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Abstract

Shape memory polymers and their related composites are formally known as
SMPs and SMPCs have been classified as innovative categories of smart materials,
in which they affected by a particular stimulus and consequently memorize the
original shape. As one of the most vital feature of shape memory characteristics,
Shape Memory Effect (SME) that been attracted significant attention from the
shape memory researchers and scientists. On the other hands, there are abundant
approaches can be implemented to actuate the SMPs and SMPCs deformation,
whereby the features of the electro-or thermal response associated with the
structural changes are predominant. In this chapter, a particular emphasis on how
the incorporation of micro/nano-fillers and particles or fibers do affect in the SMP
matrices, which it is intentionally carried out to improve the mechanical properties
and their related shape memory features of various types of shape memory poly-
mers. In the summary, the shape memory effect is been sustained to be an intrinsic
feature for the SMPs and based on this property, the implementation of the SMPs
have covered a wide range of applications according to the required functions and
performances.

Keywords: shape memory polymer, shape memory effect, shape fixity,
thermomechanical cyclic, CNTs, noble metals/fiber-based reinforcement

1. Introduction

As being a kind of smart materials, shape memory polymers (SMPs) and their
composites (SMPCs) are significantly attracting consideration [1, 2]. An excellent
type of polymers seems to have been disclosed to demonstrate shape memory
attributes [2–4], however, the various characterizations or even analysis techniques
of shape memory characteristics along with the changing circumstances among
various scientists (see Figure 1), which they possess intention that the claimed
characteristics of SMPs are not identical. Consequently, the correlation between
shape memory characteristics and the structures is not entirely recognized for
certain categories of SMPs. Thus, this can probably obstruct the growth and
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development of high-performance of SMPs. Aside from that, in comparison with
the prompt boost of the variety of SMPs, the main uses of SMPs lags much behind.
One among the key factors is certainly utilized the characterization of the SMPs is
not going to produce the extensive properties for scientists. For that reason, the
analysis of SMPs is vital for the enhancement as well as implantations of SMPs.
Based on the Scopus database, a literature analysis was carried out through using the
keywords of “Shape Memory Polymers” and/or “SMPs” and the analysis graphs are
presented in Figure 1. This chapter presents a basic overview up to the date the
main employed characterization of the shape memory characteristics of polymers.

2. Shape memory effect in shape memory-alloys over -polymers

The shape memory effect in the shape memory alloys is typically execute based
on the test temperature of the austenite $ martensite transformation temperature,
in which it occurs with the deformation of the SMAs in the martensitic phase during
the loading and unloading at temperatures below Mf. After heating these deformed
alloys to a temperature above Af, the austenite phase forms, and thus, the original
shape is recovered. In addition, these temperatures are typically will be indicated
based on the type of alloys. There are three main based-types of shape memory
alloys; Titanium-based, Copper-based and Iron-based SMAs. Figure 2(a) shows a
typical loading path 1 ! 2 ! 3 ! 4 ! 1, wherein the property of SME is observed
[5]. The parent phase transforms into the twined martensite (1 ! 2) when it
undergoes the cooling process. The stress induced detwinning and inelastic strains
can occur when the materials are loaded (2 ! 3). The maternsite phase is in the
same state of the detwinned structure without obtaining any recovered inelastic
strains even after the unloaded process (3 ! 4). In the final step, the materials are
returned to the original shape by recovering the inelastic strains after being heated
above Af (4 ! 1). On the other hands, there are two types of shape memory effects
can be occurred in the SMAs, namely, one-way and two-way SME. On the contrary,
the SME of SMPs (see Figure 2b) is mainly influenced by the presence of phases

Figure 1.
Shape memory polymer publications based on (a) document type, (b) subject area, and (c) country/territory.
“Scopus source accessed on January, 2019”.
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that linked to the coiled or cross-linked polymer structure. The SMPs is deformed at
a temperature below the glass temperature (Tg), and the percentage of deformation
is mainly depending on molecular chains of polymer, in which they are controlled
by the chemical composition and physical cross-linked structure of SMPs. After
preheating the deformed polymers, these molecular chains are able to return back
to the original coiled-shape structure. The shape-memory transformation varies
according to the apparatus in which polymer molecules transpose between the
restricted together with random entangled conformations. As comparison with the
SMAs, the SMPs are able to exhibited only one-way SME, whereby, the SMPs
deformation at the called phase “soft” only along with the incorporation of the
external force [6]. The main benefits of SMPs over SMAs is dependent mainly on
their inherent attributes, for instance, they are lower cost and/or density, easier
manufacturing process associated with higher percentage of strain [7]. Table 1
details the principal differences in the SMPs and SMAs characteristics, in which the
SMPs are able to obtain up to 800% strain compared with the lower strain in the
range of 0.1–20% for SMAs or other types of materials.

3. Shape memory polymer features and properties

To give details about the shape memory characteristics of polymers, a number of
variables are essential. Initially, the variables can certainly reveal the characteristics
of polymers. Following by the differentiation of them from other sorts of attributes
of materials, shape memory capabilities are demonstrated by means of a variety of
thermomechanical cyclic procedures. Consequently, the specifications must be able

Figure 2.
Schematic diagram of (a) stress-strain-temperature for the involved crystallographic changes during the
phenomena of SME [5], (b) one-way SME for SMPs.

Property SMAs (Ti-based) SMPs (Polystyrene)

Density/g.cm�3 6–8 0.9–1.1

Deformation strain (%) <8 ≥800

Young Modulus at Temp.> Trans (GPa) 83 0.01–3

Recovery speed (min) Based on type of alloy <0.1 min- several min

Deformation stress (MPa) 50–200 1–3

Thermal conductivity (W.m�1.K�1) 18 0.15–0.3

Cost ($) � 250 per pound � 10 per pound

Table 1.
The main comparison between the characteristics of SMAs over SMPs [1, 8].
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to describe the natural shape memory functions too. Finally, the structure of the
variables must look into the prospective purposes. With taken the consideration of
these kinds of aspects, a number of variables were presented and also quantified
[9–11]. The variables are presented in the following subsections:

3.1 Feature of shape fixity in SMPs

Like appears to have been explained in the foregoing parts, the shape memory
behavior is initiated by heating the shape memory polymer to a temperature above
the transformation temperature (Ttrans) [12], it could actually cultivate considerable
deformations and this can be mainly predetermined by cooling the materials to a
temperature below the Ttrans, whereby, this parameter was advocated to define the
severity of a brief shape becoming fastened in a pattern of shape memorization
[12–14]. It ought to be pointed out that the numerous perplexed utilizations as well
as illustration appear in the characterization of SMPs. Regarding to the shape fixity,
further sorts of capabilities for instance strain fixity [9] and also shape preservation
[15, 16], stand for the exact same actual physical indication, in which the shape
fixity (Rf) is comparable of the extension ratio of the predetermined deformation to
the total deformation, which can be prearranged as:

Shape fixity ¼ permanent deformation
total deformation

�

(1)

Furthermore, the main mechanism of the shape fixity is attributed to the struc-
ture and thermomechanical conditions of the shape memory characteristics. The
latter condition is significantly been implemented in shape fixity determination as
well as the properties of shape memory materials. Wu et al. [17] shows the shape
recovery of commercial ether-vinyl acetate copolymer (EVA) with a 300% of pre-
stretching at the room temperature, as shown in Figure 3. It was revealed that as the
number of cycles increased the strain recovery reduced, in which the residual strain
starts from 136% and dropped to 112% after 20 min, and within the 9 h, it reaches to

Figure 3.
Relationship curve of stress-strain of EVA at the room temperature. Insets: (a) multiple cycles at different
strains; (b) cyclic test [17].
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94% and with increasing the time to 72 h, it ends up with 88%. It would be proven
that as the time increased; the rapid creep turns to be gradual creep within the first
9 h. Therefore, a long term of the shape fixity ratio was described according to the
value of residual strain. Julie et al. [18] demonstrated the shape fixity (Rf) of the
epoxy network based on the torsion test, whereby the Rf was found based on the
ratio of angle of torsion after unloading to the angle of torsion after loading. It was
found that the shape fixity of epoxy within a dimension of 100 � 10 � 1 mm3 is
about 95% at a deformation angle of 360o.

3.2 Feature of shape recovery in SMPs

Shape memory recovery (Rr) is mainly reflect the ability of any substance to
recover the memorized shape after being deformed at low temperature and subse-
quently heated above the transformation temperature (Ttrans) [9, 12, 13]. It is
significant to notice that, in a shape recovery event, the full strain energy is emitted
by means of the two-recovery strain and stress. To a first approximation, neverthe-
less, the recovery stress to stain ratio is consistent for an identical material [19]. The
stored strain energy, alternatively, ought to be influenced by the internal material
energy needed in the deformation, despite the fact that the particular relationship is
not recognized, in another words, the quantity of energy loss throughout the shape-
fixing stage is not identified. Hence, there needs to be a minimum of a qualitative
correlation between recovery stress together with deformation energy (or even
input energy). Tobushi et al. [9] and Kim and coworkers [13] have performed the
thermomechanical test with multi-cycles in purpose of evaluating the performance
of SMPs and found the main determination of strain/shape recovery, in which can
be calculated using the following interpretation:

Shape recovery ¼
Deformation recovered in a certain cycle

Total deformation in one cycle
� 100% (2)

While the shape recovery rate was determined by Li and Larock [20] after been
utilized a bending test on SMPs and came with the following formula:

Shape recovery ¼
Deformation recovered within heating process

Fixed deformation
� 100%: (3)

According the above-mentioned equations of (2) and (3), it can be proven that
there are different mechanisms referring to the shape recovery in different per-
spectives. Julie et al. [18] obtained that the kinematic of the shape recovery of epoxy
networks is a function of the applied deformation angle. It was found that a com-
plete recovery (100%) was obtained and as the deformation increased the recovery
ratio tends to decreased. They also found that the lower heating rate is able to attain
a full recovery compared with the high heating rate. As both of two types of
recovery are mainly related to the molecular mobility that been coincides with the
variation of polymer viscoelasticity properties. They were also proven that the
torsion test provides a useful interpretation on the molecular mobility with the glass
transition when a uniformed deformation is applied. Moreover, the speed of recov-
ery process and deformation of recovery speed were named by Li et al. [20] and Luo
et al. [21], respectively, thereby, both terminologies were reflected the shape mem-
ory characteristics of polymers. The shape recovery process of different types of
shape memory polymers was studies by Liu et al. [22] using video camera records
within a rate of 20 frames per seconds. The results of their experiment revealed that
the polymer was capable to obtain a full recovery after 0.7 s. Whilst, Luo et al. [21]
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found that the curve of shape recovery of SMPs as function of temperature and then
the shape recovery speed was determined based on the following equation:

Vr ¼
dRr

dT
�
dT

dt
(4)

whereas Vr is representing the shape recovery speed, dR/dT is the ratio of shape
recovery Vs temperature, and dT/dt is the heating rate. On the other hands,
Tobushi et al. [9], Takahashi et al. [23], and Kim [13] were performed the tensile
test as thermomechanical cycling via a specially designed machine as shown in
Figure 4a to study the shape memory characteristics of polymers, in which the
tensile test process was isolated under a certain temperature and an extensometer
was attached to record the stress–strain data and a programmable software was used
to plot the final behavior of one or multicycle of relationship of stress versus strain
versus temperature and then the shape recovery and memory effect were deter-
mined. Figure 4b shows the final curve behavior of shape memory effect, thereby
the curve can be classified into four stages, as the first stage, the polymer sample is
heated to a higher temperature (i.e. > transition temperature), which often tem-
perature would be in range of 15–25°C. Second stage describes the strain behavior
that maintained a constant strain (εm) followed with a cooling to a temperature
lower than the transition temperature (room temperature) to obtain the permanent
shape. The unloading process and the elastic recovery stress turns to reach a zero
value at a certain strain (εu), as presented in stage 3. An external heating process
was applied at a higher temperature to recover the original shape with a minimum
value of residual strain (εp) as demonstrated in stage 10 or 4 based on the type of
polymer.

Tobushi et al. [21] have demonstrated the shape recovery (Rr) of polymer at
different temperatures and the Rr can be calculated based on the following equation:

Rr Nð Þ ¼
εm�εp Nð Þ

εm�εp N � 1ð Þ

� �

� 100% (5)

The Rr(N), εm, and εp are the shape recovery, residual strain, and plastic strain,
respectively under a number of cycles (N), in which found that as the number of

Figure 4.
(a) Tensile test as thermomechanical cyclic machine; (b) shape memory effect curve [9, 13, 23].
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cycles increased, the shape recovery maintained to attain 100%. While, Kim and
Lee [13] have found that the shape recovery using the following equation:

Rr Nð Þ ¼
εm�εp Nð Þ

εm

� �

� 100% (6)

Thereby, the shape recovery tends to decrease as the number of cycles increased
and shown a stabilized behavior after a number of cycles. Another studies by Liu
et al., [22] Lin and Chen [24] and Li and Larock [20] found that the employing of
the bending test is much easier and more approachable than tensile test for the
thermomechanical test. Figure 5 shows the mechanism of thermomechanical cycles
using the bending test, whereas the shape memory polymer sample with a strip
shape is bent to angle θmax at a higher temperature > transition temperature (Ttrans).
The deformed sample followed by cooling process at a temperature < Ttrans, in
which the sample been unloaded and shape recovery started to an angle represented
by θfixed. However, with preheating the deformed sample, the original shape recov-
ered gradually associated with number of θ(T) recorded. At the final stage, the
sample turns to recover the final shape at angle of θfinal. Therefore, the shape
recovery is determined using the following equation:

Rr ¼
θfixed�θfinal

θfixed

" #

� 100% (7)

A compression test was also utilized to obtain the shape memory behavior of
polyurethane shape memory polymer foam MF5520 at a nominal glass temperature
of 63°C. The shape recovery behavior was obtained as the foams were compressed
at T > Tg, then cool it to the room temperature, and finally the shape recovery SMP
foam was investigated upon heating after different period time of hibernation. The
results revealed that at 80 and 93.4% pre-strain and 1 N applied load, the recovery
curves acquired the same trends without a full recovery as shown in Figure 6a and b,
conversely, removing the applied load, the shape recovery was attained. On the other
hands, the sample without hibernation displayed a reduction in the shape recovery as
the load increased. Gall et al. [25] was investigated the shape recovery of the thermo-
setting polymer (CTD-DP7 SMP) along with their corresponding composites using a
Dynamic Mechanical Analyzer (DMA). The prepared samples were placed in a three-
point fixture and the tip of probe was in contacted to the inner surface of SMP

Figure 5.
Schematic drawing of bending test as thermomechanical cycles test.
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sample. With fixed probe contact, the shape recovery was recorded as the tempera-
ture was increased.

4. Parameters affects the shape memory effect in SMPs

4.1 Thermo-mechanical behavior

Lendlein and Kelch [12] described that the behavior of the shape memory for
SMPs is not only linked to the polymer properties, but it is also mainly controlled by
the structure and morphology associated with the manufacturing processes. There-
tofore, the shape memory effect of any type of polymers is demonstrating the
thermomechanical cyclic performance includes, shape recovery, deformation, and
shape fixing and each of these processes associated with the condition of
thermomechanical process are able to vary the shape memorization and thus affect
the shape memory characteristics. Hence, it is essential for further development and
advanced applications of SMPs to give a complete characterization. For instance,
Wang et al. [26] have carried out the thermomechanical cyclic for SMP composite
using the cyclic tensile test within 30 mm/min as displacement rate for 5 cycles, as
shown in Figure 7a and b. They revealed in their results that there is a huge
hysteresis between 1st and 2nd cycle, while these differences are attainment smaller
from 2nd, 3rd, 4th and 5th cycles. These variations are mainly attributed to the
existence of deformation, composite structure failure along with initial training

Figure 6.
Extension behavior representing the shape recovery SMP foams hibernated at different time for the pre-strain;
(a) 80% and (b) 93.4%.

Figure 7.
(a) Stress-strain curves of SMP composite under different loading-unloading cycles; (b) residual strain versus
number of cycles of the reinforced SMP with different percentage of chopped carbon fiber [26].
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effect for the 1st cycle. Figure 7b illustrates that the variation of residual strain at
the room temperature versus the number of cycles, in which the residual strain
tends to increased precipitously with final stabilization behavior as the number of
cycles increased due to the resistance of the modified particles against the defor-
mation, which will be explained in details in Section 3.2.

Pieczyska et al. [27] have been studied the thermomechanical properties of
polyurethane theoretically and experimentally under different mechanical loadings
at temperature of 20°C above and below Tg at a strain rate of 2 per second within a
strain range of 0.6/s. It was observed that when the temperature been slightly
dropped, the thermoelastic effect stepped affected. On the other hands, the thermal
images (see in Figure 8) are referring to the variations in the strain vales during the
loading-unloading process, whereby the uniform distribution of the temperature
replicated the deformation process in a macroscopically homogenously presented.

4.2 Particle/fiber reinforcement

The design of SMPs and SMPCs thermomechanical behavior can be vary based
on the changes in the polymer molecular structure and/or addition of functional
particles or fillers in purpose of forming multi-phases composite SMPs. The rein-
forcement categorization for the SMP composite can be inserted under the particle/
filler according to the type of applications. There are various types of particles can
be incorporated with SMP, for instance, Silicon carbide (SiC), carbon nanotubes
(CNT), nickel, carbon black (CB), clay, and Fe3O4 [28–31] along with some others
different fibers based on the application requirements [32, 33]. Thus, these types of
additions or reinforcements are trigger to enhance the electrical and mechanical
properties of SMPs.

Figure 8.
True stress-strain curve during loading and unloading of PU-SMP along with thermal images that represented
different values of strain [27].
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4.2.1 Carbon-based reinforcement

Thermally induced shape memory polymers have been characterized as a
remarkable substance with a high recovery and shape memory effect is required,
however, their mechanical properties such as modulus and strength are still low.
Therefore, the incorporation of carbon nanotube (CNTs) with different types of
polymer is essential and their inadequate properties are able to improve after a
certain modification been considered [8, 34, 35]. On the other hands, the carbon
nanotubes have the presented a potentially implementation the nanoelectronics
devices, for example, electrochemical energy storage and artificial muscles.
According to the above-mentioned deliberations, Kai Yu et al. [36] have studied the
effect of carbon nanotubes on the shape memory effect of SMPs after being expo-
sure to microwave radiation. It was found that the CNTs particles have been
absorbed the electromagnetic radiation and converted to be an internal heating
source, thus lead to induce a shape recovery for SMCs, as shown in Figure 9.
Furthermore, increasing the frequency of radiation and/or amount of CNTs lead to
enhance the shape recovery, whereas the SMPs composite within 3 and 5 wt.% of
carbon nanotubes have shown a fully recovery in their shape, while, the SMPs
within 1 wt.% addition has a lowered recovery with 80% less than high amount and
the unrecovered shape has been resulted due to the insufficient amount of radiation
to overcome the caused friction between the CNTs and polymer matrix. From the
same point of view, another research was conducted poly(vinyl alcohol) (PVA)
filled by CNTs, in which the results revealed that there is a wide boarding in the
glass transition temperature and the initiated stress during the recovery was almost
double value compared with the conventional polymer [37]. Conversely, Raja et al.
[38] found that there no apparent for the shape recovery of PU/PVDF polymer
blend nanocomposites after been deformed in “U” shape and preheated using a hot
water with a temperature of 60°C for 2 h and followed by a direct quenching in cold
water, as demonstrated in Figure 10a. An external heating source using a DC
controller with a 40 V was attached to the ends of modified polymer strips to
activate/initiate the shape recovery. In spite of this, the modified PU/PVDF
nanocomposites with CNTs fillers, namely as PUPF-NTM10 has been recovered
after 15 s and others samples filled with pristine CNT, namely as PUPF-NTP10 has
been recovered the complete shape after 30 s with the external applying of electrical
impulse. It was also found that repeating the shape memory test (i.e. increase the
number of cycles) led to reduce the shape memory ratio as depicted in Figure 10b.

The influence of multi-walls CNTs on the shape memory effect of epoxy
nanocomposites was deliberate by Abishera et al. [39] as implementation in the self-
healing systems applications under different programming conditions. It was

Figure 9.
Sequence of the shape recovery process of the SMP composites under microwave radiation (2.45 GHz): (a)
deformation process and (b) modified SMP/CB/CNT sample shape recovery and temperature distributions.
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revealed that the changing in the programming conditions obtained an excellent
shape memory behavior, as well as, the incorporation of the multi-walls of CNTs
has indicated an improvement in the young modulus, strength, recovery speed and
shape fixity of epoxy associated with drops in the failure strain. Qi et al. [40] have
investigated the shape memory properties of polylactide (PLA)/thermoplastic poly
(ether)urethane (TPU) composites after been reinforced with carbon black (CB)
nanoparticles within the blending ratio of 70:30 by weight. Due to the continuous
phase of thermoplastic poly(ether)urethane (TPU), an outstanding shape memory
behavior was acquired for the novel ternary structure of PLA70/TPU30/CB,
wherein it resulted in the occurrence of the persuasive recovery driving force. In
addition, the addition of CB with different percentages displays a slight improve-
ment in the shape fixing ratio (Rf) of 90% (see in Figure 11), this may relate to the
elongated TPU phase retraction, in which resulted in a total rigid of polylactide
phase at 25°C. As the temperature increased more than Tg, the amorphous chains
of PLA started to move and thus release constrained TPU phase. The principal
contributor in the enhancement of shape recovery ratio (Rr) is the strong pliability
of TPU phase and addition of CB, as it was shown only 59% for the binary phase
of PLA70/TPU30 and increased to 80.2% as the CB was added, as shown in
Figure 11a and b. Moreover, the increment in the heating time under a consistent
30 V led to increase the shape memory ratio of the ternary phases of PLA70/TPU30/
CB6 and PLA70/TPU30/CB8, as shown in Figure 11c. The fastest shape recovery
response for PLA70/TPU30 after 8 wt.% addition of CB with 90% ratio in 80 s, on
the other hands, the PLA70/TPU30 with 6 wt.% of CB approached the same ratio in
150 s, as illustrated in Figure 11d. Haibao Lu et al. [41] presented the shape memory
behavior of shape memory polymer nanocomposite (SMPs) after carbon nanotube

Figure 10.
(a) SME of unmodified PUPF-NTP10 pristine and CNT modified PUPF-NTS10 filled with PU/PVDF
nanocomposites; (b) recovery ratio versus number of cycles [38].
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and boron nitride additions using a bending testing with an Infrared light-induced
as heating source. A full recovery 100% in 60 s was recorded for the modified SMP
with 4 wt.% boron nitride and CNTs, as shown in Figure 12(a-c), in which the
unmodified sample was obtained shape recovery lower than 80% in the same
exposure heating time, as shown in Figure 12d. This kind of improvements is
mainly attributed to the particle of boron nitride that have been improved the
thermal conductivity through the facilities of the heat transfer in the composite

Figure 12.
Optical shape recovery of (a) pristine SMP, (b) nanocomposite SMP reinforced with 4 wt.% of BN,
(c) nanocomposite SMP reinforced with 4 wt.% of BN and CNTs, and (d) shape recovery ratio versus time
for pristine SMP with and without BN/CNT reinforcements [41].

Figure 11.
Representation design of the shape recovery of (a) binary blends of PLA70/TPU30 and (b) ternary blends of
PLA70/TPU30/CB5; (c) recovery ratio (Rr) versus CB contents and (d) shape fixing (Rf) versus time PLA70/
TPU30/CB6/8 [40].
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polymers [44, 45], and thus, CNTs and boron nitride additions have been drasti-
cally superior the infrared light-induced shape recovery.

4.2.2 Noble metals-based reinforcement

The effects of the nanosized noble metals-based, such as gold (Au) and silver
(Ag) nano-particles/wires on the structure and properties of SMPs have shown a
great interest for the researchers and scientists as a multi-responsive shape memory
polymer in composite form [8, 42, 43]. Due to the large surface and high plasmonic
resonance, these nanosized metals been offered a structure that able to absorb the
specific wavelength and convert it into heat energy, thus produce a remarkable type
of polymer with high shape actuation and wavelength activation.

4.2.2.1 Ag addition

The cross-link structure between the polymer and ion-metals as ligand coordina-
tion have shown a promising method to produce shape memory polymers with
noteworthy properties. An isonicotinate-functionalized polyester (PIE) was studied
by Wang et al. [44], which they described the effect of silver (Ag) addition to the
coordination of the polymer network structure to produce the strip specimens. The
shape memory effect was measured based on the DMA test, whereas the strips was
heated to 50°C for 1 min, followed by bending process into spiral shape. The shape
fixation was carried out by frozen the deformed strips at 0°C for 1 min. Lastly, the
strips were recovered the initial shape after being heated to 40°C using hot air. It was
found that the modified strip was shown an excellent shape recovery at 37°C for 60 s,
as shown in Figure 13. Another study on producing a film by Lu et al. [45], the shape
memory behavior was investigated using bending test, where the sample was bent in
U-like shape at 160°C and cooled to the room temperature (which it was about 22°C).
it was found that the sample contains the Ag particles decorated GO has recovered
100% after 36 s within an electric power of 3.87 Watt, as shown in Figure 14.

The behavior of the electro-response shape recovery of the surface modified of
SMP with Ag nanowires layer was investigated by Luo et al. [46]. The recoded data
of shape recovery versus time as shown in Figure 15a, the results exhibited that the
Ag modified samples were not only able to recover the full initial shape but also
with fastest speed recovery in shorten time compared with un-modified samples. It
was also found that the higher addition of Ag led to reduce the shape recovery, and
therefore, the external heating source was essential. As the heating increase, the
thermal transition was occurred and consequently the shape recovery developed.
Figure 15b shows that with the applied external heat of 5 volt, the bent angle turns
to be change within 3 s, this because the presence of nanofillers is capable of
conductive network reduction and subsequently increase the resistivity of the strain
sensitivity and conductivity [47].

Figure 13.
Shape memory effect of Ag–PIE in PBS at 37°C [44].
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4.2.2.2 Au addition

A semi-crystalline PEO20K polymer was prepared by Zhang et al. [42] using a
cross-linked loaded with nano-particles, whereas found that the gold addition is not
utilized to obtain/control the shape memory effect, however, it has also enhanced
the properties of self-healing of SMPs. An exceptional concern in such a form of
substances is the fact that SMPs necessitate an everlasting system structure (char-
acteristically cross-linked) that could be in confrontation with the substantial a
string movability and also inter-diffusion intended for the manufacturing of self-
healing properties (SHP) polymers. Within this purpose, the configuration of the

Figure 14.
Shape memory effect of SMPs composite induced by joule heating based on (a) trend scale of temperature,
(b) reinforcement of carbon fiber grafted with graphene oxide, (c) reinforcement of carbon fiber grafted with
nanoparticles of Ag associated with GO decoration [45].

Figure 15.
(a) Shape recovery ratio versus exposure time under a voltage of 5 V; (b) shape recovery demonstration under
different exposure times [46].
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SHP it can be more suitable to develop materials upon one single-polymer with the
two light-controlled shape-memory and optical recovery features. It was found that
the addition of small amount of AuNPs of 0.003 wt.% to the cross-linked poly
(ethylene oxide) (PEO) films was sufficient enough to deliberate the main shape
memory properties of produced films. The shape memory effect of the produced
films is shown in Figure 16.

In 2009, Hribar et al. [48] have been developed a modified polymer network,
namely β-amino esters, whereas the modified nanocomposites SMPs has demon-
strated shape memory effect using IR light as heating source within a temperature
above glass transition temperature (Tg). The results exhibited that the prompt
shape recovery was spotted until the transformation turn out the path of the beam
associated with a thermal transition in the polymer from glassy ) rubbery net-
works. There are new perspectives for the actuated and functional shape memory
polymer that recently been used in different application, for examples: dry adhe-
sives, panels of light-tracking solar, light-guided for smart windows and even actu-
ators. Zheng et al. [49] have been produced a light responsive SMPs as micropillar
with a diameter of 10 μm mixed with 0.1–0.2 mol% of AuNRs in a hexagonal array

Figure 16.
Optical healing/recovery procedure of a film made from a cross-linked PEO/AuNP using light controlled as a
source of heating: (a) Original film, (b) temporary shape obtained by folding the film along the lines a1, a2, a3
at 80 °C followed by cooling to room temperature; then two cuts were made as indicated by red arrows (b1 and
b2 in photo a), (c) the b1 cut was healed by exposing the crack to laser (12 W/cm2) for 5 s; (d) the first
unbending after 10 seconds laser scanning along the fold a1 at a power of 6 W/cm2, followed by the second
unbending under the same condition along the fold a2; (e) the other cut b2 remained in the film of an
intermediate temporary shape; (f) the cut b2 was optically healed under the same condition as for the cut b1;
(g) the third light-triggered unbending along the fold a3 completed the permanent shape recovery.
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using poly(dimethylsiloxane) mold as replica molding. To obtain a temporary
shape, the pillars were bent at different angles (θ = 30, 45, and 60°) at a tempera-
ture above the glass transition temperature (i.e., T = 20°C) and then following by
cooling process to the room temperature, as shown in Figure 17a and b. A heating
source was applied using a green laser with a wave-length of 532 nm for different
period of times and the shape recovery was monitored by optical microscopy. The
results revealed that within 0.08 W, as a laser power, the pillars need 40 s to
recovery their temporary shape, however, with raising the laser power to 0.3 W,
they grabbed the original shape within only 5 s. It was also found that when the
pillars are ground to be collapsed, the shape recovery will not be able to obtain a full
recovery (i.e.,100%), and this may attribute to the large force of adhesion between
the substrate and pillars, in which it has particularly a higher value than the stored
elastic energy of the deformed pillars.

Figure 17.
Recovery time versus (a) bending angle and (b) laser power, of the reinforced SMPs with AuNRs at 45o pillar
angle [49].

Figure 18.
Optical observation of the shape transformation of cross-linked PEO film reinforced with AuNPs using a laser
as a temperature source; (a) original film, (b) deformed sample at 80 °C, (c) large-out of plane bending, (d)
gradient chain relaxation and (e,f) shape recovery after applying the laser heating source.
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A cross-linked poly(ethylene oxide) (PEO) loaded with 0.5 wt.% AuNPs was
experienced to bending loading and unloading along with an exposure to a laser
source within a wave-length of 532 nm and power of 0.15 W [50]. The deformation
process involved a stretching of the modified PEO/AuNPs to 90% (approximately
200% strain) at 80°C above the Tm, followed by cooling to the room temperature.
The top surface of the film was exposure to the laser in purpose of maintaining the
anisotropic relaxation in the polymer chains, followed by cooling a temperature
below Tm and consequently, resulted in fixing the temporary shape, as shown in
Figure 18(a–f), in which the main principles of the technology to exploited the
unique shape memory effect property in numerous types of photothermal based
shape memory polymers. On the other hands, the adaption of the light polarization
has also shown a significant effect on the shape memory property, in which it led to
control the photo-based thermal effect, as shown in 2013 study by Zhang et al. [51],
whereas the cross-linked network polymer of PVA containing of 0.02 wt.% AuNRs
film was stretched and heated to a temperature of 80°C, i.e., above the Tg to
maintain the shape permanent transformation, as shown in Figure 19(a–c). A laser
in a linear polarization featured with a wave-length of 785 nm and 0.2 W/cm2 was
applied. The results revealed that there is no shape recovery was obtained when the
polarization was perpendicular to the deformed film, even after 2 minutes of expo-
sure. Whilst, the deformed shape was fully recovered in 10 s when the polarization
turned to be in parallel direction aligned with stretching direction. The reason
behind the directional effects can be elucidated that there was no longitudinal
absorption in the perpendicular direction, thus resulted with no heat released.
However, with the parallel direction, the longitudinal absorption reached to the
maximum, and subsequently, the temperature increased above the glass transition
temperature (Tg) that lead to reactivate the shape recovery.

Figure 19.
Shape memory characteristics of PVA/0.02 wt.% AuNR with the light polarization-dependent at the room
temperature; (a) optical images of the shape memory behavior; (b) recovery angle verse exposure time under
different period of times in two directions, parallel and perpendicular; (c) relationship curve of recovery angle
and polarization angle in 1 minute exposure using a light polarization [51].
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4.2.3 Fiber reinforcement

Generally, the enhancement in the shape memory polymer mechanical proper-
ties is still limited and their reinforcement with short fibers and/or particles is
irrationally to be proposed as structural substances [52]. Therefore, the reinforce-
ment with continuous fiber has been attentionally employed to improve the
mechanical properties of SMPs [53, 54]. Due to the highly potentialized SMPs,
their usages are widely fulfilled for various advanced applications, such as solar
arrays, trusses and antennas, which they essential with no moving segments [32].
Furthermore, the majority of researches with regards to SMPs composites are
involved in thermoplastic SMPs resins such as polyurethane SMPs. Nevertheless,
the comparatively inadequate thermal together with mechanical properties, for
instance, moisture, temperature and/or chemical resistance of thermoplastic SMPs
are not able to fulfill sensible demands [2]. Thermosetting SMPs, in spite of this,
established a marked improvement in the latter characteristics which enable it to be
extremely popular for many practical and or structural resources. The development
of the fabricated polyurethane SMPs reinforced with carbon-based fiber was
implemented for the industrial applications [55–57], a larger ratio of the bending
recovery was exhibited in the reinforced polymers compared with pure SMPs
sheets, from the same point of view, the epoxy-based SMCs namely EMC (Elastic
Memory Composite) was potentially executed for the structure of spacecraft
applications, as this EMC was developed in the early 1990s by Composite
Technology Development (CTD) [58, 59]. Gall et al. [60] have been investigated
the deformation micro-mechanisms of EMC and highlighted the development
interaction reinforcement between the epoxy EMC laminate as shape memory
polymers resins and fibers and found that because of the changing in the surface of
the neutral-strain and micro-buckling effects, the reinforced SMP was able to
produce a large value of compression strain compared with the traditional resin
composite. Furthermore, the development of composite of thermosetting styrene-
based reinforced with fiber was studied by Leng et al. [61], and found due to the
good strain capabilities and their relative properties, these types of reinforced-
polymers have been potentially chosen to take a part of the structure’s applications.
From the same perspectives, as a comparison with the pure SMPs, the carbon-based
fibers present better thermomechanical properties, and thus been proposed to be
use as multi-functional materials [32, 62]. The reinforcement of the glass and kevlar
fibers SMPs composite have obtained a superior improvement in the stiffness asso-
ciated with decrement in the recoverable strain, has been premeditated by Liang
et al. [52]. On the other hands, the chopped glass fibers were added to the thermo-
plastic SMPs and their influences on the shape memory characteristics were exam-
ined by Ohki et al. [55]. It was found that the reinforcement by 50 wt.% glass-fiber
entertains increment in the failure stress to 140% and reduced the recovery rate to
62%. Another study by Wang et al. [26] demonstrated the shape memory effect of
TPI SMPCs under the effect of different mass fraction of the chopped carbon-fibers
at three experimental temperatures of 299, 319, and 339 k, as shown in Figure 20a.
it was found that both experimental variables; temperatures and fibers reinforce-
ment have been remarkable affected the shape memory effect of TPI polymers. The
shape recovery ratios tend to rapidly increased as the applied temperatures
increased and reinforcement ratio of carbon fiber decreased (see Figure 20b),
which can be justified these variations that as the cross-linked structure are getting
dense, their movements are required more energy and the chain segment
movements would be required a higher free space. Therefore, as the temperatures
increased, the chain segments will have enough energy to release and thus perform
the shape recovery.
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Figure 21a and b displays the epoxy-based SMPs reinforced of carbon fibers
with four percentages ratio of 16, 23, 30, and 37% were designed by Li et al. [63].
The designed composites have demonstrated an excellent shape recovery at 120°C
within a ratio of 90% and obtained a full recovery 100% after 20 min at the same
temperature. The recovery ratio behaved proportionally with the mass fraction of
fibers and inverse proportional with the partial load level. Extensive researches
were carried out on different types of SMPs matrix and various fiber reinforce-
ments because of the increasing demands for different applications as been sum-
maries in Table 2.

5. Conclusions and remarkable observes

Shape memory polymers (SMPs) and their composite (SMPCs) have exhibited
exceptional features that led to proposed them to be implemented as advanced
materials for the current and potential applications. However, the traditional shape

Figure 20.
(a) Shape memory effect behavior with the reinforced SMP along with (b) the shape recovery ratio [26].

Figure 21.
(a) Stress recovery curves for four percentages of fiber reinforcement; (b) recovery ratio of the reinforced SMP
composites with 23 and 37% mass fraction within different partial loads [63].
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Author Substrate Type of fiber Recovery

ratio (%)

Shape

fixity

ratio

(%)

Comments Shape memory recovery method/demonstration

Alvaro

Iregui

et al. [64]

Polymerized

epoxy/

polycaprolactone

blends

Blends 88–100 95–99

• A remarkable shape memory

effect was obtained from the

designed mat of the reinforced

SMPs. (c-e) Shape recovery mechanisms for three times folding at 60°C for 30 min

Paul

Robinson

et al. [65]

Thermoplastic

Interleaf Layers

Carbon Fiber

Laminates

fully —

• The recovery times were

significantly longer for the

quasi-isotropic laminates (8–

9 min) than for the cross-ply

laminates (2–3 min).

(a-d) Micrographs of the cross-sections after the shape memory recovery

process under different bending angles

Jianming

Guo et al.

[66]

Trans-1, 4-

Polyisoprene

(TPI)

Carbon Fiber 30–70 —

• The shape recovery ratio

decreases as the carbon-fibers

fractions increases.

• The temperature effects have

shown a significant

enhancement, as the

temperature increased, the

shape recovery increased.

Bend and fold method

Guoqiang

Li [67]

EPOXY

EPON828

Polyurethane 24 30–66

• The stress–strain recovery

decreases nonlinearly.

• The applied force to close the

initiated crack in the matrix

led to narrow down the area of

the cracks.

Three-point bending test
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Author Substrate Type of fiber Recovery

ratio (%)

Shape

fixity

ratio

(%)

Comments Shape memory recovery method/demonstration

Guoqiang

Li [68]

EPON™ Resin

828

(thermosetting

polymer)

Polyurethane —.. —..

• The relationship between the

healing efficiency and pre-

strain level is indirectly

proportional.

• The addition of 50% fibers

caused an improvement in

healing efficiency to double

value compared with

nonmodified SMPs. While,

further pre-straining did not

show any significant

improvement due to the

saturation behavior of the

cracks in the healing

efficiency.

Schematic and optical images of the healing test and shape recovery

Herath

et al. [69]

Epoxy Prepreg Carbon Fiber 86 100

• An excellent shape memory

characteristic attained in the

modified shape memory

polymer composite with

carbon fibers without any

existence for the effects of

spring-back.

Steps of the shape recovery for the modified SMPCs at different bending

angles.
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Author Substrate Type of fiber Recovery

ratio (%)

Shape

fixity

ratio

(%)

Comments Shape memory recovery method/demonstration

Qiao Tan

et al. [70]

Epoxy Based T700 Toray

Carbon Fiber

— —

• The glass$ rubbery transition

concepts have presence in

harmony behavior as the

temperatures and amount of

fiber changed.

Glass $ rubbery transition state for the SMPCs/CF.

Shankar

A.Hallad

[71]

Epoxy Nano- and

Micro-

Graphene and

Carbon Fibers

— —

• The SMP beams have revealed

an enhancement in the

mechanical properties as the

reinforcement with GO and

CF existed comparing with the

nonmodified SMP beams.

Three-Point Load Set-up for Shape Recovery Test

Haibao Lu

[72]

Epoxy-Based

Thermoset SMP

Resin

Carbon-Fibers 95%. —..

• The combination of GO and

CF additions have been

significantly the reliabilities

during the bonding procedure

associated with assisted the

heat transfer resistivity

between the matrix of

polymer and fibers.

• A synergistic effect of rGO

and CF on the induced shape

recovery during the Joule

heating.

Shape recovery of nanocomposite

SMPs induced by Joule heating after

been incorporated with 0.03 g of GO

and 0.14 g of carbon fiber.

Shape recovery behavior in SMP

nanocomposite induced by Joule

heating and infrared video camera

was utilized for recording.
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Author Substrate Type of fiber Recovery

ratio (%)

Shape

fixity

ratio

(%)

Comments Shape memory recovery method/demonstration

Kun Wei

[73]

Thermoset

Hydro-Epoxy

SMP

Glass Fiber,

437H, Taishan

Fiberglass

Full

recovery

—

• No any noticeable variations

in the glass temperature of

SMP after the addition of short

glass fiber.

• Within an amount less than

4.5 wt.% short glass fiber, the

hydro-epoxy resin SMP

acquired an excellent shape

recovery with a 100%

recovery after several minutes

of different temperature

exposures.

Shape memory properties: A visual perform of SMP after 4.5 wt.% addition

of short glass fiber

Table 2.
Summary of various types of fibers and their shape memory effect.
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memory characteristics and features are quite limited to due to their abilities of
recovering the original shape using the heating source only. Therefore, the rein-
forcements with micro/nano-fillers and particles or fibers are essentially important
to be considered to meet the needed functions and performances. Furthermore, the
reinforced SMPs and SMPCs are not only demonstrated a significant mechanical
and shape memory properties, but also obtained noble features after being exposure
to any electro-or-thermal heating source. Based on the previous researchers, the
foreseeable future concepts of SMPs and SMPCs may well-rely on how to adopt the
benefits of this kind of properties, in addition to, exceptional attributes as advanced
alternatives. On the positive front, the practical applications probability of SMPs
and SMPCs are found extensively when displayed in the remarkably distinct appli-
cation principles which may have seemed in the recent peer-reviewed publications
and also patents. Moreover, we believe that the investigation of the advanced
features of these types of materials is still in development of new design and/or
incorporations. The actual vital, hence, can be found in the finding of substantial
beneficial functions wherefore SMPs and SMPCs are enablers or even no less than
tremendously excellent substitutes.
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