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Chapter

Modeling and Design of Flexure
Hinge-Based Compliant
Mechanisms

Sebastian Linfs, Stefan Henning and Lena Zentner

Abstract

A compliant mechanism gains its mobility fully or partially from the compliance
of its elastically deformable parts rather than from conventional joints. Due to many
advantages, in particular the smooth and repeatable motion, monolithic mecha-
nisms with notch flexure hinges are state of the art in numerous precision engi-
neering applications with required positioning accuracies in the low micrometer
range. However, the deformation and especially motion behavior are complex and
depend on the notch geometry. This complicates both the accurate modeling and
purposeful design. Therefore, the chapter provides a survey of different methods
for the general and simplified modeling of the elasto-kinematic properties of flexure
hinges and compliant mechanisms for four hinge contours. Based on nonlinear
analytical calculations and FEM simulations, several guidelines like design graphs,
design equations, design tools, or a geometric scaling approach are presented. The
obtained results are analytically and simulatively verified and show a good correla-
tion. Using the example of a path-generating mechanism, it will be demonstrated
that the suggested angle-based method for synthesizing a compliant mechanism
with individually shaped hinges can be used to design high-precise and large-stroke
compliant mechanisms. The approaches can be used for the accelerated synthesis of
planar and spatial flexure hinge-based compliant mechanisms.

Keywords: compliant mechanism, flexure hinge, deformation behavior, motion
behavior, modeling, design

1. Introduction

A mechanism is generally understood as a constrained system of bodies designed
to convert forces or motions. Fulfilling the function of power transmission (drive in
the actuator system) or motion transmission (guidance in the positioning system),
mechanisms are typical parts of a mechatronic motion system. For the realization of
high-precise motion, increasingly compliant mechanisms are used instead of rigid-
body mechanisms. A mechanism that gains its mobility fully or partially from the
compliance of its elastically deformable parts rather than from rigid-body joints
only is named as compliant mechanism [1, 2].

In precision engineering and micromechanics, there are increasingly high
requirements for the motion system—especially regarding the smoothness, resolu-
tion, and repeatability of the motion. Therefore, compliant mechanisms with
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concentrated or distributed compliance have become established for special posi-
tioning [3], adjustment [4], manipulation [5], or metrology [6] tasks. In these
monolithic mechanisms, flexure hinges are mostly used as materially coherent
revolute joints [7], while a high motion accuracy in the micrometer range can
especially be achieved by common notch flexure hinges [8].

Nevertheless, the output stroke or motion range of such compliant mechanisms
is considerably limited by the material strength since identical circular notch shapes
are used for all hinges in the mechanism in most cases, even if they achieve differ-
ent rotation angles. For high-strength metals, which are typically used for precision
engineering applications, the rotation of flexure hinges is limited to small angles of a
few degrees [9]. The demand for a larger angular deflection and a lower shift of the
rotational axis results in numerous possible notch shapes and in a variety of some-
times very complex types of a separate flexure hinge, like the butterfly hinge [10].
Alternatively, mechanisms with a significantly increased hinge number in the
kinematic chain are proposed to increase the range of motion, for example [11].

To further increase the stroke, often complex combinations of several substructure
mechanisms are used in planar or spatial compliant stages, for example,
reported in [9].

The sequential procedure including structural type synthesis, dimensional syn-
thesis, and embodiment design, often used for rigid-body mechanisms, cannot be
applied to compliant mechanisms straightforward, since the force/displacement
limits of the flexure hinges must be matched with the required motion task. Thus,
kinematic and kinetic behavior must be considered simultaneously for synthesis.
Furthermore, the complex deformation and motion behavior of compliant mecha-
nisms complicates both their accurate modeling and purposeful design. Hence, the
synthesis is iterative, nonintuitive, and often time-consuming so far, and specific
optimization approaches, for example [12], cannot be generalized. However, opti-
mizing the shapes of easy-to-manufacture and mainly used notch flexure hinges
may prove useful in the synthesis of compliant mechanisms. Among many possible
notch shapes, power function flexure hinges, based on the higher order polynomial
hinges suggested in [13], are especially suitable because they are highly variable and
allow a simplified modeling, too [14].

In this chapter, a survey of different methods for the general and simplified
modeling of the elasto-kinematic properties of flexure hinges and compliant mech-
anisms is provided for four certain hinge contours, the circular, the corner-filleted,
the elliptical, and the power function-based contours, with different exponents.
Based on nonlinear analytical calculations and FEM simulations, several approaches
and guidelines like design graphs, design equations, design tools, or geometric
scaling are presented which can be used for the flexure hinge design. The results are
confirmed by means of analytical modeling and FEM simulation. The main
approach with regard to the mechanism synthesis is to design each flexure hinge in
a compliant mechanism individually in dependence of the known relative rotation
angles in the rigid-body model. A four-bar path-generating mechanism is used as an
example to show the benefits of the synthesis method regarding both a high preci-
sion and a large stroke in comparison to the use of identical notch geometries. Thus,
the need for simulation is reduced.

2. Flexure hinge-based compliant mechanisms

A structural part of a compliant mechanism with a greatly increased compliance
can be seen as a compliant joint, which allows at least one relative motion due to
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deformation, but it is normally limited to a localized area. In dependence of the
form of the relative motion, three types for a joint with one degree of freedom
(f = 1) are existing, the revolute pair, the prismatic pair, and the screw pair (see
Table 1).

Conversely to rigid-body joints, in which two rigid links form either a form-
closed or force-closed pairing, neighboring links of a compliant mechanism are
connected to each other in a materially coherent way. Thus, an increased compli-
ance can be achieved through a variation of geometry and/or a variation in material,
while the geometric design is in the focus of the following investigations. In this
chapter, macroscopic compliant mechanisms with flexure hinges realizing a desired
rotary motion are regarded, since they are used in most cases.

2.1 Analysis and synthesis of compliant mechanisms

For the synthesis of a compliant mechanism, three main approaches are
suggested in literature: synthesis through the rigid-body replacement method (e.g.,
[15]), synthesis through the topology optimization method (e.g., [16]), and synthe-
sis through constrained-based methods (e.g., [17]). In order to realize a better
guidance accuracy, the rigid-body replacement synthesis is more suitable than the
topology optimization synthesis [18]. Therefore, here the purposeful design of a
compliant mechanism based on the rigid-body model is meant by speaking of
synthesis. The geometric design of the incorporated flexure hinges is a key point
during the synthesis, because often multi-objective design criteria exist.

Regarding a four-bar Roberts mechanism realizing an approximated straight-
line path of a coupler point P, the rigid-body mechanism and the compliant coun-
terpart are shown in Figure 1. For the replacement, the same initial position of the
compliant mechanism with the crank angle y is used as in the rigid-body model. The
Roberts mechanism with four hinges is a typical path-generating mechanism which
is used for the rectilinear guidance of a coupler point in precision engineering
applications, for example [19-22].

Joint type Symbol Rigid-body joint Compliant joint

Revolute pair (hinge) \)/

Prismatic pair

~
'S

Table 1.
Classification of joints with £ = 1 by means of the form of relative motion.
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Figure 1.
Analysis and synthesis of a compliant mechanism based on the rigid-body model using the example of a
path-generating Roberts mechanism.

In contrast to the synthesis, the analysis describes the modeling of the rota-
tion axes and link lengths of the rigid-body model based on the compliant mecha-
nism, for example [1, 2]. Additionally, the bending stiffness of all hinges has to
be considered.

With a few exceptions (e.g., [5, 23]), almost identical flexure hinges are used in
the same single compliant mechanism. However, the relative rigid-body-based
rotation angles ¢ for the desired motion of the mechanism are different for the
incorporated hinges in most cases. Due to the different rotation angles, different
flexure hinge contours are also required. Because the deflection angle ¢ of each
flexure hinge is approximately equal to ¢ [24], an angle-based and goal-oriented
four-step synthesis method for using individually shaped notch flexure hinges in
one compliant mechanism can be applied [25]. The basic phases are (cf. Section 4):

i. Synthesis of a suitable rigid-body model
ii. Replacement and design of the compliant mechanism
iii. Goal-oriented and angle-based geometric design of the flexure hinges

iv. Verification of results and proof of requirements.

In literature, the specific geometric design of the flexure hinges during synthesis
is only considered when using almost identical hinges in a compliant mechanism
and standard contours with a limited variability like corner-filleted hinges [26].

2.2 Classification of compliant mechanisms

In dependence of the existence of rigid-body joints, compliant mechanisms can
be separated into the categories of fully compliant mechanisms or partially compli-
ant mechanisms, while the presented design guidelines in this chapter are suitable
for both. Additionally, fully and partially compliant mechanisms can be separated
into mechanisms with concentrated or distributed compliance [2] (see Table 2),
while mechanisms with concentrated compliance are regarded here.

Furthermore, the presented results in this chapter are focused on planar com-
pliant mechanisms (see Figure 2). Nevertheless, the suggested methods and design
approaches can be used for spherical and spatial compliant mechanisms, too.

2.3 Classification of flexure hinges
A flexure hinge is understood as a compliant joint which approximately acts as a

hinge due to flexural bending. Thus, the form of relative motion can only be
idealized as a rotation. Because of their monolithic arrangement, compliant joints
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Mechanism Fully compliant mechanism Partially compliant mechanism

With concentrated
compliance

With distributed compliance

Table 2.
Classification of compliant mechanisms by means of the structural design and the distribution of compliance.

() (b) (©

Figure 2.
Classification of compliant mechanisms by means of the position of the revolute axes: (a) planar mechanism,
(b) spherical mechanism, and (c) spatial mechanism according to [27].

provide numerous approaches for the design of a flexure hinge. Based on the well-
described leaf-type flexure hinge [28], many different flexure hinge types have
been developed in the past decades or introduced in recent works in order to realize
a larger angular deflection and/or a more precise rotation (see Figure 3) [10, 29-
31]. Many more flexure hinge types are classified in [32].

The design guidelines in this chapter are focused on notch flexure hinges
because different design goals can be met by selecting between comparable, simple
notch hinge designs already, largely due to a great contour variety [32]. Due to their
low complexity, they are easy to manufacture and therefore mainly used in com-
pliant mechanisms, especially in kinematic chains with a higher link number.

Notch flexure hinges have often geometrically been designed so that various
cutout geometries are proposed to describe the variable contour height. There are
mostly predefined basic geometries which lead to the typical precise hinge with a
semicircular contour, the large-deflective hinge with a corner-filleted contour, or
the elliptical hinge as a compromise [33]. Furthermore, flexure hinges are designed
with other elementary or complex geometries (e.g., [34]) to realize special proper-
ties. Higher order polynomial functions are not state of the art. But among the

Figure 3.

Typical types of flexure hinges used to achieve a rotational motion with one degree of freedom (f = 1):

(a) leaf-type hinge, (b) crossed leaf-type hinge, (c) prismatic crossed hinge, (d) notch hinge, and (e) multi-
trapezoidal hinge/butterfly hinge.
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Figure 4.

Typical geometries of notch flexure hinges with their contour-specific parameters: (a) circular contour with
radius R, (b) corner-filleted contour with stress-optimal fillet radius r = 0.1 1, (c) elliptical contour with major
axis ty and minor axis vy, and (d) variable power function-based contour, shown for different exponents n.

variety of geometries, especially these contours offer high optimization potential,
while a comparatively simple modeling is possible [35]. Thus, the advantages of the
polynomial contour are implemented and extended to a power function contour to
offer a wider range of possible hinges due to a rational exponent z [14], with

(H—h)

l n

(3)

In the following, four certain flexure hinge contours are considered (see
Figure 4): the semicircular contour, the corner-filleted contour with a stress-
optimal and hinge length-related fillet radius » = 0.1 [36], the semielliptical
contour, and the power function-based contour. The remaining contour height

functions and detailed information about the depicted segment-wise contour
modeling are given in [14]. Many more notch geometries are classified in [32].

he(x) =h+ lx|”, with n € R. (1)

3. Modeling and design of notch flexure hinges

As a flexure hinge, a monolithic, small-length, and elastically deformable seg-
ment of a compliant mechanism with the variable and symmetric contour height
h.(x) and a rectangular cross section is defined, which provides a relative rotation of
two adjacent links mainly limited due to bending stress (see Figure 5). Since not
only the notch segment undergoes deformation, it is recommended to model the
hinge with little segments of both adjacent links and as a 3D solid structure [37, 38].

In the following, three important rotational performance properties are consid-
ered. A flexure hinge provides a restoring force (a property called bending stiffness),
which may be beneficial in precision applications, too. Depending on the material

L2

contour design domain

M / + P
// /1 ol = LN 77:--§‘ ‘ T ‘ / <5
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. - \\\\\\/
(a) (b)

Figure 5.

Modeling of a notch flexure hinge under a bending moment and/or a transverse force load: (a) hinge with a
variable hinge height within the contour design domain, the geometric parameters and the deflected state and
(b) parameters for the theovetical characterization and approach for the definition of the rotational axis shift
based on guiding the center with a constant distance, the fixed center approach.
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coherence, the angular rotation of a flexure hinge is restricted by maximum
acceptable stresses or elastic strains (maximum angular deflection). Therefore, the
stroke of a compliant mechanism is limited as well through the joint with the largest
deflection angle in the kinematic chain, assuming the same contours are used. In
addition, no exact relative rotation is possible with a flexure hinge, because its axis
of rotation is always shifted as geometric and load parameters vary (rotational
precision) [36, 39]. In turn, this can lead to path deviations in the compliant mech-
anism compared with the rigid-body model that can no longer be considered negli-
gible, especially in precision engineering applications [24, 40].

Regarding the influence on the flexure hinge properties, two main groups of
geometric design parameters are existing, the hinge dimensions (L, [, H, k, w) and
the hinge contour or notch shape (function %.(x)), while the total height H repre-
sents the link height in the compliant mechanism, too. Hence, four geometric
parameters—the hinge total length L, the hinge notch length /, the minimum hinge
height /2, and the hinge width w—can be varied within the design domain according
to the following introduced dimensionless ratios:

ﬂL:%:ﬁl:%:ﬂh:%:andﬂw:%- (2)

For a separate flexure hinge, it is known that the properties depend on the basic
geometric dimensions as follows [41, 42]: the bending stiffness and maximum stress
increase in particular as the minimum hinge height / increases and the rotational
precision decreases with an increasing minimum height 4. Furthermore, several
different and partly contrary recommendations for some hinge dimension ratios of
circular and corner-filleted flexure hinges are existing (cf. [32]).

Other than that, the high-strength aluminum alloy AW 7075 with Young’s mod-
ulus E = 72 GPa, Poisson’s ratio v = 0.33, and the admissible elastic strain limit
€adm = 0.5% is chosen as a typical material which has been used for multiple high-
precision engineering applications, for example [3, 21].

3.1 Nonlinear FEM simulation

For the quasi-static structural FEM simulation, performed with ANSYS Work-
bench 18.2, the hinge is modeled as a 3D structure with Solid186 hexahedral ele-
ments. The CAD model and FEM model are shown in Figure 6. The FEM model is
considered with a fixed support on one side, and it is free on the opposite side. The
free end is stepwise loaded with a bending moment or a directionally constant
transverse force applied at an edge parallel to z. The analysis of two points on the
loaded hinge side enables an accurate calculation of the rotation angle ¢. Hence, the

(b)

Figure 6.
FEM-based characterization of a flexure hinge: (a) CAD model and (b) FEM model with deformed hinge and
mesh details.
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characteristic M(¢) and F(¢) curves can be determined. The maximum deflection
angle ¢max can be calculated in dependence of the regarded maximum value of the
equivalent von Mises strain &,,,,. Moreover, large deflections are considered for an
accurate comparison with the analytical calculations due to the nonlinear beam
theory. Other assumptions are a linear material behavior and a comparable and fine
discretization of the hinge, especially in areas of the minimum hinge height.

For the determination of the rotational precision, an additional part is added
onto the CAD model according to the often used and chosen fixed center approach
[36]. Based on guiding the center point C with a constant length [/2, the distance
between C and C” defines the rotational axis shift v.

3.2 Design graphs

Among the four investigated flexure hinge contours (cf. Figure 4), the power
function contour allows the modeling of a wide spectrum of different notch hinges.
Depending on the exponent # and the hinge dimensions, arbitrary complex curves
can be realized, or nearly any elementary geometry can be approximated. For a
given deflection angle ¢, it has been shown that 16th-order polynomial contours
lead to low stress or strain values comparable to those of corner-filleted contours
[13]. Furthermore, it was found that fourth-order polynomial contours allow for
both a precise rotation and large rotation angles in general [24]. In addition, it is
quite possible to realize required hinge properties by arbitrarily varying #.

Based on a geometrically nonlinear FEM simulation using a given displacement
at the free end, design graphs for power function-shaped flexure hinges with
typical dimension have been created (see Figure 7) (cf. [24]). Thus, the bending
moment M can be easily determined depending on the rotation angle ¢ and #.
Analogously, the transverse force F results in good approximation by considering
the moment M divided by the half-length L/2 (cf. Table 4) [33]. Furthermore, a
minimum required exponent z can be read out depending on ¢ and the admissible
material strain €,4,,,. The determination of # is also possible with an odd or rational
number.

3.3 Nonlinear analytical calculation

As long as the dimensions of the cross section are small compared to the rod
length, the nonlinear theory for large deflections of curved rodlike structures is
sufficient to describe the deformation behavior of compliant systems [2]. Hence,
the analytical investigations are based on the well-known Euler-Bernoulli’s theorem
for a static problem of a slender structure with an assumed axial inextensible line.
The additional assumption is made that Saint-Venant’s principle and Hooke’s law
apply. If a flexure hinge is modeled together with adjacent deformable link seg-
ments as a bent rod with a variable height, this theory is assumed to be suitable, too.
Further specific effects relevant for notch flexure hinges have to be expected espe-
cially for very thin hinges [43], but they are neglected here with regard to general
design guidelines. Among them are shear deformation [44], stress concentration
[45], anticlastic bending [46], or manufacturing imperfections [47].

For the analytical calculation, a stationary coordinate system {¢,#,{} is consid-
ered with the origin 0 at the fixed end (cf. Figure 5b). The arc length s is used to
characterize the neutral axis in the deflected state. The bent hinge undergoes a
displacement u;(s) and u,(s) for each coordinate along s, which lead to the deflection
angle 0(s). The curvature «(s) is the gradient of (s). Hence, four nonlinear differ-
ential equations are used to model a flexure hinge in the deflected state:
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Figure 7.

FEM-based design graphs to determine the bending moment M (depending on the rotation angle ¢ and the
exponent n of each power function flexure hinge) or to determine the minimum exponent n (depending on ¢
and the admissible material strain €,,,,), created for different hinge heights and Py, = 3, P = 1, Py = 0.6 (cf.
[24]): (a) M for By, = 0.03, (b) n for p, = 0.03, (c) M for Py, = 0.05, (d) nfor P, = 0.05, (¢) Mfor fy, = 0.1,
and (f) nfor By, = 0.1.

%+Fc039:O, (3)

ds
%—KZO,WithK:EI\,/I—Ii, (4)
%—cos@—i—le, (5
L sin0 =0, (6)
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The initial curvature is zero here, because a fully symmetric flexure hinge is
considered. A numerical solution is done for the system of differential equations
with the subsequent boundary conditions for a bending moment at the loaded side:

M;(L) = M, 6(0) = 0, u:(0) = 0, u,(0) = 0, 7)
and with the following conditions for a transverse force load.
M:(L) = 0,0(0) = 0, u(0) = 0, ,(0) = 0. (8)

The boundary value problem is solved numerically with MATLAB [14]. At the
end of this procedure, all four parameters «, 6, u;, and u, are obtained for each point
s along the deformed neutral axis, and further results for the considered hinge
properties can be estimated. The bending stress o is analyzed after linear beam
theory to characterize the maximum stress of the entire flexure hinge for a given
deflection angle. According to Hooke’s law, stress and strain are linearly dependent
on each other by E, wherefore the bending strain ¢ is considered. The maximum
absolute value of the strain always occurs at the outer fiber for the maximum #-
coordinate, which corresponds with the contour height function of the hinge. In
addition, the absolute value of the rotational axis shift v, based on the fixed center
approach, is put together from the axis shift of point C in £ and #-direction [14].

3.4 Design equations

To provide closed-form equations which can be used for the simplified flexure
hinge synthesis regarding all three rotational properties, six design equations have
been developed for both load cases based on the analytical characterization due to
the described nonlinear theory (see Table 3). SI units must be used for all parame
ters. The load acts close to the hinge center at L = 2H in this case, while only the
elastic properties are almost independent from the value of this distance for the
bending moment load [33]. The equations are accurately valid for a rotation angle
up to ¢ = 5°. The calculation of results for larger angles is nevertheless possible.

With regard to an accelerated and unified synthesis of compliant mechanisms,
the general design equations are concise and thus advantageous. With only two
coefficients, their structural form is simple, contour-independent, and, with respect
to the maximum hinge height or link height H as scaling factor, dimensionless.

The further necessary contour-specific coefficients of all six design equations are
given in Table 4 for the four regarded hinge contours and an appropriate parameter
range of the hinge dimensions, the hinge length ratio g, (0.5 < f; < 1.5) and the
hinge height ratio f, (0.03 < f3, < 0.1). The coefficients of the used power functions
are determined with MATLAB based on a fitting procedure in order to attain the
smallest maximum error over all calculated result points [33].

Property Bending moment Transverse force
Bending stiffness % =k E p, p, 1) g, @) 3 qE) = kg E p, p, ) g, ke 2
9 (10)
Maximum angular deflection . 5\ kv . ke
8 ol = 2 (2) (D) 9] = i (1) (12)

Rotational precision/axis L= ko ple g, (k) f (13) 2 = ko ple g, Gk g (14)
shift

Table 3.

Contour-independent closed-form design equations based on analytical modeling.
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Hinge contour kyn knio ke kpy kit ko koni2 kyr1 kyr>
[10°°] [10 2] [10°7] [10 2]
Circular 10790 0.52 10.55 0.51 0.5 99.85 052 1912 0.94
Corner-filleted 8395 096 841 0.96 0.5-0.2 8576 095 920 1.89
Elliptical 82.50 054 827 0.54 0.5 11435 0.57 18.21 1.14

Power function 112.07 074 1122 074 044°%%Y 7132 073 624 147
(fourth order) 0049

T
L/

Table 4.
Load and contour-specific coefficients for the design equations in Table 3.

The relative discrepancy errors between the design equation results and the
analytical results, a comparison with FEM results, as well as coefficients for further
power function contours are mentioned in [48]. According to the theory, the accu-
racy of the results is nearly independent of the parameter range for the hinge width
f- The maximum strain occurs contour-independently in the hinge center for a
bending moment. An additional factor k.,;; has become necessary to consider the
deviation of the critical strain location from the center for a transverse force load,
especially for corner-filleted and power function hinges (cf. Section 3.7).

3.5 Design tool detasFLEX

Moreover, computational design tools may prove useful for the comprehensive
analysis and synthesis of various notch flexure hinges, such as the developed tool
detasFLEX [14], which is also based on the described nonlinear modeling approach
(cf. Section 3.3). The graphical user interface (GUI) is shown in Figure 8.

The design tool was created with MATLAB as a stand-alone software application
which only requires the license-free runtime environment. Four flexure hinge con-
tours are considered, the circular, corner-filleted, elliptical, and power function-
based contours (cf. Figure 4). Various geometric and material parameters may be
realized to allow for a broad usability in different cases. The calculation is possible
for a bending moment and a transverse force as well as both loads combined for
different lengths of each hinge side. The computation of results is further possible
for all three load cases with a given load or a given rotation angle up to 45°. A wide
range of result parameters may be computed, and the most important hinge per-
formance properties like the deformed neutral axis, the bending stiffness, the rota-
tional precision, and the elastic strain distribution are illustrated in the form of
diagrams. Additionally, a preview of the exact hinge geometry with the instant
visualization of input changes is implemented. Also, values for the angle or load,
axis shift, strain distribution, maximum strain, and maximum possible rotation
angle are calculated. Using a corner-filleted hinge, for example, the deviation of the
bending stiffness between the FEM and design tool results is in the range of 0.1-
9.4% for a given rotation angle of 10° [14].

11
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B detasFLEX - Design tool for the analysis and synthesis of flexure hinges
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Figure 8.

Graphical user interface of the computational design tool detasFLEX, shown using the example of a
corner-filleted flexure hinge.

DetasFLEX enables a wide variety of different geometry, material and contour
selections, as well as multiple analysis criteria and settings so that numerous notch
flexure hinges for diverse tasks may be accurately analyzed within a few seconds.
Thus, each hinge in a compliant mechanism can be designed purposefully and
individually. Based on this, the PC-based synthesis is generally possible, too.

3.6 Comparison of results and usability

The different methods for modeling the elasto-kinematic flexure hinge proper-
ties described above are compared in Table 5 using the example of a power
function-shaped hinge of the fourth order. The design tool results and analytical
modeling are mentioned together due to the equality of the values. It is obvious that

Method Bending moment Transverse force
@ =5° €.dam = 0.5% @=5° €2dm = 0.5%
M v €max @Pmax F v €max @Pmax

[Nm]  [pm]  [%] [°] [N]  [pm]  [%] [°]
FEM 0.0294 2190 0.414 6.039 2946 9.980  0.439 5.695
Design graph 0.029 — 0.43 5.3 2.9 — 0.43 5.3
Design equation 0.0284 2107 0.438 5.707 2.842 8.490  0.459 5.403
Design tool/ 0.0277 2226  0.428 5.839 2785 9.459  0.450 5.562
analytic

Table 5.

Comparison of results for the method-dependent elasto-kinematic properties using the example of a power
Sfunction hinge of the fourth order (L. = 2, P = 1, Pn = 0.03, Bw = 0.6).
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the suggested design guidelines and tools allow the accurate and simplified deter-
mination or calculation of the deformation, stress/strain, and motion behavior with
respect to the assumptions and geometric restrictions.

Regarding the usability, the design tool provides the most comprehensive sup-
port for the modeling and design of various notch flexure hinges (see Table 6).

Additionally, the design equations are also easy to use for the four regarded
hinge contours. Furthermore, it becomes obvious that the determination method
influences the possible values for the hinge dimensions and the power function
exponent 7 as well as valid ranges of the deflection angle. Due to compactness, in
Section 4.3, n is exemplarily determined based on the design graph approach.

In conclusion, all three design aids can be used for the accelerated contour-
specific quasi-static analysis of the elasto-kinematic properties of notch flexure
hinges with no need for further iterative and time-consuming simulations. More-
over, the guidelines and tools may be used for the systematic angle-dependent
synthesis of compliant mechanisms with differently optimized flexure hinges (cf.
Section 4).

3.7 Influence of the contour on the elasto-kinematic hinge properties

Independent of the selected method, the influence of the flexure hinge contour
on the elasto-kinematic hinge properties can be generalized, especially for thin
hinges. In Figure 9, the analytical results are exemplarily presented for a force load.

The load-angle behavior is almost linear for the regarded angular deflection up
to 5°. The following order can be concluded from the lowest to the highest stiffness:
the corner-filleted, power function, elliptical, and circular contour (Figure 9a).

Because the maximum strain value limits the deflection, the maximum rotation
angle of a flexure hinge is always possible with a corner-filleted contour, while a
circular contour leads to the lowest possible angles (Figure 9c¢). Furthermore, the
asymmetric strain distribution due to the transverse force load is obvious, especially
for a corner-filleted contour (Figure 9d). Due to the notch effect, the strain is
concentrated in the hinge center for a circular and elliptical contour, while the other
contours lead to a more even strain distribution along the hinge length.

Furthermore, the hinge contour has a strong influence on the axis shift, which
can be in the range of some micrometers up to submillimeters in dependence of f;
and especially ,. With regard to a high rotational precision or a small axis shift, the
following order is existing for thin hinges: the circular contour, elliptical contour or
power function contour to the same extend, and corner-filleted contour
(Figure 9b).

Thus, the power function contour of the fourth order simultaneously provides a
large angular deflection and a high rotational precision. The influence of the basic
hinge dimensions is further investigated in [33]. An influence of f; is to be
expected, too.

4. Modeling and design of compliant mechanisms

In this section, the synthesis method presented in Section 2.1 is applied to a path-
generating mechanism to explore the angle-based approach of the optimal design
with individually shaped flexure hinges in one single compliant mechanism using
power functions. Therefore, a symmetric four-bar Roberts mechanism with four
hinges, realizing the guidance of the coupler point P on an approximated rectilinear
path (cf. [19-22]), is investigated. The rigid-body model and the compliant mecha-
nism are shown in Figure 1 in the initial and deflected positions.

13
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Method, related Hinge contours

Domain and

Hinge dimensions fi;, f;, Range of Result criteria

Modeling effort/

reference value of P, and g, @ computation time
Circular Corner- Elliptical = Power
filleted function

FEM, nonlinear, e.g., X b X X Arbitrary Arbitrary Arbitrary Arbitrary Great/ high

[24]

Analytical, nonlinear, X X X X Arbitrary Arbitrary Arbitrary Arbitrary Great/ low

e.g., [2]

Design graph [24] X 2<n <20 Predefined (three cases for < 10° M(g), (F(¢)); @maxs None
ﬂh) Emax

Design Eq. [33, 48] X X be X 2,3,4,8,16 Constrained <5° M(@), F(@), v(¢)s @max> None

gmax
Design tool [14] X X X X 1.1<n <50 Slightly constrained < 45° M(p), E(@), v(¢)5 Prmaxs Little/low
Table 6.

Comparison of usability of the presented methods, guidelines, and approaches for the modeling and design of notch flexure hinges.
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Figure 9.

Analytical vesults for the influence of the flexure hinge contour on the hinge properties (By, = 2, 1 = 1, Pn = 0.03,
Pw = 0.6, force load): (a) bending stiffness, (b) axis shift, (c) maximum angular deflection, and (d) outer fiber
strain distribution for ¢ = 5°.

The link lengths are suitably chosen as ApA = BoB = 66.6 mm, AB = 56.6 mm,
AyBg = 165.71 mm, and AP = BP = 73.6 mm, according to [24]. Furthermore, the
mechanism position with the replacement angle y = 35° is used. Thus, applying the
input displacement s = #,p* = #,p = 10 mm in point P, the relevant straight-line

deviation for the rigid-body model results as u,p* = —24.7 pm.

4.1 Synthesis method based on individually shaped flexure hinges

A compliant mechanism with individually shaped power function flexure hinges
is synthesized according to the synthesis method based on the relative rotation
angles in the rigid-body model (cf. Section 2.1) exemplarily using the design graph
approach (cf. Section 3.2). The resulting compliant mechanism is shown in
Figure 10d. Furthermore, the mechanism properties are compared with three com-
pliant mechanisms using identical hinges designed with circular, corner-filleted, or
power function contours of the fourth order (see Figure 10a—c).

Following the rigid-body replacement approach, the flexure hinge centers are
designed identical to the revolute joints. Next, suitable flexure hinge orientations
are chosen with respect to the link orientations of the crank and the coupler (cf.
Section 4.3). The main link parameters are specified as H = 10 mm and f,, = 0.6,
while the same aluminum material as in Section 3 is used (E = 72 GPa, £,4, = 0.5%).
Furthermore, comparable short and thin hinges are used with the hinge length ratio
fi = 1 and the height ratio f, = 0.03 because they are especially suitable [24].
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Figure 10.

Designs of the compliant Roberts mechanism (Bi = 1, Pn = 0.03) with (a) circular hinges (R = H/2),

(b) corner-filleted hinges (r = 0.1 1), (c) identical power function hinges (n = 4), and (d) different power
Sfunction hinges (na, = 3, Na = 12, N = 10, Np, = 3).

Based on the relative rigid-body-based rotation angles ¢40* = 3.8°, p,* = 10.4°,
@p* = 9.5° and ¢po* = 3.0°, which result through a simple kinematic analysis, the
power function exponents can be determined for the assumption ¢ = ¢*. According
to the designed graph in Figure 7b, the exponents result inn40 = 3, n4 = 12, ng = 10,
and npo = 3. The exponents are exemplarily determined as even numbers, while
rational exponents are also possible for a more specific design.

4.2 Nonlinear FEM simulation

For the quasi-static structural and geometrically nonlinear FEM simulation of
the compliant Roberts mechanisms, the same settings as for a separate hinge are
used (cf. Section 3.1). The results for the motion path of the coupler point P are
shown in Figure 11 for a given x-displacement in dependence of the used flexure
hinge contours and additionally for the rigid-body model. Regarding a consistent
modeling, the coordinate system is defined at the fixed support in the following.

The results for the path deviation compared with the rigid-body model confirm
the impact of the synthesis approach for the mechanism with different power

15
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Figure 11.

FEM vesults for the motion behavior of the Roberts mechanisms (P = 1, P, = 0.03): (a) model and deformed
state for input s = Uyxp = 10 mm and (b) straight-line deviation of P; the curves are drawn in dashed lines from
the input displacement at which €,,,, is exceeded.
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function contours regarding a higher path precision (compared to identical corner-
filleted contours) and the possible required large stroke (compared to identical
semicircular and power function contours with # = 4). Furthermore, analyzing the
straight-line deviation, it becomes obvious that a more precise rectilinear motion
can be realized using the compliant mechanism with individually shaped flexure
hinges.

4.3 Nonlinear analytical calculation

The analytical modeling of the compliant mechanisms is also based on the
nonlinear theory for large deflections of rodlike structures described in Section 3.3.
To consider the coupler point P, a branched mechanism has to be modeled, and the
rod is split into three sections in K, each with its own rod axis s;—s3 (see Figure 12).
A force-driven analysis is implemented, while the input force is increased until the
desired displacement #,p = 10 mm is reached. The straight-line deviation, the
maximum strain, and the necessary deflection force are determined, too.

From investigations on separate hinges [49] and flexure hinge-based compliant
mechanisms [50, 51], it is known that the flexure hinge orientation strongly influ-
ences the elasto-kinematic properties of compliant mechanisms. Therefore, a
study of the Roberts mechanism is done, while the hinges A and By and A and B
are modeled equally mirrored (see Figure 13). From the results, the suitable

60

T W
H £ kz mm -
ils, N
H 1

R I

‘/B\”’i/\“' y

Bull

0 20 40 60 80 100 120 140 mm 180

X —

(a) (b)

Figure 12.

Analytical modeling of the Roberts mechanism (P = 1, Py, = 0.03): (a) branched mechanism with point P
split up in three individual rods connected at point K, (b) resulting from MATLAB plot of initial and deflected
state for uxp = 10 mm (Np, = 3, Np = 12, N = 10, Np, = 3).

6

pm

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

aq —=
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Figure 13.

Analytical vesults for the influence of the flexure hinge orientation on the straight-line deviation of a
mechanism with power function contours (P = 1, P = 0.03, Uxp = 20 mm): (a) model with two variable
orientation angles from 0° to 90° and (b) deviation of P.
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orientations a4 = 35° and a4 = 0° can be concluded to realize the smallest straight-
line deviation.

4.4 Comparison of results

The FEM results and analytical results for the four investigated compliant Rob-
erts mechanisms are in a very good correlation (see Table 7).

Generally, all four compliant mechanisms exhibit a very small straight-line
deviation in the low micrometer range. With respect to the path deviation com-
pared to rigid-body model, the values differ from the straight-line deviations.
However, as for the separate hinge (cf. Figure 9b), the mechanism with circular
contours provides the smallest path deviation. With regard to the maximum
admissible strain, the desired stroke cannot be realized when using identical circular
or power function hinges of the fourth order (cf. Figure 11b). In contrast, the full
stroke is possible when using the corner-filleted hinges and, as expected, also with
the synthesized mechanism with individually shaped hinges. Furthermore, the
input force varies considerably, and, thus, a required stiffness can be achieved, too.

Hence, the result method independently confirms the practicability and impact
of the angle-based synthesis method for different hinges in one mechanism. More-
over, the presented nonlinear analytical approach is suitable to accurately model the
elasto-kinematic properties of planar flexure hinge-based compliant mechanisms
under consideration of the specific hinge contour without simulations.

4.5 Geometric scaling approach

The influence of the scale on the deformation and motion behavior is a further
relevant aspect regarding the similitude of mechanisms [52]. Based on investiga-
tions of a separate flexure hinge and a compliant parallel linkage [53], the uniform
geometric scaling may also be a suitable synthesis approach for compliant mecha-
nisms if the change ratios of the elasto-kinematic properties are known.

Here, uniform geometric scaling is understood as a linear variation of all geo-
metric length parameters with the scale factor of the value g, while the initial
dimension H = 10 mm is considered for g = 1. The geometric scaling approach is
exemplified for the Roberts mechanism with different power function hinges based

Hinge contours Method Straight-line Path deviation  Input Maximum
deviation u,p [pnm]  |u,p — u,p" | force F, strain &,
(nm] [N] [%]
Identical circular, R = H/2 FEM —13.20 11.53 4.93 1.84
(Figure 10a) Analytical ~13.72 11.02 461 1.88
Identical corner-filleted, FEM 13.20 37.93 0.80 0.36
r= 011 (Figure 10b) Analytical 13.65 38.38 0.78 033
Identical power function, FEM —8.99 15.74 213 0.85
n = 4 (Figure 10c) Analytical —9.23 15.50 216 0.89
Different power function FEM 129 26.02 1.30 0.46
(Figure 10d) Analytical 0.86 25.59 125 0.47
Table 7.

Comparison of FEM and analytical vesults for the elasto-kinematic properties of the Roberts mechanisms
with identical common hinge contours and with different power function contours (B = 1, B, = 0.03, Py = 0.6,
with H = 10 mm and input uxp = 10 mm).
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Geometric scaling of the compliant Roberts mechanism shown for the factors g = 0.5, g =1, and g = 2
(mechanism with different power function hinges, ) = 1, B = 0.03).

Scaling Stroke  Straight-line  Straight-line Path deviation Input Max. Angle
factor Uyp deviat. u,p* deviat. u,p |uyp — uyp~|  forceF, strain @A

[mm] [pm] [pm] [pm] [Nl emax[%]  [°]
g=05 5 —10.78 0.431 11.21 0.123 0.468 10.33
g=1 10 —24.73 0.862 25.59 1.249 0.468 10.33
g=2 20 —49.74 1.725 51.46 4.997 0.468 10.33
g=10 100 —249.91 8.623 258.53 124.930 0.468 10.33

Table 8.

Analytical results for the influence of geometric scaling on the elasto-kinematic properties for the mechanism
with different power function hinges (P = 1, Pn = 0.03, Pw = 0.6).

on analytical calculations. Therefore, different scaling factors are regarded (see
Figure 14). The results are mentioned in Table 8, while the input stroke u,p is
scaled as well.

Based on the results, geometric scaling is an appropriate approach for the accel-
erated synthesis through the adjustment of an initially designed or used compliant
mechanism with known elasto-kinematic properties to each required scale of the
new application through the use of the property change ratios concluded in Table 9.
The ratio is defined as property value for g # 1 related to property value for g = 1.
Therefore, performing a new calculation is not necessary anymore. The results are
independent of the hinge contour, while a nonuniform scaling is possible, too [53].
Furthermore, this approach can be used to significantly increase the stroke by
increasing the mechanism size or to reduce the straight-line deviation by miniatur-
ization because strain values and angles are independent of the scale.

Property Property change ratio
Maximum strain 1
Angular deflection 1
Input displacement, motion path coordinates, path deviations g
Input/deflection force z

Table 9.

Influence of uniform geometric scaling with the factor g on the change ratios of the elasto-kinematic properties
of planar flexure hinge-based compliant mechanisms.
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5. Conclusions

Flexure hinge-based compliant mechanisms offer a high-precise and large-
stroke guidance motion with straight-line or path deviations in the single-
micrometer range if they are purposefully designed. It is shown that the synthesis of
a compliant mechanism with individually shaped flexure hinges based on the rela-
tive rotation angles in the rigid-body model is a suitable and general synthesis
method which is easy to use without the need of numerical calculations, FEM
simulations, or a multi-criterial optimization (cf. [25, 35]). Therefore, this chapter
provides a survey of several approaches, guidelines, and aids for the accurate and
comprehensive design of notch flexure hinges using various hinge contours, while
power function contours are particularly suitable. The use of design graphs, design
equations, a computational design tool, or a geometric scaling approach is briefly
presented. The results are verified by analytical calculations and FEM simulations,
and also, not mentioned, by experimental investigations (e.g., [3, 24, 33]). More-
over, especially the used nonlinear analytical approach has a great potential for the
future work, for example, the implementation of a GUI for the compliant mecha-
nism synthesis.
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