
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

23

Integration Verification in System on Chips
Using Formal Techniques

Subir K Roy

 1: Texas Instruments

Bangalore, India

1. Introduction

System on Chips (SoCs) have become an all pervasive component in many of the
equipments - both the common placed and the sophisticated, that are relied upon by human
beings in today‘s modern societies; ranging from mobile phones, personal computers,
microwave ovens, high definition televisions, base stations for cellular mobile
communication and automobiles. Their penetration into every day aspects of human life,
and the range of applications and products in which SoCs are being deployed is increasing
at a rapid pace. To keep up with this rapid pace it is imperative to design SoCs with reduced
turn-around time and cost. Towards this, SoCs are being increasingly designed by
integrating existing in house IPs, or third party IPs provided by external vendors. The
integration process in realizing an SoC implementation consists of several different kinds of
integration which can be classified as (1) static integration, which is essentially of a non-
functional nature consisting of simple electrical connections (or hookup) of the inputs and
outputs of different component IPs, (2) dynamic, and (3) functional integration; where,
besides the pure electrical connectivity, a temporal and a functional dimension, respectively,
needs to be taken into account [1]. Typical sizes of state of art SoCs range from fifty million
to a few hundred million logic gates. Designing these SoCs involves an integration process
consisting of tens of thousands of pure static connections that needs to be established
between the input and output ports of the constituent IPs, and when carried out manually
can result in introduction of inadvertent errors [1], involving wrong connections, or even,
no conncections. The degree of the effects manifested by these errors, depends on when they
are detected in the design verification cycle. The latter these are observed in the design
cycle, the more difficult and expensive are these to detect, and consequently, to correct, in
the implementation. While several approaches have been adopted to tackle the issue of
integration verification of SoCs, in this chapter, we focus on the use of formal verification
techniques to solve them.
While formal verification has been used in, rather, niche areas of functional validations of
IPs and modules, it has found application in the domain of SoC functional validation only
recently[13]. With increasing maturity of commercial offerings of formal verification tools by
EDA vendors this area of application is expected to grow at a fair pace. The issue of which
category of formal verification approaches needs to deployed, for different aspects of SoC
functional validation, is however, largely left unanswered. In this chapter we give a
glimpse, in Section 2, of the different formal verification techniques that are available, either

Source: Micro Electronic and Mechanical Systems, Book edited by: Kenichi Takahata,
 ISBN 978-953-307-027-8, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Micro Electronic and Mechanical Systems

406

as academic tools, or as commercial offerings, and see their applicability to different aspects
of SoC verification. We discuss the underlying concepts, the strengths and weaknesses of
each approach, the justification for taking these approaches, so that the interested reader
can make a judicious choice in their intended application domains. We also point to
important references in each of the approaches, so that the interested reader can refer to
them for more details.
In Section 3, we will briefly allude to existing methodologies using the formal verification
approaches that have been reported in the literature to set the stage for presenting
approaches that are not covered by them. More specifically, we will highlight an important
aspect of SoC integration verification, vis-a-vis DFT logic, to show the manner in which re-
usability is leveraged through automated generation of re-usable parameterized properties
and constraints for DFT logic and the hookup or integration logic. And towards “ends
justifying means“ we will present data and results from their deployment on a real SoC
design and show the benefits that can be derived from these approaches. In Sections 4, we
will present one interesting scenario from the domain of DFT IP verification.
In Section 5 we will summarize the main contribution of our approaches, which are (1)
effective use of formal techniques based on symbolic model checking in the top level
verification of SoC integration, (2) effective use of abstraction and modeling of SoC sub-
systems in enabling assertion based formal verification, (3) automated generation of
assertions and constraints to detect integration errors, (4) automated generation of scripts to
capture the SoC design information and invoke a formal verification tool on which to prove
the validity or correctness of these assertions. We will end this section and the chapter by
drawing conclusions from the presented approaches, data and results, respectively.

Fig. 1. Formal Models and System Behaviour

Fig. 2. Generic Structure of the Formal Verification Process

2. Formal approaches

In this section, a brief introduction to formal verification for hardware and a brief review of
the different formal verification approach is given. For a detailed presentation and review of
hardware formal verification techniques and their application to the problem of verifying
IPs the readers are refered to the survey paper given in reference [3, Greenstreet]. The block
diagram of the generic structure of the formal verification process, in Figures 1 and 2,
succinctly explains the key components involved in formal verification. At the most abstract

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

407

level [Figure 1] formal verification essentially consists of having (1) a general mathematical
model (M) , capturing abstractly the system being verified, (2) the system behavior,
described abstractly, again, through a set of mathematically well characterized formulae
(Ф), and finally (3) proving that the set of formulae (Ф) holds true on the mathematical
model (M), represented symbolically by M |= Ф. This is further elaborated in Figure 2,
where M is either a computational model or a formal logic model, Ф is a set of formulae
from a formal logic system, and the proof techniques used for establishing the truth value of
M |= Ф are either deductive or based on model checking. In deductive proof systems, M is
decribed by a set of axioms (also known as invariants of the system), and the proof method
essentially consists of establishing that the truth of Ф, in the underlying formal logic, by
using only the given set of invariants (or axioms) of the system. The proof is largely driven
by inputs provided by the user, and therefore not fully automated, though steps in the proof
may lend themselves to full automation. On the contrary, in the model checking approach,
the proof is fully automated for some of the underlying formal logic, as it is based on
constructing the reachable set of states of the system.

2.1 Symbolic model checking
A hardware module is formally verified by stating a property on the design and then
checking that the design satisfies the property. The most commonly specified property is an
invariant, which expresses a condition on the hardware module that should never happen in
a reachable state (or conversely, a condition that should always be true in a reachable state).
Formally, an invariant is a boolean formula over the signals of the module. The module M
satisfies the invariant I if every reachable state of M satisfies I . Thus, invariant verification
on a module is performed by computing the set of its reachable states. However, this
computation is difficult because the set of reachable states can be exponential in the number
of signals in the module. This exponential growth in the number of states is known as the

state explosion problem.
Model checking is one of the most popular approaches to formal verification. In model
checking, a mathematical representation of a design in the form of a finite state machine
(FSM) is first constructed. Any specified behaviour (or a specification) of the design is then
formally stated in terms of a property, or a assertion, in unambiguous terms, both
syntactically and semantically, in a formal temporal logic. The mathematical model, i.e. the
FSM, is then analysed using different state traversal techniques starting from the set of
initial states, to check whether it satisfies the formal temporal property, on all, or atleast,
one computational path of the state transition graph that is implicitly generated by the
above state traversal. This state traversal is known as reachability analysis. In case the
temporal property is violated or falsified, a trace with respect to the primary inputs and
state variables of the FSM, starting from its set of initial states, is generated up to the Kth
set of states, where the property fails on one of its states. This is known as an error trace. This
search is realized because every set of states that is reachable on each clock cycle starting
from the set of initial states is stored internally by the model checker. The collection of such
sets of reachable states is finite for a finite state machine. When each of the reachable state
set is implicitly represented as a binary decision diagram (BDD), the model checking technique
is known as symbolic model checking(SMC). BDDs enable a compact representation of the
set of states. In many situations, the negation of a desired property needs to be verified, so
that the error trace generated automatically by the symbolic model checker when the stated

www.intechopen.com

 Micro Electronic and Mechanical Systems

408

property is falsified, or the desired property satisfied because of the negation, will result in
a sequence of input and state variable data values in the abstract FSM model. Thus, we
implicitly use symbolic model checking as a sophisticated search engine. For a number of
hardware designs, while it may be possible to construct the the BDD representation of a
very large set of reachable states, it may be impossible and infeasible to explicitly enumerate
such a set of states. Despite this, in most cases invariant verification based on SMC
techniques is limited to a few hundred signals and states.
In symbolic model checking, properties are specified using different temporal logic, e.g.
Linear Temporal Logic (LTL), or Computation Tree Logic (CTL) [3]. Some of the temporal
properties specified in LTL, or CTL, can be equivalently specified in the form of a finite
state machine (FSM) using the same set of internal signals that were used to define them in
LTL, or CTL. We, next, give a brief overview of CTL and LTL.

2.2 CTL model checking
The main purpose of a model checker is to verify that a model satisfies a user specified set of
desired properties. Specifications to be checked can be expressed in two different temporal
logics: the Computation Tree Logic (CTL), and the Linear Temporal Logic (LTL).
CTL is a branching-time logic. Its formulas allow for specifying properties that take into
account the non-deterministic, branching evolution of a FSM. The evolution of a FSM from a
given state can be described as an infinite tree, where the nodes are the states of the FSM
and the branching is due to the non-determinism in the transition relation. The paths in the
tree that start in a given state are the possible alternative evolutions of the FSM from that
state. In CTL one can express properties that should hold for all the computational paths that
start in a state, as well as, those that should hold only for some of the computational paths.
As an example, consider the following CTL formula - AF p. It expresses the condition that,
for all the paths (A) starting from a state, eventually in the future (F) condition p must hold.
Thus, in every possible single path of the computation tree over which the abstract model of
the design, or system, evolves temporally, it will eventually reach a state in which the
condition p is logically satisfied; i.e. in the considered temporal logic the formula will be
asserted as a TRUE, in this state. Differently from this, the CTL formula EF p, has the
semantics, that requires the existence (E) of any one, or some path that eventually, in the
future, satisfies p. Similarly, formula AG p semantically implies that condition p is satisfied
always (or globally), i.e. it is true in every state in every path that exists in the computation
tree; while formula EG p requires that there is some path along which condition p is true in
all states in that path. Other CTL operators are as follows,

• A[p U q] and E[p U q], requiring condition p to be true until a state is reached that
satisfies condition q;

• AXp and EXp, respectively, require that condition p is true in all, or in some of the next
states reachable from the current state.

2.3 LTL model checking
In this, specifications or properties are expressed in linear temporal logic (LTL). LTL
characterizes each linear path induced by the FSM (linear time approach). LTL has a
different expressive power as compared to CTL. Typical LTL operators are :

• Fp ("in the future p"), stating that a certain condition p holds in one of the future time
instants.

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

409

• G p (" globally p"), stating that a certain condition p holds in all future time instants.

• p U q ("p until q"), stating that condition p holds until a state is reached where
condition q holds.

• X p ("next p"), stating that condition p is true in the next state.
Compared to CTL, LTL temporal operators do not have CTL path quantifiers A or E. LTL
formulas are evaluated on linear paths, and a formula is considered true in a given state, if it
is true for all paths starting in that state. Its performance is similar to CTL model check as
described above. It has been shown that the complexity of a LTL symbolic model checking
algorithm is higher than that of a CTL symbolic model checking algorithm.

2.4 Bounded model checking
In Bounded Model Checking (BMC) the model checker instead of evaluating CTL or LTL
properties on paths over infinite time, does so over a finite time defined by a parameter k
which represents k units of time. It tries to find a counterexample of increasing length, and
immediately stops when it succeeds, declaring that the formula is false. The maximum
number of iterations can be controlled by the parameter k. If the maximum number of
iterations is reached and no counter-example is found, then the model checker exits, and the
truth of the formula is not decided, i.e. it cannot be concluded that the formula is true, but
only that any counter-example should be longer than the maximum length. The model
checking engine in most implementations of BMC is based on a satisfiability (SAT) solvers
instead of BDDs. The complexity of SAT solvers depend on the number of satisfiability
constraints that need to be formulated, which in turn is directly dependent on the parameter
k. For reasonable values of k, BMC based on SAT is computationally more efficient than
SMC based on BDDs [4].

2.5 Checking invariants
BMC can be used, not only for checking LTL specification, but also for checking invariants.
An invariant is a propositional property which must always hold. BMC tries to prove the
truth of invariants via a process of inductive reasoning, by checking if (i) the property holds
in every initial state, and (ii) if it holds in every state that is reachable from a state where the
propositional property holds.

2.6 Newer approaches
Here, we highlight the need to look for other formal verification approaches. We present brief
descriptions of some of the promising approaches that are from areas of ongoing research and
development in formal verification, in both academic and industrial research circles.
Formal verification has been applied to many classes of designs [13]. We will discuss this
aspect in some details in a later sub-section. The key drawback of the automated symbolic
model checking based formal verification approaches has been the bane of state explosion
faced by even moderately sized modules. Any module, in which the number of state
elements or flip-flops exceeds 1000, is liable to face the issue of state explosion during the
formal proof of the properties. Microprocessors with modest capabilities, such as the
following - non-pipelined instruction stage, single stage instruction pipeline, four stage
instruction pipeline, and a four stage instruction pipeline supporting jump and branch
instructions - are known to result in state explosion. Typically, for the different SMC
approaches the increasing order of performance are as follows,

www.intechopen.com

 Micro Electronic and Mechanical Systems

410

• CTL, or LTL model checking,

• Invariance checking using CTL,

• Invariance checking with the CTL, or LTL temporal properties represented as FSMs,

• Bounded model checking, and

• Bounded model checking with CTL, or LTL temporal properties represented as FSMs.
One approach to addressing the state explosion problem in such designs is to use
compositional formal verification techniques, at the module level of the design heirarchy.
Compositional verification is enabled by the assume and guarantee approach [3]. This is
shown in Figure 3 below.

Fig. 3. Assume and Gaurantee approach to Compositional Verification

Fig. 4. Design Abstractions to Reduce Complexity of Formal Verification

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

411

Another approach is that of abstraction (see Figure 4 and Figure 5), where the design is
abstracted (or simplified), to remove portions of design not needed to prove a property. This
can result in a substantial reduction in the number of flip-flops, thereby enabling automated
proof convergences of the formal properties.
However, for complex industrial RISC and DSP processors, or SoCs based on them, even
these approaches are not be feasible. We will need newer formal verification approaches
which are not limited by the state explosion problem.
Recent research carried out by different academic and industrial research groups address

these capacity issues in formal verification. Though, no stable implementations of formal

verification tools exist for such approaches, they serve as good pointers to pursue in the

future to address difficult verification problems. We give below, very brief descriptions of

some of the approaches.

Fig. 5. Memory Abstraction to Reduce Complexity of Formal Verification (Each memory bit
adds to a state bit in the verification process)

2.7 Generalized symbolic trajectory evaluations
Symbolic trajectory evaluation (STE) provides a means to formally verify properties of a
sequential system by a modified form of symbolic simulation. In this the desired system
properties or specifications are expressed in a notation combining Boolean expressions and
the temporal next-time operator. If the state space of a system is a lattice, the behavior of the
sytem can be expressed as a trajectory, a sequence of points in the lattice determined by the
initial state and the system functionality. Formulas in a simple temporal logic express
properties of the system. Given a formula, one can derive bounds that trajectories with the
desired property must obey. In its simplest form , each property is expressed as an assertion
[A => C], where the antecedent A is a trajectory formula which expresses some assumed
conditions on the system state over a bounded time period, and the consequent C another
trajectory formula which expresses conditions that should result. That is, it determines
whether or not every state sequence satisfying A must also satisfy C. It does this by
generating a symbolic simulation sequence corresponding to A, and testing whether the
resulting symbolic state sequence satisfies C. A generalization allows simple invariants to be
established and proved automatically.
The Boolean expressions provide a convenient means of describing many different
operating conditions in a compact form. By allowing only the most elementary of temporal
operators, the class of properties that can be expressed is relatively restricted, as compared

www.intechopen.com

 Micro Electronic and Mechanical Systems

412

to other temporal logics. However, it has been found in [5] that many aspects of
synchronous digital systems at various levels of abstraction can be readily expressed. It is
adequate for expressing many subtleties of system operations such as instruction pipelining
in modern processors.
The verifier operates on system models in which the state space is ordered by "information

content". By suitable restrictions to the specification notation, it can be guaranteed [5] that
for every trajectory formula, there is a unique weakest trajectory for A and testing adherence
to C. Also, establishing invariants corresponds to simple fixed point calculations. STE
implementation of [5] requires a comparatively small amount of simulation and symbolic
manipulation to verify an assertion. In [5] it is shown that the length of the simulation
sequence depends only on the depth of nesting of the temporal next time operators in the
assertion and the speed of convergence of the fixed point calculations.
Formal verification techniques such as, symbolic model checking and theorem proving have
met with limited success because of intrinsic problems related to state explosion and the
need for manual intervention, respectively. Even though STE is less sensitive to state
explosion problem and proven to be a viable methodology for large scale data path
verification, it suffers from the problem of inexpressibility. Properties which are spread over
infinite time intervals cannot be expressed in STE, let alone be verified [5,6]. GSTE
constitutes a very significant extension to STE [8-10]. It has been used successfully by INTEL
on its new generation microprocessor designs. GSTE addresses the drawbacks of STE and
has the power to verify complex assertion graphs with which any ω-regular property can be
equivalently represented, while at the same time it preserves the benefits of STE, like the
insensitivity to state explosion, thereby capturing the expressiveness of classical model
checking ([3-4] and [6]).
Verification of a complex pipelined data path designs and memories using GSTE model
checking techniques have been reported in the literature. Complex properties which are
spread over infinite time intervals are specified and verified. The verification time is
improved by carefully reducing the number of precise nodes used to perform reachability
analysis, while providing complete state information to the symbolic simulator. These
results prove the viability of the GSTE methodology as a formal verification technique for
control dominated designs such as large scale pipelined data paths. GSTE, therefore, seems
a good candidate formal verification approach to use, as it appears to scale well with the
actual implementation model of a processor.

2.8 Theorem provers
These are based on formal systems such as logic. For hardware verification, both the
specification and implementation can be described in a formal logic, and the task of
verifying the system is to prove that the implementation entails the specification. The core of
a theorem prover is a set of axioms and inference rules. Using only these, the user can prove
a theorem, with the system mechanically checking each step in a proof. One of the best
known theorem provers is the HOL system [3], with which theories of different sorts can be
built up in a rigorous way using a small number of primitive axioms and inference rules.
One major advantage is that the proof can be checked mechanically. Another advantage is
that it can be used to argue at different levels of abstraction. As theorem proving is
structural rather than behavioral, one can exploit the structure of the system to manage
complexity. A major disadvantage of theorem provers is that it can be extremely tedious to
verify certain low level properties of systems.

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

413

In [6] the combining of theorem proving and trajectory evaluation is explored, with a
motivation to gain the benefits of both the approaches. In their theorem proving approach
the mathematical objects manipulated by the theorem prover are the trajectory assertions.
VOSS is an implementation of these ideas in which STE is used to perform partial
verification based on the decomposition of the original specification. Combinational theory
is then used to combine these results through the use of the theorem prover framework.

2.9 Logic of Positive Equality with Uninterpreted Functions (PEUF)
This provides a means of abstracting the manipulation of data by a processor when
verifying the correctness of its control logic. By reducing formulas in this logic to
propositional formulas, one can apply Boolean methods such as BDDs and Boolean
satisfiability checkers to perform the verification. In [7], two approaches have been shown to
translate formulas in PEUF into propositional logic. The first interprets the formula over a
domain of fixed length bit vectors and uses vectors of propositional variables to encode
domain variables. The second generates formulas encoding the conditions under which
pairs of terms have equal valuations, introducing propositional variables to encode the
equality relations between pair of terms. In [7] techniques are presented to drastically
reduce the number of propositional variables that need to be introduced and to reduce the
overall formula sizes. This allows verification of microprocessors with load, store and
branch instructions at both the RTL or the gate level model. This again makes the approach
based on PEUF, a good candidate for solving many formal verification problems.

3. Existing formal based approaches

In this section, we first justify the need to resort to formal verification, then we will briefly
allude to existing methodologies based on the formal verification approach that have been
reported in the literature to set the stage for presenting newer approaches in latter sections.
As an example case study, we will present the methods and challenges in verifying the

integration of Design For Testability (DFT) logic - both BIST and non-BIST, in complex SoCs

using formal techniques. We will first present a generic architecture of the DFT logic that is

typically present in state of art SoC designs. For this DFT logic, we will, next, list the

validation task that needs to be accomplished, to ensure its proper integration into the

functional logic portion being implemented in a SoC design. We will then identify the

commonality that exists amongst the listed tasks from the perspective of verification. We

will then show how such common verification tasks are amenable to automation. As some

of these verification flow automations have already been reported in available literature, we

will briefly describe them in the context of our adoption of these flows, and refer the

interested reader to relevant reference papers for more details. As these flows are being

applied in the regression mode, to the various revisions of the currently ongoing

implementation design of an in-house SoC, we report recent data from our formal

verification efforts, to show-case the value propositions brought in by these approaches.

To simplify the above discussion, we will assume that different DFT IPs present in the
generic DFT architecture are pre-verified. However, in reality, this is not always the case. In
many situations, it may be necessary to verify even the different DFT IPs, specially, if these
are parameterized, configurable and auto-generated, to ensure that the version intended for
integration into the SoC, is indeed being generated correctly. Towards this, we will briefly

www.intechopen.com

 Micro Electronic and Mechanical Systems

414

discuss, how congifurable DFT IPs can be formally verified with a configurable set of
generic properties, so that alongwith any desired IP configuration, the corresponding set of
properties are auto-generated to verify the IP. This will demonstrate how re-usability is
being leveraged through automated generation of re-usable parameterized properties and
environmental constraints for DFT logic and the integration logic.

3.1 Justification for using formal approaches to integration verification
An exceedingly important design phase, which gets carried out in the background, and far
from the lime-light of the functional features of any SoC, is the integration of DFT logic and
the verification of this integration to other sub-systems and IPs in a SoC. While this does not
feature as a prominent front end task in the design of any SoC, it does constitute a
significant portion of the overall design and verification effort. Any savings in this design
integration phase, and its subsequent verification, helps in reducing the overall SoC design
cost. Some of the key components in DFT logic that need to be integrated into a SoC are
those for 1) testing embedded memories and core logic, 2) control logic to enable different
test modes to be set up during post-fabrication Silicon testing, 3) multiplexing and control
logic to enable different test modes to selectively run tests, directly from SoC top level ports
on different portions of functional logic by bypassing intervening logic blocks, 4)
configuring scan chains to rout test vectors to different portions of functional logic.
A key to realizing the above mentioned cost reduction for the above tasks can be through
their automation. A prominent factor that can help in facilitating automation is the fact that
most DFT IPs possess behaviors and structures that are of an extremely canonical and
regular nature, and that these are independent of the functional nature of the SoC. Besides
this, the interconnection of the IPs to the rest of the logic in the SoC is also of a very generic
nature. This has resulted in the consolidation of SoC level DFT logic architecture towards a
highly standardized, and a highly configurable form (known as the DFT sub-system),
enabling it to be auto-generated through software tools. Individual components within this
sub-system are auto-generated using point commercial tools addressing the highly
specialized requirements corresponding to each DFT task. Two such examples are, memory
and logic BIST controllers. We briefly discuss below the DFT tasks of testing embedded
memories and core logic in a SoC, in the context of these controllers.
Present generation SoC designs are built hierarchically with a large number of embedded

memories of different kinds and sizes and different embedded cores (e.g. processors,

peripherals, etc.). The embedded cores may themselves have different types of internal

memories, functional logic blocks and different types of I/O ports. Built-in self-test (BIST)

techniques are employed to reduce expensive ATE time for the post manufacturing silicon

testing of these blocks; besides, they enable low pin count testing, and testing of embedded

core of SoCs fabricated on low cost packages with fewer pin count. Application of test

vectors to memories and core logic can span several million clock cycles depending on the

size of the embedded memories, the core logic, and the testing algorithm employed to

generate these vectors, resulting in exceedingly long verification times for the BIST

controllers through simulation. A memory BIST tool needs a description of the embedded

memories and memory test pattern generation algorithms to generate and integrate the

different memory BIST controller logic needed for different types of memories. In a similar

manner, the logic BIST tool requires a description of the gate level net-list representation of a

design, to analyze and to extract the core logic portion, before generating the logic BIST

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

415

controller needed to configure them for testing and for generation of the test vectors specific

to this configuration. The configuration hook-up logic and the logic BIST controller are then

integrated into the netlist automatically by the tool. To meet performance, timing and power

constraints specific to a SoC, and to support scan, self test and clocking, it is often the case

that, such, auto-generated BIST logic have to be modified, thereby, necessitating their

verification, to ensure that the modifications do not break the intended behavior or

functionality.

Verification of proper integration of memory BIST logic into a design, and any modifications
to it, to meet performance and timing constraints in the original design, has been
traditionally done based on simulation techniques. This is often incomplete and time
consuming, as the correctness of the integration is verified indirectly by running the entire
test suite developed for memory BIST logic. Even a single change in the control or hookup
logic and its integration into the rest of the design may necessitate re-running the entire set
of simulation vectors. Besides being time and compute intensive, the time needed to analyze
errors detected in these simulation runs and to correlate them to design integration
problems can be correspondingly large. These simulation test benches are often created
manually, and may be design specific, making them un-useable across different controller-
memory, or controller-embedded logic configurations. Verification of memory BIST logic
using formal techniques is appealing, as the behavior of the controller block is sequential,
while the behavior of the hookup block is combinational. Writing re-usable formal
properties for such blocks are easy, precise and less time consuming. It is possible to obtain
comprehensive verification coverage across different environmental constraints, resulting in
high quality and confidence in the verification process using formal techniques. Formal
verification of BIST controllers, however, can be difficult, if we include models of embedded
memories, as in simulation. This is due to the large number of register elements used to
model memory, which leads to the problem of state explosion and can be overcome by
effective modeling and abstraction techniques.
We next justify the need to verify even the auto-generated DFT logic sub-system and its
integration into the SoC. DFT logic sub-systems have to be verified as different modular
configurations arising out of generic customizable, configurable and parametrisable
components may be needed for different SoCs. This implicitly enforces verification
requirements on the integration of such configurable DFT logic modules into an SoC whose
RTL itself could be auto-generated with a tool (for example, 1-Team-Genesis [11]) and with
its own set of configurable functional IPs. While there is variability in the configurations,
each configuration nevertheless, retains the above characteristics, thereby, rendering the
verification of DFT logic and its integration into a SoC a very good candidate for formal
approaches. To leverage the capabilities of FV in the context of auto-generated configurable
modules, it is essential that the formal properties themselves be configurable and auto-
generated, along with the formal verification environment. This enables high re-usability of
properties developed during the tactical formal verification of each module present in the
DFT logic subsystem in different SoCs. While the generation of DFT logic and its integration
in a SoC is automated, our approach results in the automation of the verification task as
well. This enables the complete automation of DFT logic in terms of verification and
integration in a SoC at the RTL implementation level, resulting in a considerable reduction
in the overall SoC design cost and design turnaround time. We briefly describe below the
process by which we systematically achieved this automation.

www.intechopen.com

 Micro Electronic and Mechanical Systems

416

Fig. 6. Generic SoC DFT Logic Architecture

Verification IPs (VIPs) in the form of formal properties, verification environment and
verification tool setup were developed tactically for the maximal configuration possible in
each block within the standardized configurable DFT sub-system described above, using
techniques given in [1,2]. These VIPs were then validated on several in-house driver SoC
designs. Once these VIPs reached a level of maturity by way of functional specification
coverage, their parameterization in the context of individual blocks were taken up, to enable
different sets of VIPs to be auto-generated for a given set of parameters specific to a
particular desired configuration of the DFT sub-system. VIPs necessary to check the correct
generation of the sub-system includes the VIPs to check the correct integration of individual
blocks within the sub-system. Different verification sub-tasks related to the validation of
behavior of DFT logic and its interaction with functional logic under different test modes
were identified, and corresponding VIPs along with their auto-generation scripts were
developed tactically. These were then validated on several driver designs. The tactical
development of these VIPs on driver SoC designs were then moved into a common
infrastructure through which desired configurations of the DFT sub-system logic and VIPs
specific to different SoC designs are generated, enabling high re-use and faster turn-around
times.
We next give details of how some of the formal verification flows related to the different
DFT verification tasks have been achieved. Towards we first briefly describe a generic DFT
logic architecture typically found in any state of art SoC.

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

417

Fig. 7. Microcoded Programmable Memory BIST Controller Architecture.

Fig. 8. Flow of Memory Data between PBIST Controller and Embedded Memories

3.2 Generic SoC DFT logic architecture
Figure 6 shows the DFT logic architecture typically found in any state of art SoC design.
This SoC has a heirarchical DFT logic architecture characterised by a complex top level DFT
sub-system, and depending on the complexity of the constituent IPs, several simpler IP level
DFT sub-systems could be present. The Functional_IO_Mux block at the top level of the SoC
routes external inputs to the SoC to either the functional core logic or to the DFT sub-sytems
depending on the SoC operational modes, viz., functional or test modes. Under the test

www.intechopen.com

 Micro Electronic and Mechanical Systems

418

Fig. 9. Generic Top Level Heirarchical Memory Data Path Architecture in a SoC

mode, the external inputs are routed by the Test_Pin_Mux block, under different test modes

to different modules within the top level DFT sub-system or the IP level DFT sub-system.

The Test_Pin_Mux block achieves the routing to IP level DFT sub-system blocks through a

IEEE1500 module in the Test_Mode_Ctrl block, which not only enables setting up of the

various SoC level test modes, but also IP level test modes. The latter is achieved through a

serial programmation of the Serial_TAM block under the control of the IEEE1500 module.

The programmation of the IEEE1500 module is carried out by the ATE through top level

SoC JTAG ports. The Test_Mode_Ctrl block exercises control over choice of, either serial test

data, or parallel test data through the Functional_IO_Mux block, through the DFT_IO_Ctrl

block based on the requirements imposed by the different SoC and IP test modes. The

different IP level test modes are set by the programmation of the Serial_TAM block in the

top level DFT sub-system under the control of the IEEE1500 module. Based on the value

written into its control register the ports of the different IP level TAM blocks get connected

to its corresponding ports. Serial data from the top level SoC ports can then be routed

directly to the individual IP level Test_Mode_Ctrl blocks to set the desired test modes within

the IPs.

The PBIST_Ctrl block in the top level DFT sub-system is the programmable BIST controller.
Several PBIST controller blocks can also be present in the IP level DFT sub-systems as
shown in Figure 6. Memory test data from these controllers and the top level PBIST
controller, are routed sequentially to top level SoC test ports by the PBIST_Combiner block.

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

419

The PLL_Combiner block controls the generation of the various functional and test clocks
with different frequencies needed by different IPs and test controllers under the different
functional and test modes of operation. These clocks are generated from the top level system
clock of the SoC. For the sake of brevity we will not discuss the remaining blocks present in
the top level DFT sub-system.
The correctness of the SoC DFT logic architecture described above is established through
different sets of verification checks carried out at different levels in its module hierarchy. We
list below some of them.

• SoC Level Checks
- Hook-up checks
- IO Related Checks
- Memory Data Path
- P1500 Slave Verification
- Test Mode Entry

• Module Level Checks
- Burn in monitor module
- Clock observation module
- Test secure controller
- Test clock management module

There are different categories of connectivity checks (Hook-up Checks) that need to be carried

out at the top level. As listed below there are a large number of connectivity checks that

need to be performed at the SoC top level under various categories.

• Hook-up checks
- Test pin mux verification
- Clock propagation checks
- ATPG reset propagation checks
- ATPG control signal checks for soft macros
- Memory power management ports hook up
- Power switch ports hook up
- WPI/WPO connectivity from DFT-SS to complex IO’s, analog macros, digital hard IPs
- DFT-SS DFT read/write signals to control modules
- Compression wrapper connectivity
- Connectivity checks between DFTSS to IPs
- Burnin monitor input/output connectivity
- Clock observation/lock observation signal connectivity
- PLLCM/ADPLL connectivity
- Connectivity checks for PBIST, DPLL, SCM interface
- IForce/VSense connectivity checks
- Memory port connectivity checks
- Margin mode pin checks
- Memory power management ports hook up
- Power switch ports hook up

• Direct Connectivity
- TPM, DPLL, SCM, PBIST, ATPG Reset, PRCM Clock,

• Muxed Connectivity
- Burnin monitor muxing logic

www.intechopen.com

 Micro Electronic and Mechanical Systems

420

• Safe Value
- IE, PU/PD, GZ checks

• Connectivity with inverted value
- Slew Override checks

• Test Mode Entry
- THBMode, TestMode

• Clock division based on a division factor
- Clock Observation Module

• TAM Connectivity

• Memory Data Path connectivity

• Register loading through JTAG
Most of the above checks are simple point to point, static connectivity checks which have
been discussed in details in references [1,2]. We will discuss below, briefly, one check which
is more complex as compared to the other checks. More details on this check can be found in
the references [1, 2]. This is the memory data path (MDP) check, in which, the correctness of
the pipelined datapath connectivity between a PBIST controller and its corresponding set of
embedded memories is established. This correctness has to be established individually
between every possible pair of controller-memory combination. The setting up of each
unique pair is achieved by a hierarchical mux logic structure known as the Memory Data
Path (MDP). Each pair can have different numbers of pipelined registers along both the
forward memory data path (from controller to the embedded memory) and the return path
(from embedded memory to the controller), to account for the different path delays due to
different geographical seperations of the embedded memories vis-à-vis the controller
(Figure 7 and Figure 8).

Fig. 10. Automation Flow For Memory Data Verification Using Formal Properties

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

421

The MDP check consists of the following – correct establishment of a pair, correct temporal
to and fro transportation of the address, memory and control data between the
corresponding memory ports and controller ports. Establishing the correctness of a pair
under a unique control value issued by the PBIST controller is done by ensuring that only
the desired pair is chosen, and that for this pair no other pair is chosen. As will be seen
below typical SoCs can have tens of embedded memories of differing types. Besides, each IP
can have its own local PBIST controller. Figure 9 shows the hierarchical MDP structure in a
typical SoC, with the grouping of the local MDPs being based on the different power
domains that each IP belongs to in the SoC. Based on the argument presented earlier in the
section, formal verification of the MDP structure for an ongoing SoC implementation is
being carried out using an automated formal verification flow, shown in Figure 10. Details
of this flow can be found in [1, 2]. We discuss the data obtained from our formal verification
efforts for this check.
Of the 14 functional sub-subsystems being integrated into the SoC, 9 are soft IPs, whereas, 5
are hard, pre-verified, third party IPs, requiring only simple connectivity checks. Full set of
MDP connectivity checks are carried out on the soft-IPs. The number of memories and their
corresponding ports on which connectivity checks are performed are listed in Table 1 below.

IPs Number of Memories Ports checked (IP/Mem End)

Sub-System1 3 td, ta, taw, tar, q, twen, tm, twrenz

Sub-System2 1 td, taw, tar, q, twen, tm, twrenz

Sub-System3 28
td, ta, taw, tar, q, twen,
tm, twtz, twz, twrenz

Sub-System4 3 td, taw, tar, q, twen, tm, twrenz

Sub-System5 23 td, taw, tar, q, twen, tm, twrenz

Sub-System6 2 td, taw, tar, q, twen, tm, twrenz

Sub-System7 10 td, taw, tar, q, twen, tm, twrenz

Sub-System8 3
td, ta, taw, tar, q, twen, tm,

twrenz, twtz, twz, tez0

Sub-System9 1 a, ta, q, ez tez, tm

Sub-System10 Hard IP – connectivity checks
csr, rgs, rds, rdata*, wdata*, addr*,

wtz*, ms*, tm, wz*, twrenz

Sub-System11 Hard IP – connectivity checks
csr, rgs, rds, rdata*, wdata*, addr*,

wtz*, ms*, tm, wz*, twrenz

Sub-System12 Hard IP – connectivity checks wpi_memory_bist*

Sub-System13 Hard IP – connectivity checks wpi_memory_bist*

Sub-System14 Hard IP – connectivity checks wpi_memory_bist*

Total 74 + connectivity checks NA

Table 1. Sub-systems, Their Memories and Signals for Formal Verification in Example SoC

The total number of formal properties for each IP is given in Table 2. This table also shows
the progression of the checks on different RTL versions released by the design team at
different points in the temporal evolution of the SoC implementation. Several useful bugs
were caught by the formal verification runs in each release. As can be clearly seen, over each
iteration there is a reduction in the number of bugs caught by formal verification.
Towards the formal verification runs, the set up time needed for the first RTL release using
our automated flow was approximately 36 hours for all the 14 sub-systems. Most of this

www.intechopen.com

 Micro Electronic and Mechanical Systems

422

time was devoted towards establishing the correct environmetal constraints to be applied at
the SoC top level for formal verification runs, and the right heirarchical paths of each
functional IP in the SoC, and each module in the heirarchical DFT logic architecture, to
enable black-boxing of un-necessary modules. This results in efficient and faster
convergence of the properties during formal runs. This is a one time effort. Set up times in
subsequent regression runs are drastically reduced to around an hour. A PERL based script
is under development to completely automate the above.

 1st iteration 2nd iteration 3rd iteration 4th iteration

IPs Prps Pass Fail Prps Pass Fail Prps Pass Fail Prps Pass Fail
SubSys1 148 144 4 148 148 0 148 148 0 149 148 1
SubSys2 68 67 1 68 68 0 68 68 0 69 68 1
SubSys3 1344 1312 32 1344 1344 0 1344 1344 0 1372 1372 0
SubSys4 158 155 3 158 158 0 158 158 0 158 158 0

SubSys5 1363 1324 37 1363 1363 0 1363 1363 0 1386 1386 0
SubSys6 48 46 2 48 48 0 48 48 0 54 54 0
SubSys7 670 660 10 670 670 0 670 670 0 690 690 0
SubSys8 172 168 4 172 168 0 172 172 0 175 175 0
SubSys9 38 5 33 38 38 0 38 38 0 38 38 0

SubSys10 29 21 8 29 29 0 33 33 0 35 35 0

SubSys11 29 4 25 29 29 0 33 33 0 35 35 0
SubSys12 NA NA NA 3 3 0 3 3 0 3 3 0
SubSys13 NA NA NA 3 3 0 3 3 0 3 3 0
SubSys14 NA NA NA 3 3 0 3 3 0 3 3 0

Total 4067 3906 161 4076 4076 0 4076 4076 0 4150 4148 2

Table 2. Data For FV Regression Runs on SoC Sub-system Memories For Different RTL
releases

The MDP checks on the different sus-sytems/IPs varies from 5 minutes to 10 minutes, with
an overall verification time of 90 minutes over different regression runs for different RTL
releases. Thus, for each RTL release a regression run of the MDP checks can be completed
within 150 minutes (2.5 hours). Simulation based regressions runs need atleast a day to
report similar results. This has been consistently observed with respect to other formal
verification flows developed to carry out the different SoC level integration checks listed
earlier. In Table 3 we report some data based on these checks performed on the latest RTL
implementation release of the SoC discussed above.
In the next section we take up the task of verifying formally some interesting aspects of one
of the DFT IP discussed above.

4. Formal verification of protocols for transfer of programs and data in
programmable DFT controllers

An oft repeated claim in the context of formal verification in the verification community,
both academic, as well as, industry has been that model checking based formal approaches
do not work well for designs that have behaviors involving aperiodic events with long
latencies, such as found in Ethernet MAC interfaces and Elastic Buffers. In this section we
discuss a strategy devised to formally verify one such design which involves huge
sequential depths.

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

423

SL. No. Properties Passes Fails

1
Test Pin Muxing Connectivity

+ Safe Value Checks
984
272

984
272

0
0

2 SCM Interface Connectivity 518 518 0

3 Burn in Monitor 134 134 0

4 Clock Observation Module Hookup 48 48

5 Clock divider 1536 1536 0

6 IO Checks –THBMode 475 475 0

7 IO Checks – HiZ instruction 475 475 0

8 IO checks – IDDQ 777 777 0

9 DPLL Interface Connectivity 90 90 0

10
Compression Wrapper

Connectivity
153 143 10

11
Boundary Scan Register

Connectivity + Override Checks
1610 1592 18

12
EFuse Connectivity

+ LDO/BG DFT Checks
7
45

5
45

2
0

13 Test Secure Controller Hookup 15 15 0

14 Clock Connectivity Checks 112 112 0

15
Burn-In Monitor Connectivity

+ Module
95

161
95
161

0
0

16
IEEE1500 TAM Connectivity

Checks
550 550 0

17 Memory Margin Mode Checks 21 21 0

18 ATPG Reset Checks 126 73 53

19 Test Mode ATPG Checks 96 96 0

20
DFT Mux Mode

+ DFT Read/Write Checks
40
16

40
16

0
0

Table 3. Formal Verification Run Statistics on Different SoC DFT Logic Integration Checks

In many critical SoCs (with stringent and low DPPM values) post silicon fabrication
verification of embedded memories using programmable built in self test (BIST) controllers
involves downloading of memory testing algorithms (for different memory types) in the
form of microcoded instructions from an external ROM into the internal memory of the BIST
controller. Besides the algorithms, critical information related to them, such as, the
embedded memory types and their grouping are also downloaded to enable the controller
to execute the memory-testing algorithm on each memory in a group. There is a
predetermined grouping of the algorithms and their memory related information, both,
within the external ROM and within the internal memory of the controller which enforces a
strict protocol with branching semantics to be followed during downloads. Due to limited
capacity of the internal memory, the downloading is interleaved with the execution of the
memory-testing algorithm by the controller, until each algorithm is downloaded and
executed on each memory of their target memory groups. It is, therefore, imperative that the
interface implementing the downloading protocol with branching semantics be verified
comprehensively for the correct execution of the memory testing algorithms on memories in

www.intechopen.com

 Micro Electronic and Mechanical Systems

424

the targeted groups. In this section, we show how one can effectively use symbolic model
checking based formal approach to verify a complex protocol involving long sequence of
events until completion of testing of each embedded memory in the SoC.

4.1 The microcoded programmable memory BIST controller architecture
The design under verification here is a ROM Interface which is a block in a programmable
memory BIST controller IP (Programmable BIST, or PBIST), as shown earlier in Figure 7.
This figure shows the architecture of the PBIST controller. The path through which the data
from the external ROM flows into the controller and the embedded memories are
highlighted in green. The different memory testing algorithms (ALGO), the information on
the memory type (RAM data – RAMD) and the background patterns (BGPs) specific to the
algorithm, are all downloaded from the external ROM. The external ROM communicates
with the microcoded PBIST memory controller through the ROM Interface, whereby, the
relevant data to be downloaded is transferred sequentially to data type specific registers in a
program register file within the controller. The memories to be tested are grouped into RAM
Groups (RAMG) (Figure 10). PBIST can be instructed to selectively test specific RAMG’s (the

targeted RAMG) using either a single ALGO, or a set of ALGOs applicable to the different
memories in the RAMG. The maximum number of RAM groups and the maximum number
of different memory testing algorithms supported in the latest version of the PBIST
controller is 64 (with a maximum of upto 51 memories in each memory group) and 32 (with
a maximum of upto 14 back ground patterns for each algorithm), respectively.

Fig. 10. Memory Test Algorithms and Their Mapping To Memory Groups.

4.2 Source of enormous sequential depth in the PBIST controller’s ROM interface
behaviour
For the maximum number of algorithms, the maximum number of RAM groups and the
maximum number of background patterns that can be supported by a single PBIST

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

425

controller, we can easily calculate the maximum number of clock cycles it takes for the
controller to assert its MDONE (or PASS) signal in case no memory errors are detected by
any of the algorithms executed in each memory in each RAM group. To simplify this
calculation we will assume the following relevant set of data values :

• There are 32 ALGO, 14 BGP in each ALGO, 64 RAMG and 51 RAMs in each RAMG.

• Each ALGO targets all the RAMG.

• The ROM has a data read latency of 1 clock (we ignore all clocks during which the
controller does not attempt to fetch any data from the ROM; for example, during a
switch over from the ALGO section to RAMD section, during the execution of a
memory testing algorithm on a specific memory in a specific RAM group).

For the above set of assumed values, the number of clock cycles required to just fetch all the
relevant data from the ROM into the PBIST controller based on the transaction protocol
shown in Figure 11 alone can be easily seen to be,

 [34+{2+(64*51*10)}*14]*32 = 14.2 million cycles!

Fig. 11. Transaction Protocol followed by the ROM Interface logic and its functional
classification. (Each functional category is numbered in red, while the test case covering it is
numbered in green.)

As can be easily noted, this is a rather conservative figure, as we ignore all clock cycles

consumed during suspension of data downloads. Besides, if the latency is higher, than the

optimistic value of 1, the sequential depth would be even larger. Symbolic Model Checking

tools, such as IFV, are incapable of handling functional behaviors with such enormous

sequential depths. This was borne out by the fact that even simple properties written to

validate the ROM interface behavior exhibited state explosion.

www.intechopen.com

 Micro Electronic and Mechanical Systems

426

4.3 Verification strategy
To verify design behavior involving exteremly large sequential depths we cannot take
recourse to structural abstraction techniques based on module heirarchies to reduce the
complexity of the verification effort. A close look at the root cause of the issue reveals the
following - during the download process of a data element from the external ROM, one part
of a switching logic block is repeatedly exercised every time the control jumps from
downloading data from the memory testing algorithm section to the memory data section.
Therefore, for a maximum of N memory testing algorithms that are supported by the
protocol, this logic will be exercised N times. This also implies that a property written to
verify the sequence of events associated with this switching, would be triggered N times in
the antecent of the property and, therefore, the final pass status, depending on the
satisfaction of the consequent of the property will be declared, after an extremely large
sequential depth with respect to the set of initial states is traversed. A simple startegy of
reducing N, to say 5, not only exercises the switching logic to check for any corner case
arising from the switch in data transcation from the algorithm portion to the memory data
portion, and vice-versa; but also results in a smaller sequential depth. This simple idea is
similarly used to reduce the number of background test patterns assigned to each ALGO,
the number of memory groups, and, finally, the number of memories in each group.
Towards this, we chose values of 5 for the number of algorithms, 5 for the background
patterns, 5 for memory groups and 5 memories in each group, respectively.
We simplified the verification task, further, by splitting the environment to enable
verification of two different cases:
i. 1 algorithm, 1 BGP, 1 RAMG and 5 RAMs in each RAMG.
ii. 5 algorithms, 5 BGP, 5 RAMG and 1 RAM in each RAMG.
The two cases have been carefully chosen to further reduce the sequential depths traversed
by IFV to prove the corresponding properties, as well as, exercise complementary portions
of the corresponding logic in the RTL. For example, in test case 1, logic enabling transition
to a new memory testing algorithm will not be exercised, as only one algortihm is assumed
to be present; while in test case 2, logic enabling transition to a new memory in a memory
group will not be exercised, as only one memory is assumed to be present in each memory
group. The gaurantee on the exhaustiveness of the verification process with respect to the
entire functional behavior of the ROM interface logic is based on the following
considerations. A complete analysis of the RTL functionality results in its being classifiable
into the following seven categories:
1. Branching into the RAMD section once an algorithm and the first BGP have been

fetched from the external ROM and transferred to the PBIST controller.
2. Branching from the RAMD section into a wait mode and remaining in that mode until

an external signal flags the completion of a memory testing algorithm test on the
corresponding RAM.

3. Once a RAM has been tested, the information for the next RAM within the same RAMG
needs to be fetched provided the currently chosen RAM is not the last RAM within the
present RAMG.

4. Once a chosen testing algorithm has been executed completedly on all the RAMs in a
RAM group, control should revert back to the BGP section to enable fetching the next
BGP, corresponding to the memory test algorithm to be run on the next memory group.

5. After a RAM has been tested, the information for the first RAM of the next RAMG needs
to be fetched, provided the current RAM is the last RAM within the current RAMG

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

427

6. After all the memory testing algorithms with all their respective BGPs have run on all
their targeted RAMs, the control should revert back to the idle state of the underlying
control FSM of the ROM interface logic.

7. Once a RAM has been tested the control should revert back to the ALGO section to
enable fetching the next ALGO, in case all the RAMs targeted by the current algorithm
have been tested.

The above categories of logic are marked on a process flow diagram to ensure that none of

the interface functionality is missed by the above classification. This flow diagram is shown

below in Figure 11. In this figure, the verification test case which covers one of the above

sub-functionality is marked in green and red, respectively. The overall coverage for each

test case is captured in Table 4 below.

Verification Test Cases Targeted Functionalities

Test Case 1 1,2,4, 6 & 7

Test Case 2 1,2,3, 5 & 6

Table 4. Functional category coverage by the different test cases.

4.4 Results from formal verification runs
The results from different formal verification runs based on the approach discussed above

are shown in Table 5. A significant improvement is observed in the run-times of the

different properties - many of the properties, which suffered state-space explosions earlier,

converged; while, many converged properties from earlier runs report significant reduction

in their run-times. We report results from IFV runs on two properties in Table 6.

Table 5. Formal verification results from proposed approach.

www.intechopen.com

 Micro Electronic and Mechanical Systems

428

Property Name Targeted Functionality Result before Result After

ramgroup_start
To check the FSM state transition and
other events that are expected during
the control transfer to a new RAMG

Passed in
12.7 hrs

Passed in
3.95 hrs

ram_addr_write_str

The last word in the RAMD for each
RAM is STR. It is a mnemonic for the

start instruction issued to the
controller to start the memory testing.
This property checks the transfer of
this instruction to the corresponding

register of the controller and the
associated events.

Exploded in
12.7 hrs

Passed in
8.96 hrs

Table 6. Comaprison of Formal Verification Results from different approaches.

4.5 Another useful methodology based on functional compositional verification
While the above proposed approach significantly improved the convergence of the property

set needed to verify the ROM interface functional behavior with reduced runtimes, a few

properties continued to suffer state-space explosions, as seen from the results presented in

Table 5. Fortunately, the convergence issue related to such properties was much simpler to

analyse and resolve. The simple startegy of splitting the original property into several

smaller sub-properties resolved convergence issues. As an example, consider the property

which verifies the sequential transfer of the first 36 words in a ALGO section, to their

respective registers in the program register file of the controller. This property took 17 hours

in IFV to converge. It was then split into 36 different properties, with each one dedicated to

verifying just one word in the sequence of 36 words. This entire set of 36 properties took less

than 8 hours to converge.

Functional behaviors involving extremely large sequential depths can pose a formidable

challenge to existing automated formal verification approaches. However, analysis of such

behavior usually lend themselves to prudent partitions; while these, in most cases suffer

from specificity, usually result in convergence of formal verification runs on the partitioned

behaviours.

5. Summary and conclusion

To summarize, the key motivation of our approach has been to automate integration
verifications of IPs and DFT logic towards, 1) cycle time reduction by a factor of two in the
DFT logic verification task by minimizing usage of simulation based chip level verification
requirements, 2) improvement in Silicon quality by elimination of all DFT logic and its SoC
integration related bugs and 3) deployment of DFT logic generation, its integration in SoC
and its verification through a common infrastructure to facilitate re-use of these tasks across
different SoC designs. One of the key contributions in the automation of the DFT logic
verification task has been the deployment of formal verification techniques, as justified
above.

www.intechopen.com

Integration Verification in System on Chips Using Formal Techniques

429

Based on our experience in deploying the proposed approach, good insight has been

developed into the DFT verification problem for comparison of simulation based and formal

approaches. Experimental data using a commercial formal verification tool IFV [12] show

that the proposed approach is an order of magnitude faster than approaches based on

simulation. Though we report our results based on IFV, our approach is independent of any

FV tool and can work with any FV tool which supports the Property Specification Language

(PSL), or the System Verilog Assertion (SVA) language.

6. Acknowledgement

The contributions of Bijitendra Mittra, Amit Roy, Supriya Bhattacharya, Lopamudra Sen,

Deepanjan Roy (all from Interra India Private Limited, Bangalore) and Abhishek Kothari

(who was earlier with Interra India Private Limited, Bangalore), is gratefully acknowledged.

7. References

[1] Subir K. Roy, “Top Level SoC Interconnectivity Verification using Formal Techniques”,

International Workshop on Microprocessor Test and Verification, Austin, Texas,

USA, 2007.

[2] Subir K. Roy and R. A. Parekhji, “Modeling Techniques for Formal Verification of BIST

Controllers and Their Integration into SoC Designs”, International Conference on

VLSI Design, Bangalore, India, 2007.

[3] C. Kern and M. R. Greenstreet, "Formal Verification in Hardware Design: A Survey",

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, April 1999, pp.

123 - 193.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. In

Tools and Algorithms for Construction and Analysis of Systems, In TACAS’99, March

1999.

[5] C.J.H. Seger and R.E. Bryant, "Formal Verification by Symbolic Evaluations of Partially –

Ordered Trajectories", Formal Methods in System Design, 6, 147-189, 1995.

[6] S. Hazelhurst and C. J. H. Seger, "A Simple Theorem Prover Based on Symbolic

Trajectory Evaluation and BDDs", IEEE Transaction on Computer Aided Design of

Integrated Circuits, 14, 4 (April 1994), 413-422.

[7] R.E. Bryant, S. German and M. N. Velev, "Processor Verification Using Efficient

Reductions of the Logic of Uninterpreted Functions to Propositional Logic",

Technical Report CMU-CS-99-115, May 1999, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA 15213.

[8] Yang, J. and Seger, C.: “Introduction to Generalized Symbolic Trajectory Evaluation,”

IEEE Trans. on VLSI Systems, 11(3), pp. 345-353, 2003.

[9] Jin Yang and C.-J. Seger, “Generalized symbolic trajectory evaluation - Abstraction in

action,” LNCS: Proc. Of FMCAD2002, November 2002.

[10] Jin Yang, “GSTE: An illustrative and comparative introduction,” 5th International

Conference on ASIC, Volume 1, pp. 41-44, October 2003.

[11] 1-Team-Genesis – Tool for Architecture Generation, Atrenta Inc., 2008.

[12] IFV – Incisive Formal Verification Tool, Cadence Design Systems Inc., 2009.

www.intechopen.com

 Micro Electronic and Mechanical Systems

430

[13] Bill Murray, “Mixing Formal and Dynamic Verification – Part 1 and 2“, Special

Technology Report, SCDsource, http://www.scdsource.com/article.php?id=333

and 341, 2009.

www.intechopen.com

Micro Electronic and Mechanical Systems

Edited by Kenichi Takahata

ISBN 978-953-307-027-8

Hard cover, 386 pages

Publisher InTech

Published online 01, December, 2009

Published in print edition December, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book discusses key aspects of MEMS technology areas, organized in twenty-seven chapters that present

the latest research developments in micro electronic and mechanical systems. The book addresses a wide

range of fundamental and practical issues related to MEMS, advanced metal-oxide-semiconductor (MOS) and

complementary MOS (CMOS) devices, SoC technology, integrated circuit testing and verification, and other

important topics in the field. Several chapters cover state-of-the-art microfabrication techniques and materials

as enabling technologies for the microsystems. Reliability issues concerning both electronic and mechanical

aspects of these devices and systems are also addressed in various chapters.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Subir K Roy (2009). Integration Verification in System on Chips Using Formal Techniques, Micro Electronic

and Mechanical Systems, Kenichi Takahata (Ed.), ISBN: 978-953-307-027-8, InTech, Available from:

http://www.intechopen.com/books/micro-electronic-and-mechanical-systems/integration-verification-in-system-

on-chips-using-formal-techniques

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

