξ tð Þþ, it follows that

ξ0 tð Þ x2 � x1ð Þ ¼ f x2ð Þ � f x1ð Þ ) λ ¼ ξ0 tð Þ ¼ f x2ð Þ � f x1ð Þ
x2 � x1

: (44)
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The relation (44) is said to be the Rankine-Hugoniot jump condition. Geo-
metrical meaning of the Rankine-Hugoniot jump condition is that the shock speed is
the slope of the secant line through the points uL; f uLð Þð Þ and uR; f uRð Þð Þ on the
graph of f .

1.12 Entropy functions

Entropy and entropy flux are defined for attaining physically meaningful solu-
tions. If u is the smooth solution of the conservation law (1), then the relation

∂tG uð Þ þ ∂xF uð Þ ¼ 0 (45)

is satisfied for continuously differentiable functions G and F where the pair
G;Fð Þ is called as entropy pair so that G is entropy and F is entropy flux. If in
addition u is smooth, then Eq. (45) becomes

G0 uð Þ∂tuþ F0 uð Þ∂xu ¼ 0 (46)

which looks like to the scalar conservation law (1). Indeed, if we multiply Eq. (1)
by G0 uð Þ, it follows that

G0 uð Þ∂tuþG0 uð Þf 0 uð Þ∂xu ¼ 0: (47)

It follows that Eqs. (46) and (47) are equivalent with F0 uð Þ ¼ G0 uð Þf 0 uð Þ: Here
the function u t; xð Þ is said to be the entropy solution of Eq. (1) if

∂tG uð Þ þ ∂xF uð Þ≤0

holds for all convex entropy pairs G uð Þ;F uð Þð Þ.

1.13 Entropy condition

Weak solutions to conservation laws may contain discontinuities as a result of a
discontinuity in the initial data or of characteristics that cross each other or because
of the jump conditions which are satisfied across the discontinuities. Although the
Rankine-Hugoniot jump condition is satisfied, the uniqueness of the solution may
always not be guaranteed. In order to eliminate the nonphysical solutions among the
weak solutions, we need an additional condition, so-called entropy condition. It is
described by the following: A discontinuity propagating with the characteristic
speed λ given by the Rankine-Hugoniot jump condition satisfies the entropy condi-
tion if holds.

f 0 uLð Þ. λ. f 0 uRð Þ (48)

Example 1.1. The weak solutions to conservation laws need not be unique. If we
write the inviscid Burgers’ equation in quasilinear form and multiply by 2u, we
obtain 2u∂tuþ 2u2∂xu ¼ 0. In conservative form it becomes

∂t u2
� �

þ ∂x
2

3
u3

� �

¼ 0, with f u2
� �

¼ 2

3
u2
� �3=2

: (49)

The inviscid Burgers’ equation and Eq. (49) have exactly the same smooth
solutions. But their weak solutions are different. A shock traveling speed for the
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inviscid Burgers’ equation is λ1 ¼ uL þ uRð Þ=2; however for Eq. (49), we have

λ2 ¼ 2
3

u3
L
�u3

R

u2
L
�u2

R

� ��

. That is λ1 6¼ λ2 whenever uL 6¼ uR, and thus these two equations

have different weak solutions.
Example 1.2. We first consider the initial value problem for uL. uR given by

∂tuþ ∂x u2=2
� �

¼ 0, u0 ¼
1 if x≤0,

0 if x.0:

	

(50)

Applying the method of characteristics for t.0, it follows that

du

dt
¼ 0,

dx

dt
¼

1 if x≤0,

0 if x.0:

	

(51)

Next if we integrate Eq. (51) with respect to t, we get the characteristic curves

x ¼
t� c if x≤0,

b if x.0,

	

(52)

where c.0 and b are constants. Due to the discontinuity at the point x ¼ 0,
there is no strong (classical) solution. The speed of propagation is λ ¼ uLþuR

2 ¼ 0:5:
Moreover, the weak solution for t≤ λ ¼ 0:5 becomes

u t; xð Þ ¼
1 if

x

t
≤0:5

0 if
x

t
.0:5

,

8

>

<

>

:

(53)

which satisfies both the jump condition and the entropy condition as
uL ¼ 1. uR ¼ 0. The characteristic curves can be observed in Figure 4.

Example 1.3. We now interchange the roles of uL and uR of the Example 1.2 so
that uL, uR to get an initial value problem:

∂tuþ ∂x u2=2
� �

¼ 0, u0 ¼
0 if x≤0,

1 if x.0:

	

(54)

By the method of characteristics, we obtain a solution

u1 t; xð Þ ¼
0 if

x

t
≤ 1

1 if
x

t
. 1

8

>

<

>

:

(55)

Figure 4.
For initial value uL. uR, the characteristic solutions.
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which is a classical (strong) solution on both sides of the characteristic line x
t ¼ 1.

Since it satisfies the Rankine-Hugoniot jump condition along the discontinuity
curve, it is a weak solution. However, the entropy condition is not satisfied. It yields
an empty region between the characteristic lines shown in Figure 4. In order to
cover this empty state, we consider another solution described by

u2 t; xð Þ ¼

0 if x≤0,
x

t
if 0≤

x

t
≤ 1,

1 if
x

t
≥ 1

8

>

>

>

<

>

>

>

:

(56)

which satisfies both jump and entropy conditions. Here we can observe the
rarefaction fan arising on the interval 0≤ x

t ≤ 1. An illustration of this solution is

supplied in Figure 5.

2. The gas dynamic equations in one dimension

The equation of fluid dynamics can be represented in Eulerian and Lagrangian
forms. Eulerian coordinates are related to the coordinates of a fixed observer. On
the other hand, Lagrangian coordinates are in usual related to the local flow veloc-
ity. That is, due to the velocity taking different values in different parts of the fluid,
the change of coordinates is different from one point to another one.

2.1 Eulerian coordinates

The equations of gas dynamics in Eulerian coordinates can be written in the
following conservative forms:

∂t ρð Þ þ ∂x ρuð Þ ¼ 0,

∂t ρuð Þ þ ∂x ρu2 þ pð Þ ¼ 0,

∂t ρeð Þ þ ∂x ρeþ pð Þuð Þ ¼ 0

8

>

<

>

:

(57)

where we ignored the heat conduction. If we denote

U ¼
ρ

ρu

ρe

0

B

@

1

C

A
, F Uð Þ ¼

ρe

ρu2 þ p

ρeuþ pu

0

B

@

1

C

A
, (58)

then Eq. (57) can be written by

∂tU þ ∂xF Uð Þ ¼ 0 (59)

Figure 5.
For initial value uL, uR, characteristic solutions u1 t; xð Þ and u2 x; tð Þ with rarefaction fan.
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where ρ is density, p is pressure, u is velocity, and e is the specific internal
energy.

2.2 Hyperbolicity of the Euler system

If we do not neglect the heat conduction, then the U and F terms in Eq. (59)
become

U ¼
ρ

ρu

E

0

B

@

1

C

A
and F ¼

ρu

ρu2 þ p

Eþ pð Þu

0

B

@

1

C

A
, (60)

where E is total energy such that E ¼ 1
2 ρu

2 þ ρe, e ¼ p
δ�1ð Þρ, and for perfect gases

δ ¼ cp=cv is the ratio of specific heats. Rewriting Eq. (59) in quasilinear form, we get

∂tU þ A Uð Þ∂xU ¼ 0, (61)

where A Uð Þ ¼ ∂F
∂U is the Jacobian matrix. The eigenvalues of A Uð Þ then are

λ1 ¼ u, λ2 ¼ u� a, λ3 ¼ uþ a where a is the sound speed given by a ¼
ffiffiffiffi

δp
ρ

q

.

Moreover the corresponding eigenvectors are

E 1ð Þ ¼
1

u
1

2
u2

0

B

B

@

1

C

C

A

, E 2ð Þ ¼
1

u� a

H � ua

0

B

@

1

C

A
, E 3ð Þ ¼

1

uþ a

H þ ua

0

B

@

1

C

A
(62)

which are real, and the eigenvectors are linearly independent implying that the
Euler equations for perfect gases are hyperbolic.

2.3 Rankine-Hugoniot conditions for the Euler system

Using the results in the previous part, the Rankine-Hugoniot jump conditions for
the Euler system will be of the form

s ρ1 � ρ2ð Þ ¼ m2 �m1,

s m2 �m1ð Þ ¼ m2
2

ρ2
þ p2 �

m2
1

ρ1
� p1,

s ρ2E2 � ρ1E1ð Þ ¼ m2H2 �H1m1,

(63)

where the indices 1 and 2 refer to the left and right of the shock, respectively,
and s denotes the wave speed.

2.4 Riemann problem for the Euler system

The Riemann problem for the one-dimensional Euler equation (57) is
represented by

∂tU þ ∂x F Uð Þð Þ ¼ 0, x∈R, t.0,

U 0; xð Þ ¼ U0 xð Þ ¼
UL if x,0,

UR if x.0:

(

(64)

The reader is addressed to the references [18, 24] for further details.
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2.5 Lagrangian coordinates

We aim to transform the equations of gas dynamics (57) given in the Eulerian
coordinates into the Lagrangian coordinates for one-dimensional case. We start
denoting by u ¼ u t; xð Þ the velocity field of the fluid flow and consider the differ-
ential system

dx

dt
¼ u t; xð Þ: (65)

We set the following change of coordinates from Euler coordinates to Lagrange

coordinates for space and time as t; xð Þ ! t0; ξð Þ where ξ ¼ ξ1; ξ2; ξ3ð Þ∈R3 so that

t0 ¼ t,
∂x t0; ξð Þ

∂t0
¼ u t0; x t0; ξð Þð Þ, x0 ¼ x 0; ξð Þ ¼ ξ: (66)

It follows that t0; ξð Þ ¼ t; ξ1; ξ2; ξ3ð Þð Þ are the Lagrangian coordinates associated
with the velocity field u. We set

J t; ξð Þ ¼ det
∂xi
∂ξj

t; ξð Þ
 !

, (67)

which gives

∂J

∂t
t; ξð Þ ¼ J t; ξð Þ divuð Þ t; x t; ξð Þð Þ, where, div u ¼ ∑

3

j¼1

∂uj
∂xj

: (68)

It follows by some algebraic manipulations that the gas dynamic equations
become

∂t ρJð Þ ¼ 0, Conservation of massð Þ,
∂t ρuJð Þ þ ∂ξ pð Þ ¼ 0, Conservation of momentumð Þ,
∂t ρeJð Þ þ ∂ξ puð Þ ¼ 0, Conservation of energy

� �

:

8

>

<

>

:

(69)

In order to derive a more convenient form of the system (69), we derive firstly
the equation of conservation of mass:

ρJ ¼ ρ0 ¼ ρ 0; ξð Þ (70)

where ρ0 ξð Þ ¼ ρ 0; ξð Þ: Assuming that ρ.0, we introduce the specific volume
τ ¼ 1=ρ, and by using Eq. (68) we get

J ¼ ρ0τ, and ∂t J ¼ J∂xu ¼ ∂ξu (71)

which yields

ρ0∂tτ � ∂ξu ¼ 0: (72)

Hence the second and third equations of Eq. (69) become

ρ0∂tuþ ∂ξp ¼ 0, Conservation of momentumð Þ,
ρ0∂teþ ∂ξ puð Þ ¼ 0, Conservation of energy

� �

:
(73)
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Moreover, we define a mass variable m by

m ξð Þ ¼
Z ξ

0
ρ 0; yð Þdy, or equivalently, dm ¼ ρ 0; ξð Þdξ ¼ ρ0dξ: (74)

Finally, using Eqs. (69) and (73), the Euler system (57) can be written in
Lagrangian coordinates with the mass variable in the form

∂tτ � ∂mu ¼ 0,

∂tuþ ∂mp ¼ 0,

∂teþ ∂m puð Þ ¼ 0,

8

>

<

>

:

(75)

where p ¼ p τ; ξð Þ ¼ p τ; e� u2=2ð Þ. If we set V ¼
τ

u

e

0

B

@

1

C

A
, F Vð Þ ¼

�u

p

pu

0

B

@

1

C

A
with

τ.0, u∈R, e� u2=2.0, we obtain a scalar conservation law of the form

∂tV þ ∂mF Vð Þ ¼ 0 (76)

which is strictly hyperbolic. This can be verified by checking the Jacobian matrix
of the flux calculated with respect to the variables τ; u; eð Þ

0 �1 0

pτ �upε pε
upτ p� u2pε upε

0

B

@

1

C

A
(77)

with e ¼ εþ 1
2 u

2. The eigenvalues are σ1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pτ � ppε
p

, σ2 ¼ 0, σ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pτ � ppε
p

so that they are all distinct, and thus the system is strictly hyperbolic.

In fact there are different versions of the gas dynamics in Lagrangian coordi-
nates. In this part we followed the approaches stated in [9, 10, 12]. For further
details we cite these works with references therein.

2.6 Rankine-Hugoniot conditions for the Lagrangian system

Similarly as in the Euler system, the Rankine-Hugoniot jump conditions for the
Lagrangian system (79) are of the form

σ τ1 � τ0ð Þ ¼ � u1 � u0ð Þ,
σ u1 � u0ð Þ ¼ p1 � p0,

σ e1 � e0ð Þ ¼ p1u1 � p0u0,

(78)

where σ denotes the speed of propagation of the discontinuity with respect to
the mass variable.

Remark. The Eulerian and Lagrangian Rankine-Hugoniot relations are equiva-
lent. Moreover, Eulerian entropy relations are equivalent to all Lagrangian entropy
relations (see [9] for further detail).

Example 2.1. For simplicity of notation, we take t; xð Þ as the Lagrangian coordi-
nates. Then the system of equations

∂tτ � ∂xu ¼ 0,

∂tuþ ∂xp τð Þ ¼ 0,

	

(79)
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is a one-dimensional isentropic gas dynamics in Lagrangian coordinates which is
also known as p-system. It is the simplest nontrivial example of a nonlinear system
of conservation laws. Here τ is the specific volume, u is the velocity, and the
pressure p ¼ p τð Þ is given as a function of τ by

p τð Þ ¼ κτ�γ, γ.0, κ ¼ γ � 1ð Þ2
4γ

: (80)

The system (79) is equivalent to

∂tV þ ∂x f Vð Þ ¼ 0, with V ¼
τ

u

� �

, f Vð Þ ¼
�u

p τð Þ

� �

, (81)

where τ.0 and τ; uð Þ∈R2: If we assume that p0 τð Þ,0, it follows that the
Jacobian matrix of f

J fð Þ ¼
0 �1

p0 τð Þ 0

� �

(82)

has two real distinct eigenvalues σ1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p0 τð Þð
p

, σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p0 τð Þ
p

. In other
words, the system (81) is strictly hyperbolic. On the other hand, for the case
p0 τð Þ.0, it becomes elliptic. Moreover, one can verify that the solutions of the
p-system (79) and the Euler system (57) are equivalent.

3. Godunov schemes

The Godunov scheme deals with solving the Riemann problem forward in time
for each grid cell and then taking the mean value over these cells. The Riemann
problem is solved per mesh point at each time step iteratively. If there are no strong
shock discontinuities, this process may cost much and will not be effective. To get
rid of such a situation, we establish approximate Riemann solvers that are easier to
implement and also low cost to use. Eulerian and Lagrangian Godunov schemes are
current Godunov scheme in literature. Both have advantages and disadvantages
depending on the structure of the problem. A brief comparison of the method for
these two approaches is presented in the last part of the chapter. In this work we
will not go further in numerical examples and details of these methods; instead, we
aim to present a general form of Godunov schemes for gas dynamics in Eulerian and
Lagrangian coordinate. Before introducing these, we present a first-order Godunov
scheme for scalar conservation laws.

3.1 First-order Godunov scheme

Consider the scalar conservation law (1). Godunov scheme is a numerical
scheme which takes advantage of analytical solutions of the Riemann problem
for the conservation law (1). The numerical flux functions are evaluated at the
spatial steps xj�1=2 and xjþ1=2 by handling the solutions of the Riemann problem.

On each grid cell I i ¼ xj�1=2; xjþ1=2

� �

, we have a piecewise constant

function. The Riemann problem for (1) for the left and right sides of I i are
described by
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uL xð Þ ¼
unj�1 ; x,0,

unj ; x.0,
uR xð Þ ¼

unj ; x,0,

unjþ1 ; x.0,

((

(83)

respectively. These two solutions to the Riemann problem will be the numerical
solution ~u t; xð Þ. Once establishing the solution over the mesh tn; tnþ1½ �, we approxi-
mate the solution at the next time step tnþ1 by the average value

Unþ1
j ¼ 1

Δx

Z xjþ1=2

xj�1=2

~u x; tnþ1
� �

dx: (84)

Proceeding this process, we define the solution ~u x; tnþ1ð Þ iteratively. Then Unþ1
j

can be calculated by using the integral form of the conservation law (1) in the
following way: We integrate (1) for u t; xð Þ over each grid cell tn; tnþ1½ � � Ij :

Z xjþ1=2

xj�1=2

~un x; tnþ1
� �

dx�
Z xjþ1=2

xj�1=2

~un x; tnð Þdx

¼
Z tnþ1

tn
f ~un

j�1=2

� �

dt�
Z tnþ1

tn
f ~un

jþ1=2

� �

dt:

(85)

Dividing both parts by Δx and using the fact that ~u x; tnð Þ ¼ unj is constant at the

end points xj�1=2 and xjþ1=2, we get

unþ1
j ¼ unj �

Δt

Δx
f ~un

j�1=2

� �

� f ~un
jþ1=2

� �� �

: (86)

Thus, Godunov method is a conservative numerical scheme. It can be restated in
an alternative form. Assigning the constant value of unj at the points xj�1=2 and xjþ1=2

by u ∗ ðUn
j�1, U

n
j Þ and u ∗ ðUn

j , U
n
jþ1Þ, respectively, the numerical flux functions

become

f ~un
j�1=2

� �

¼ f u ∗ Un
j�1;U

n
j

� �� �

¼ F Un
j�1;U

n
j

� �

,

f ~un
jþ1=2

� �

¼ f u ∗ Un
j ;U

n
jþ1

� �� �

¼ F Un
j ;U

n
jþ1

� �

:
(87)

Therefore, a first-order Godunov method takes the form

Unþ1
j ¼ Un

j �
Δt

Δx
F Un

j ;U
n
jþ1

� �

� F Un
j�1;U

n
j

� �� �

: (88)

Here the constant value of ~un depends on the initial data. In other words, the
Godunov method considers the Riemann problem as constant in each grid interval
I i. It follows that, at the subsequent time stage, the exact solutions of the problem
are picked as the numerical fluxes at the grid boundary.

The Godunov method is consistent with the exact solution of the Riemann prob-

lem for the conservation law (1). If we suppose that unj ¼ unþ1
j ¼ u, then ~un

jþ1=2 ¼ u

and F u; uð Þ ¼ f uð Þ. For the stability, CFL condition requires that

sup
x∈R, t.0

∣f 0 u t; xð Þð Þ∣ Δt
Δx

≤ 1 (89)
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for each unj . Next, if assigning u ∗ as the intermediate value over the grid I i in the

Riemann solution, it implies that

u ∗ uL; uRð Þ ¼
uL, λ.0,

uR, λ,0,

	

(90)

where λ is the wave propagation speed. Hence the numerical flux for Godunov’s
method can be generalized by

f uL; uRð Þ ¼
min

uL ≤u≤uR
f uð Þ, if uL ≤ uR,

max
uL ≥u≥uR

f uð Þ, if uR, uL:

8

<

:

(91)

For numerical illustration of Godunov schemes, we cite the articles [14, 20, 27].

3.2 Godunov method in Eulerian coordinates

We consider Eq. (59) with (60). The eigenvalues of F0 Uð Þ are
σ1 ¼ u� c, σ2 ¼ u, σ3 ¼ uþ c. Then the Riemann problem at the point xiþ1=2

between the states Ui and Uiþ1 which is solved by the Godunov scheme can be
written by

ρnþ1
i ¼ ρni �

Δt

Δxi
ρuð Þniþ1=2 � ρuð Þni�1=2

� �

ρuð Þnþ1
i ¼ ρuð Þni �

Δt

Δxi
ρu2 þ p
� �n

iþ1=2
� ρu2 þ p
� �n

i�1=2

� �

:

ρeð Þnþ1
i ¼ ρeð Þni �

Δt

Δxi
ρeþ pð Þuð Þniþ1=2 � ρeþ pð Þuð Þni�1=2

� �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(92)

3.3 Godunov method in Lagrangian coordinates

Consider the initial condition for a quantity v given by the mean value

v0i ¼ 1

Δξi

Z ξiþ1=2

ξi�1=2

v ξ;0ð Þdξ: (93)

The eigenvalues satisfy σ1, σ2 ¼ 0, σ3: Setting uiþ1=2 and piþ1=2 as the values of

u and p at the contact discontinuity between Vn
i and Vn

iþ1, it follows that

F wR 0;Vn
i ;V

n
iþ1

� �� �� �

¼ �uniþj=2; p
n
iþj=2; puð Þniþj=2

� �T
: (94)

Then Godunov scheme for the Lagrangian coordinates takes the form

τnþ1
i ¼ τni þ

Δt

Δmi
uniþ1=2 � uni�1=2

� �

unþ1
i ¼ uni �

Δt

Δmi
pniþ1=2 � pni�1=2

� �

enþ1
i ¼ eni �

Δt

Δmi
puð Þniþ1=2 � puð Þni�1=2

� �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(95)
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where

Δmi ¼ ρ0i Δξi, pni ¼ p τni ; ε
n
i

� �

, εni ¼ eni �
uni
� �2

2
: (96)

If we now consider the moving coordinates, Godunov scheme can also be
derived equivalently by the following. Setting xiþ1=2 ¼ ξiþ1=2 with the approxima-

tion of u ¼ dx=dt, it follows that the Eulerian coordinate xiþ1=2 of the interface ξiþ1=2

at tn is upgraded with respect to

xnþ1
iþ1=2 ¼ xniþ1=2 þ Δtuniþ1=2: (97)

Next we deduce

ρni xniþ1=2 � xni�1=2

� �

¼ Δmi (98)

by a simple induction process. Hence the Lagrangian Godunov schemes become

Δmi ¼ ρ0i x0iþ1=2 � x0i�1=2

� �

xnþ1
iþ1=2 ¼ xniþ1=2 þ Δtuniþ1=2

8

<

:

(99)

with

ρnþ1
i ¼ xnþ1

iþ1=2 � xnþ1
i�1=2

� ��1
Δmi

unþ1
i ¼ uni �

Δt

Δmi
pniþ1=2 � pni�1=2

� �

:

enþ1
i ¼ eni �

Δt

Δmi
puð Þniþ1=2 � puð Þni�1=2

� �

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(100)

Notice that the Lagrangian Godunov schemes can be reformulated as a finite
volume method. Equation (100) can be written in conservative form:

∂t φJð Þ þ ∂ξ f ¼ 0: (101)

If we integrate these equations on ξi�1=2; ξi�1=2

� �

it follows that

d

dt

Z xiþ1=2

xi�1=2

φdξþ f iþ1=2 � f i�1=2

� �

¼ 0: (102)

Here we omit the dependency of f ,φ and x on t. Moreover, if we suppose that

φ is constant in each cell ξi�1=2; ξi�1=2

� �

, it follows by an explicit one-step method

that is

Δxnþ1
i φnþ1

i ¼ Δxni φ
n
i � Δt f niþ1=2 � f ni�1=2

� �

: (103)

Moreover, if ρ; u; eð Þ are constant in each cell with v ¼ u, we get the Godunov
scheme:

19

Scalar Conservation Laws
DOI: http://dx.doi.org/10.5772/intechopen.83637



Δ xni ρ
n
i ¼ Δmi

Δmnþ1
i unþ1

i ¼ Δmn
i u

n
i � Δt pniþ1=2 � pni�1=2

� �

Δmnþ1
i enþ1

i ¼ Δmn
i e

n
i � Δt puð Þniþ1=2 � puð Þni�1=2

� �

8

>

>

>

<

>

>

>

:

(104)

provided uniþ1=2; p
n
iþ1=2

� �

are determined by the solution of the Riemann prob-

lem, which is the desired result.

3.4 Comparison of Eulerian and Lagrangian schemes

In the literature there are two types of Godunov schemes: the Eulerian and
Lagrangian. To compare one with the other, both have advantages and disadvan-
tages. These are briefly listed in the following:

3.4.1 Eulerian approach

It is more nature; that is the properties of a flow field are described as functions
of the coordinates which are in the natural physical space and time. The flow is
determined by examining the behavior of the functions. Eulerian coordinates cor-
respond to the coordinates of a fixed observer. This approach is ease of implemen-
tation and computation. The computational grids derived from the geometry
constraints are generated in advance. The computational cells are fixed in space,
and the fluid particles move across the cell interfaces. Since the Eulerian schemes
consider the implementation at the nodes of a fixed grid, this may lead to spurious
oscillations for the problems like diffusion-dominated transport equations. By
adding artificial diffusion, one can get rid of these oscillations; however the nature
of the problem may differ from the original one. Besides, refining the grids may also
lead to remove numerical oscillations, but this process may augment the computa-
tion cost. Besides, while refining the grids, it may cause restriction of the size of
time step which is limited by CFL condition. This restriction does not occur in
Lagrangian case.

3.4.2 Lagrangian approach

It is based on the notion of mass coordinate denoted by m ξð Þ. An important
feature of the mass coordinate is that two segments have the same length if the mass
contained in these segments is the same. This leads to face with a disadvantage; that
is, at each iteration time step, the problem has to be converted from the natural
coordinate system to the mass coordinate system. Once the solution at the next step
is known, it has to be remapped into the natural coordinate system. As a result, this
process raises the cost of the computation. Lagrangian coordinates are associated to
the local flow velocity. In other words, as the velocity has different values in
different parts of the fluid, then the change of coordinates is different from one
point to another one in Lagrangian coordinates. Thus Lagrangian coordinates are
equivalent to the Eulerian coordinates at another time. Lagrangian description
states the motions and properties of the given fluid particles as they travel to
different locations. Hence the computational grid points are precisely fluid parti-
cles. Since the particle paths in steady flow coincide with the streamlines, no fluid
particles will cross the streamlines. Hence, there is no convective flux across cell
boundaries, and the numerical diffusion is minimized. As a result, Godunov method
in a Lagrangian grid is easier to handle. Moreover, in the case of higher schemes, the
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subsonic character of the flow makes the transformation much easier than in
Eulerian schemes. Lagrangian schemes consider the implementation in a grid that
moves with the flow which is an advantage for the problems like the transport
equations since the advective and diffusion terms can separately be examined.

Apart from the two main approaches, there is another method which is a com-
bination of both, so-called Eulerian-Lagrangian methods. It combines the advan-
tages and eliminates disadvantages of both approaches to get a more efficient
method. For further details we address the reader to the reference in the next part.

Notes

We have tried to present only the theoretical aspects of scalar conservation laws
with some basic models and provide some examples of computational methods for
the scalar models. There are plenty of contributors to the subject; however, we just
cite some important of these and the references therein. Scalar conservation laws
are thoroughly studied in particular in [12]; for a more general introduction includ-
ing systems, see [13, 15, 18, 19, 22] and the references therein. There are some
important works related to the concept of entropy provided by [7, 15, 16]. A more
precise study of the shock and rarefaction waves can be found in [23]. A simple
analysis for inviscid Burgers’ equation is done by [21]. The readers who are deeply
interested in systems of conservation laws and the Riemann problem should see
[8, 13, 15, 22, 24]. A well-ordered work of the propagation and the interaction of
nonlinear waves are provided by [26]. We refer the reader to the papers [1, 17] for
the theory of hyperbolic conservation laws on spacetime geometries and finite
volume analysis with different aspects. A widely introductory material for finite
difference and finite volume schemes to scalar conservation laws can be found in
[18]. In this chapter we have studied the one-dimensional gas dynamics on the
Eulerian and Lagrangian coordinates. For the detail on the Lagrangian conservation
laws, we refer [10]; moreover for both Eulerian and Lagrangian conservation laws,
we cite [11]. The proof of the equivalency of the Euler and Lagrangian equations for
weak solutions is given in [25]. There are several numerical works for Lagrangian
approach; some of the basic works on Lagrangian schemes are given in [2–6]. We
refer the reader to the book [7] for a detailed analysis of the mathematical stand-
point of compressible flows. Moreover Godunov-type schemes are precisely
analyzed in [14, 27]; whereas, Lagrangian Godunov schemes can be found in
[2, 12, 20]. As a last word, we must cite [9] as a recent and more general book
consisting of scalar and system approaches of both Eulerian and Lagrangian
conservation laws with theoretical and numerical parts which can be a basic source
for the curious readers.
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