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Chapter

Minimal Dissipation Processes in
Irreversible Thermodynamics and
Their Applications
Margarita Anatolyevna Zaeva and Anatoly Mikhailovich Tsirlin

Abstract

It is known that the maximum efficiency of conversion of thermal energy into
mechanical work or separation work is achieved in reversible processes. If the
intensity of the target flux is set, the processes in the thermodynamic system are
irreversible. In this case, the role of reversible processes is played by the processes
of minimal dissipation. The review presents the derivation of conditions for mini-
mum dissipation in general form and their specification for heat and mass transfer
processes with arbitrary dynamics. It is shown how these conditions follow the
solution of problems on the optimal organization of two-flux and multiflux heat
exchange. The algorithm for the synthesis of heat exchange systems with given
water equivalents and the phase state of the flows is described. The form of the
region of realizability of systems using thermal energy and the problem of choosing
the order of separation of multicomponent mixtures with the minimum specific
heat consumption are considered. It is shown that the efficiency of the rectification
processes in the marginal productivity mode monotonously depends on the revers-
ible efficiency, which makes it possible to ignore irreversible factors for choosing
the order of separation in this mode.

Keywords: entropy production, conditions of minimal dissipation, optimal heat
transfer, multithreaded heat exchange system, rectification, separation of
multicomponent mixtures, boundary of the realizability of thermal machines

1. Problems and methodology of finite-time thermodynamics

Applied thermodynamics originates from the work of Sadi Carnot in 1824 [1].
One of the problems of thermodynamics is the study of problems on the limiting
possibilities of thermodynamic systems. For a long time, these tasks boiled down to
finding the maximum efficiency of heat and refrigeration machines, separation
systems, and various chemical processes. The solution of these problems led to the
fact that the maximum efficiency value was determined in the case when the
process under study was reversible. Reversibility will include processes in which the
coefficients of heat and mass transfer are arbitrarily large or the fluxes of energy
and matter in the system under study are arbitrarily small. With the development of
nuclear energy, a new task was set—to obtain such a cycle of a heat engine that
would correspond to its maximum power with certain fixed exchange ratios with
sources. This task is due to the fact that the capital expenditures for the construction
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of nuclear power facilities are high with a relatively low cost of fuel spent. Variants
of solving the problem of optimization thermodynamics were proposed in [2, 3].

Further development of finite-time thermodynamics was stimulated by a great
deal of work of very many investigators. Here, we list names of just a few first
researchers: R.S. Berry, B. Andresen, K.H. Hoffmann, P. Salamon, L.I. Rozonoer,
and some others (see [1–32]).

Typical problems of optimization thermodynamics include the following: pro-
cesses with minimal irreversibility; determination of the limiting possibilities of
heat engines, cold cycles, and heat pumps (maximum power, maximum efficiency,
many realizable modes); and analysis of the processes of separation of mixtures.

The general approach to solving problems is as follows. It is assumed that the
whole system is divided into subsystems. In each subsystem, at any time moment,
the deviations of the intensive variables from their average values over the volume
are negligible. Consequently, the change of these variables (temperatures, pres-
sures, etc.) occurs only at the boundaries of the subsystems, which means that the
system as a whole is in a nonequilibrium state. This assumption makes it possible to
use the equation of state in the description of individual subsystems, which are valid
under equilibrium conditions, and ordinary differential equations can be used to
describe the dynamics of the subsystems. The solution of extremal problems in this
case is performed by methods of the optimal control theory for lumped parameter
systems.

To study the limiting possibilities of thermodynamic systems, it is first necessary
to make balance relations for matter, energy, and entropy. Moreover, the balance
ratio for entropy includes dissipation σ, that is, the production of entropy. It char-
acterizes the irreversibility of processes in the system. If all processes are reversible,
then the dissipation is zero. If the processes are irreversible, then dissipation takes
positive values. Dissipation depends on the dynamics of the processes. The set of
realizability of the system in the parameter space of input and output streams is
determined by the nonnegativity of dissipation. Reversible processes lie on the
boundary of this set.

When a minimum possible dissipation is found as a function of flux intensities,
then the inequality σ ≥ σmin holds in an arbitrary real system; this contracts the
region of realization. In this formulation, the set obtained incorporates the effects of
process dynamics, the magnitude of fluxes, and the system’s extent (due to the
presence of heat and mass transfer coefficients).

In any real system, it is possible to narrow the realizability region if we find the
minimum possible dissipation value as a function of the flux intensity (σ ≥ σmin).
This will take into account the dynamics, the flux intensity, and even the size of the
installation through the coefficients of heat and mass transfer.

Then, from the balance equations, it is necessary to derive the connection
between the system performance indicators and dissipation σ. Performance indica-
tors usually monotonically deteriorate with the increase of σ. The best values of
efficiency indicators are achieved in a reversible process, which allows using them
similarly to the Carnot efficiency indicators.

Next, it is necessary to solve the problem of the organization of processes in such
a way that, with the given constraints, the dissipation as a function of the flux
intensities is minimal. This is the most difficult step in analyzing the capabilities of
thermodynamic systems.

Consider the process of studying the limiting possibilities in more detail, and
begin with thermodynamic balances. Thermodynamic balances show the relation-
ship between the fluxes (matter, energy, and entropy) that the system exchanges
with the environment and the changes in these values in the system [19]. Let us
summarize all the fluxes, considering incoming fluxes as positive and outcoming
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fluxes as negative. Fluxes can be convective and diffusive. Convective fluxes are
forced into the system and removed from it. The diffusive flux depends on the
differences between the intensive variables of the system at the point where it
enters and the intensive variables of the environment.

The energy balance shows the rate of change in the energy of a system, which is
determined by the flux of energy that enters or is removed along with the convec-
tive fluxes of matter, the change in energy due to the diffusional exchange of
matter, the currents of conductively transmitted heat, and the power of the work
done. Material balance shows the change in the number of moles of substances in
the system. Entropy balance shows the change in the entropy of the system, which
occurs due to the influx of entropy together with the incoming substances, the
influx or removal of heat, and the production of entropy due to the irreversibility of
exchange processes.

If the system operates cyclically, the balances can be recorded on average for the
equipment working cycle. In this case, the total change in energy, amount of
matter, and entropy per cycle is zero, since the state of the system at the start and
the end of the cycle is the same. Balances are transformed into a system of relations
of averages over cycle-averaged components.

The equations of thermodynamic balances show the relationship between pro-
cess efficiency indicators, external fluxes, and the structure of the system. The
increase in entropy σ causes an increase in the entropy of output fluxes. At the same
time, either the temperature of the fluxes at the outlet decreases, or the outlet flux
of heat increases at a constant temperature. This leads to a reduction in the work of
separation, the mechanical work produced by the system.

Consider the operation of a thermal machine that converts the heat received
from a hot source with temperature Tþ into work. The working fluid gives a part of
the energy to a cold source with a temperature T�. The working fluid changes its
state cyclically. As an indicator of efficiency, we will consider the thermal efficiency
(η ¼ p=qþ)—the ratio of the work produced to the amount of heat collected from a

hot source.
Let us denote the average intensity of the heat flux taken from the hot source qþ

and that given to the cold source, q�. For the generated power p, we write the
equations of energy balances:

qþ � q� � p ¼ 0, (1)

and

qþ
Tþ

� q�
T�

þ σ ¼ 0: (2)

Since the state of the working fluid either does not change in time (for steam and
gas turbines) or changes cyclically (for steam engines), then there are zeros in the
right parts of the equations.

Thermal efficiency η ¼ p=qþ follows from Eq. (1) in the form

η ¼ p

qþ
¼ 1� q�

qþ
: (3)

Taking into account the fact that the Eq. (2) implies

q�
qþ

¼ T�
Tþ

þ σ
T�
qþ

: (4)
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Therefore,

η ¼ 1� T�
Tþ

� �

� σ
T�
qþ

¼ 1� T�=Tþ
1þ σT�=p

: (5)

Thermal efficiency η is equal to Carnot efficiency when any irreversible phe-
nomena are absent in the system.

The growth of σ leads to a growth entropy of output streams; under other equal
conditions, this growth reduces the flux temperature at the outlet or at a fixed
temperature increases the waste heat flux. And in this and in another case, this leads
to a decrease in the mechanical work produced by the system or the work of
separation. Energy efficiency of thermodynamic system, characterized by the rela-
tion of useful work, produced in it, to the energy costs, reaches a maximum in the
invertible processes, when σ ¼ 0.

2. Processes with a minimal dissipation

It is known that the maximum efficiency of conversion of thermal energy into
mechanical work or separation work is achieved in reversible processes. If the
intensity of the target flux is set, the processes in the thermodynamic system are
irreversible. In this case, the role of reversible processes is played by the processes
of minimal dissipation, so it is necessary to determine conditions under which
thermodynamic processes exhibit minimal dissipation for a prescribed average
intensity (prescribed averaged value of driving forces).

2.1 The minimal dissipation’s conditions

Consider two systems interacting with each other. Intensive variables for the ith
system will be denoted by ui and extensive variables by xi. In general, these are
vector variables. When systems are in contact, the difference between u1 and u2
leads to the appearance of flux J u1; u2ð Þ. Function J is continuous, is differentiable,
and has the following properties:

∂Jj
∂u1j

>0,
∂Jj
∂u2j

<0,

J u1; u2ð Þ ¼ 0, at u2 ¼ u1

, (6)

for scalar u1 and u2.
The difference between vectors u1 and u2 (of the same sign as flux Jj) leads to

appearance of driving forces Xj. Each force defines exclusively u1j and u2j, satisfying
conditions analogous to those in Eq. (6). Entropy production σ, which characterizes
the process irreversibility, is equal to the scalar product of the flux vector and the
driving force vector, and average value of entropy is described by the formula

σ ¼ 1

L

Z

L

0

∑
m

j¼1
Jj u1; u2ð ÞXj u1j; u2j

� �

dl, (7)

where the independent variable l has the interpretation of a space-time or a
contacting area measure. The integrand of this functional is defined non-negatively.
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We shall assume that in our algorithm (at least) one intensive variable appears,
by definition u2 lð Þ, which may assume its values from within a certain manifold V.
Yet, because of the variability of extensive variables of the first subsystem
dY1j

dl ¼ �Jj u1; u2ð Þ
� �

, the second variable changes in accordance with the formula

du1j
dl

¼ φj u1; u2ð Þ, u1 0ð Þ ¼ u10, j ¼ 1,…, m: (8)

Average values of all or some selected fluxes are prescribed:

1

L

Z

L

0

Jj u1; u2ð Þdl ¼ Jj , j ¼ 1,…, k1, k1 ≤m: (9)

Further on, we consider only the case of a scalar flux. The problem for vector
fluxes and its solution is considered with details in [32, 33].

The scalar flux problem involves minimizing of the integral

σ ¼ 1

L

Z

L

0

J u1; u2ð ÞX u1; u2ð Þdl ! min
u2 ∈V

(10)

subject to constraining conditions:

du1
dl

¼ φ u1; u2ð Þ, u1 0ð Þ ¼ u10, (11)

1

L

Z

L

0

J u1; u2ð Þdl ¼ J: (12)

The problem (10)–(12) simplifies in an important case when the rate of change
of variable u1 is proportional to the flux:

φ u1; u2ð Þ ¼ c u1ð ÞJ u1; u2ð Þ: (13)

In this case the condition of minimal dissipation assumes the form

J2 u1; u2ð Þ ¼ λ2
∂J u1; u2ð Þ

∂u2
:

∂X u1; u2ð Þ
∂u2

� �

, (14)

whereas the condition of prescribed flux intensity can be written as

Z

u1L

u10

du1
c u1ð Þ ¼ J � L: (15)

The value of u1L is determined regardless of the optimal solution u ∗
2 u1ð Þ.

If the flux is proportional to the driving force with constant coefficient α, then
the minimum entropy production equals

σ ¼ J
2

α
: (16)
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2.2 Minimal dissipation’s conditions of selected processes

Consider the conditions for the minimum dissipation of heat exchange. Let us
take the temperature of the body being heated as the controlling intense variable.
The driving force in the minimum dissipation problem is

X T1;T2ð Þ ¼ 1

T2
� 1

T1

� �

, (17)

whereas the heat flux is q T1;T2ð Þ. In the majority of cases, we may assume the
energy balance in the form

dT1

dl
¼ � 1

c1 T1ð Þ q T1;T2ð Þ, T1 0ð Þ ¼ T10, (18)

where c1 T1ð Þ is the heat capacity of the hot source.
If the process takes place in time, then the parameter l has the meaning of time,

and the parameter L—the duration of the process. If a pipe heat exchanger is
considered, in which the hot flux temperature changes from section to section, the
value of c is the water equivalent of the flux, and L is the length of the heat
exchanger.

In agreement with conditions (14), (15) describing the minimum dissipation
subject a prescribed average intensity of heat flux q, we can obtain a condition of
minimum dissipation for an arbitrary law of heat transfer:

q2 T1;T2ð Þ :

∂q

∂T2
T2
2 ¼ �λ2 ¼ const, (19)

Z

T10

T1L

c1 T1ð ÞdT1 ¼ q � L,
Z

T10

T1L

c1 T1ð ÞdT1

q T1;T2ð Þ ¼ L: (20)

The first of these conditions determines T ∗
2 T1; λ2ð Þ, second—T1L, and third—

constant λ2.
For the Newtonian law of heat transfer

q ¼ α T1 � T2ð Þ (21)

with a constant heat capacity (water equivalent) c, we obtain from conditions
(18)–(20)

α2 T1 � T2ð Þ2 ¼ �λ2 �αð ÞT2
2 ) α

T1

T2
� 1

� �2

¼ λ2: (22)

Therefore, for an arbitrary l of an optimal process, the ratio T1

T2
should be con-

stant. This constant equals

T1

T2
¼ 1þ

ffiffiffiffi

λ2

α

r

: (23)

As it follows from Eq. (20), T1L ¼ T10 � qL=c. Finally, the condition (20) leads
to the following equality:
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ffiffiffi

λ2
α

q

1þ
ffiffiffi

λ2
α

q ¼ � c

αL
ln 1� qL

cT10

� �

: (24)

Substituting Eqs. (23) and (24) into the expression

σ ¼ c

L

Z

T10

T1L

1

T2 T1ð Þ �
1

T1

� �

dT1, (25)

minimal entropy production is obtained in the form

σmin ¼
c2ln 2 1� qL

cT10

� �

αLþ c ln 1� qL
cT10

� �h i

L
: (26)

Table 1 presents analogous conditions of minimal dissipation for some well-
known processes and corresponding expressions for minimal entropy production.

As shown in [34], the conditions of minimal dissipation make it significantly
easier to estimate the limiting possibilities of thermodynamic systems. In a system
with multithreaded heat exchange [35], the total heat load q and the total heat
transfer coefficient α are fixed. At the input of the system, k heating fluxes with
temperatures Ti0 and water equivalents W i come in. It is necessary to choose the
parameters of heat fluxes, the structure of the system, and the distribution of heat
transfer coefficients.

The conditions under which the minimum possible production of the entropy of
the σ ∗ trait is reached are also defined in [34]: (1) At each point of contact of the
heating and heated streams, the minimum dissipation conditions must be satisfied.
(2) Temperatures of heating fluxes at the outlet of the system should be equal to each
other, as well as the temperature of the heated fluxes at the outlet. (3) Heating fluxes, in

Process Conditions of minimal dissipation and entropy

production

Heat transfer q ¼ α T2 � T1ð Þ T1 lð Þ
T2 lð Þ ¼ 1� β

αL; σmin ¼ β2

αL�β

β ¼ Wln 1� q
WT1 0ð Þ

� �

Vector flux, linearly depending on driving forces

J ¼ LX
X ¼ const. J ¼ J; σmin ¼ J

T
L�1J

One-sided isothermal mass transfer

g c1; c2ð Þ ¼ k c1 lð Þ � c2 lð Þð Þ
c2 lð Þ ¼ c1 lð Þ þ m

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1 lð Þmþ m
4

p

R

c1 0ð Þ

c1 Lð Þ

GdC1

k 1�c21ð Þ ffiffiffiffiffiffiffiffiffiffi

c1mþm
4

p
�m

2

¼ L;

σmin ¼
R

c1 0ð Þ

c1 Lð Þ

RG
1�c1ð Þ2 ln

c1dc1

c1þm
2�

ffiffiffiffiffiffiffiffiffiffiffiffi

c1mþm2
4

p

Two-sided isothermal equimolar mass transfer ∂g
∂c1

=
∂g
∂c2

¼ m c2 lð Þ 1�c2 lð Þð Þ
c1 lð Þ 1�c1 lð Þð Þ

dc1
dl ¼ � g c1 ;c2ð Þ

G1

c1 0ð Þ ¼ C10, c1 Lð Þ ¼ c1L;

σmin ¼ R
R

L

0

g c1; c2ð Þln c1 1�c2ð Þ
c2 1�c1ð Þ

h i

dl

Table 1.
Conditions of minimal dissipation in thermodynamic processes.
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which the inlet temperature is less than the calculated temperature T, do not participate
in heat exchange.

Computational relations for Newtonian heat transfer are

T ¼ ∑k
i¼1Ti0W i � q

∑k
i¼1W i

,

q ∗ Ti0ð Þ ¼ W i Ti0 � T
� �

,

α ∗ Ti0ð Þ ¼ αW i lnTi0 � lnT
� �

∑k
i¼1W i lnTi0 � lnT

� �
,

m ¼ 1� 1

α
∑
k

i¼1
W i lnTi0 � lnT
� �

,

σ ∗ ¼ α
1�mð Þ2

m
,

α ∗ Ti0ð Þ ¼ q ∗ Ti0ð Þ ¼ W i ¼ 0, Ti0 ≤T:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(27)

The system in which the entropy production calculated with parameters of all
fluxes

σ ¼ ∑
ν

Wνln
Tout
ν

Tin
ν

(28)

is lower than a certain value cannot exist in reality.
Analogous relations can easily be obtained in the case when the inlet parameters

of heated fluxes are prescribed.

3. Synthesis of heat exchange systems

In [36] the problem of the limiting possibilities of the heat exchange system
(“ideal” heat exchange) was considered. The minimum possible entropy production
σ ∗ was found in the system with the given values of water equivalents and input
temperatures of hot or cold fluxes and given the total heat load and the total heat
transfer coefficient. It is shown that for the case when the heat flux is proportional
to the temperature difference (Newtonian dynamics), this irreversibility limit can
be reached if at each point of contact the ratio of the absolute temperatures of the
fluxes is the same, and their temperatures at the outlet of the system are the same
for all fluxes whose input temperatures are fixed (hot or cold).

Conditions of ideal heat exchange impose very strict requirements on the char-
acteristics of the system:

—Each double-flux cell must be a counter-flux heat exchanger.
—The ratio of the water equivalents of the hot and cold flux in it should be equal

to the ratio in degrees Kelvin of the temperature of the cold flux at the outlet of the
heat exchange cell to the temperature of the hot flux at its inlet—conditions of
thermodynamic consistency.

—This ratio and its corresponding minimum possible entropy production at
fixed temperatures and water equivalents of hot fluxes are related to their inlet

temperatures T0
i , the water equivalents W i, and the total heat transfer coefficient

K as:
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m ¼ 1� 1

K
∑
n

i¼1
W i lnT

0
i � lnTþ

� �

,

σ ∗ ¼ K
1�mð Þ2

m
:

9

>

>

>

=

>

>

>

;

(29)

—The temperature of the hot streams at the outlet should be the same and, as it
follows from the conditions of the energy balance, is equal to:

Tþ ¼ ∑k
i¼1Ti0W i � q

∑k
i¼1W i

, (30)

—Hot fluxes with initial temperatures less than Tþ do not participate in the heat
exchange system.

If a part of the hot fluxes condenses in the process of heat transfer, then in
the expression for m (Eq. (24)), the water equivalent of the corresponding
term tends to infinity. Assign the index k to the condensing fluxes and find
the limit.

Wk lnT0
k � lnTþ

� �

¼ Wk lnT0
k � ln T0

k �
qk
Wk

� �� �

when Wk tends to infinity.

Using L’Hospital’s rule to disclose the uncertainties, we find that

lim
Wk!∞

Wk lnT0
k � ln T0

k �
qk
Wk

� �� �

¼ qk
T0
k

¼ gkrk
Tbk

: (31)

Here, it is taken into account that the temperature T0
k is equal to the condensa-

tion temperature and the thermal load is the product of the flux rate of the latent
heat of vaporization.

Thus, the expression form in the presence of condensing fluxes will be rewritten
in the form:

m ¼ 1� 1

K
∑
i 6¼k

W i lnT
0
i � lnTþ

� �

þ∑
k

gkrk
Tbk

 !

: (32)

In a multithreaded system integrated with the technological process, the values
of water equivalents of both hot and cold fluxes are set, and often their outlet
temperatures are set. Therefore, the performance of the ideal heat exchange system
cannot be achieved. It is natural to set the task of synthesis of the heat exchange
system of the minimum irreversibility at more rigid restrictions on characteristics of
streams. The conditions of ideal heat transfer can only serve as a “guiding star” like
Carnot’s efficiency for thermal machines, and the value of the ratio σ ∗ to the real
production of entropy in the designed system is an indicator of its thermodynamic
perfection.

Next, we propose the calculated relations for the bottom estimate of the mini-
mum dissipation in the system with the above restrictions and the synthesis of a
hypothetical system in which such an estimate is implemented.

Consider a multithreaded heat exchange system containing a set of hot (index i)
and cold fluxes (index j), with given water equivalents W i,W j. For each of the cold

(heated) fluxes, its inlet and outlet temperatures are set to T0
j and Tj>T

0
j .

For hot (cooled) fluxes, except for water equivalents, their temperatures at the

inlet to the heat exchanger T0
i are set. If some flux in the system changes its phase

9
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state, then for it except water equivalents, the flux rate gi, gj and heat of vaporiza-

tion (condensation) ri, rj are fixed. The ambient temperature will be denoted as T0.
Under these conditions, the thermal load of the system is equal to the total

energy required for heating all cold fluxes and is determined by the equality:

q ¼ ∑
j
qj ¼ ∑

j
W j Tj � T0

j

� �

: (33)

The difference in the conditions imposed on the hot and cold fluxes is due to the
fact that for cold fluxes leaving the system with a temperature less than a
predetermined one, heating is required, i.e., additional energy costs, and for hot
ones, if their outlet temperature is greater than a predetermined one, cooling is
required, which is much easier.

Entropy production is the difference between the total entropy of outgoing
fluxes and the total entropy of incoming fluxes. Initially, we assume that all fluxes
enter and leave the system in the same phase state, the pressure change in the
system is small, and the heat capacity is constant. Then, the change in the entropy
of each flux is the product of its water equivalent by the logarithm of the ratio of its
inlet and outlet temperatures in degrees Kelvin [37]. So, it follows from the condi-
tions of the thermodynamic entropy balance that:

σ ¼ σþ þ σ� ¼ ∑
i
W i lnTi � lnT0

i

� �

þ∑
j
W j lnTj � lnT0

j

� �

: (34)

The first of these terms is negative, the second is positive, and their sum is
always greater than σ ∗>0.

Note that all variables determining the value of the entropy growth of cold
fluxes are given by the conditions of the problem, so that the minimum entropy
production corresponds to the minimum at a given thermal load of the first sum-

mand by temperatures Ti.
The formal statement will take the form:

σþ ¼ ∑
i
W i lnTi � lnT0

i

� �

! min=∑
i
W i T

0
i � Ti

� �

¼ q ¼ ∑
j
W j Tj � T0

j

� �

: (35)

The Lagrangian of this problem

L ¼ ∑
i
W i lnTi � lnT0

i

� �

� λ∑
i
W i Ti � T0

i

� �

: (36)

The conditions of its stationarity in Ti lead to equality:

Ti ¼
1

λ
: (37)

Thus, in any water equivalents and input temperatures of hot streams, minimum
dissipation corresponds to such an organization of heat transfer for which the tempera-
tures of hot streams at the exit are the same.

In general, coolant fluxes at the system inlet can have different phase states:
vapor, liquid, or vapor-liquid mixture. The same states can be at the output of the
stream.

—If the flux does not change its phase state, but changes only the temperature,

then we assume that its temperature at the input to the cell T0
k , the water equivalent
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Wk, and for cold fluxes the temperature at the output Tk are known. The tempera-

ture of the hot streams at the output of the Tþ system is selectable (see Eq. (30)).
—If the cold flux changes its phase state so that at the inlet it is a liquid at boiling

point and at the outlet it is saturated with steam (let us define it as “evaporating”),
the weight flux rate gj, the boiling point Tbj, and the heat of vaporization rj are

given. The same is true for hot “condensing” streams. They have a saturated steam
state at the inlet and a liquid state at the boiling point at the outlet.

Thus, the first step in the synthesis algorithm of heat exchange systems is the
preparation of initial data, in which actual fluxes and their characteristics are
converted into calculated fluxes. They can be of two types: those that do not change
their phase state (heated and cooled) and those that change it at the boiling point
(evaporating and condensing). End-to-end fluxes are not included in the calcula-
tion. To calculate the total heat load production, use the following expression:

∑
jh

W jh Tjh � T0
jh

� �

þ∑
bj

gbjrbe ¼ q: (38)

Minimum dissipation implies fulfillment of the “counterflow principle”: the cold
streams with higher temperatures must be in contact with the hot flux with a higher
temperature. The latter requirement, as well as the equality of temperatures of hot
streams at the outlet, corresponds to the conditions of the ideal heat transfer [36].

As the hot fluxes move from one contact cell to the next, their temperature
changes due to the recoil of the heat flux. At the output of the system, the heat flux

given by them is q, and the temperature is Tþ. Let us denote by q the given heat load
in some intermediate state of hot fluxes. As the hot streams cool down, it changes
from zero to q.

In this case, we assume that when the hot flux with the highest input tempera-

ture (first) is cooled to a temperature of T0
2 , the first and second fluxes are com-

bined, so that their water equivalents are summed. A similar union occurs with the
third flux, etc., until the temperature of the equivalent hot flux drops to the previ-

ously calculated formula (30) Tþ. If a condensing flux is at a certain temperature
Tbi in the number of hot fluxes, the temperature of the equivalent flux is constant
and equal to Tbi until the equivalent flux transfers the heat of condensation
qbi ¼ gbiri. The dependence of the temperature of the hot flux equivalent on the
given heat load Tþ qð Þ, we will call the contact temperature of the hot fluxes.

Cold fluxes are ordered by their outlet temperature, so that j ¼ 1 corresponds to
the flux with the highest output temperature. For cold fluxes, the value of q is equal
to the current required heat load, i.e., the heat they need to obtain to satisfy the
conditions imposed on their temperature and output state. The greater the q, the
lower the cold flux temperature corresponding to this value. In this case, we assume
that when the temperature of the first flux decreases, two events are possible:

1. Its temperature will drop to the set temperature at the output of the second
stream.

2. Its temperature will drop to its initial temperature.

In the first case, the first cold flux is calculated combined with the second. In the
second case, it is excluded from the system and transferred to the heating of the
second stream. This procedure continues until an equivalent cold flux reaches the
lowest cold flux temperature at the system inlet. The number of threads included in
the equivalent cold flux is changed by adding fluxes with lower temperatures at the
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outlet and due to the exclusion from streams with the highest temperatures at the
entrance. But each value of q corresponds to the value of T� qð Þ of the contact
temperature of cold fluxes.

The dependencies of the current contact temperatures can be calculated from
energy balance conditions similar to the expression (25). For equivalent hot flux:

Tþ qð Þ ¼ ∑
Sþ Tþð Þ
i¼1 W iT

0
i � q

∑
Sþ Tþð Þ
i¼1 W i

, (39)

where Sþ Tþð Þ is the set of indices of hot fluxes for which the inlet temperature is

greater than the current contact temperature (T0
i >Tþ qð Þ).

Similarly, for the contact temperature of the equivalent cold flux, we have:

T� qð Þ ¼
∑j∍S� T�ð ÞW jTj � q

∑j∍S� T�ð ÞW j
, (40)

where S� T�ð Þ is the set of indices of cold fluxes for which the contact tempera-

ture T� satisfies the inequality Tj>T� qð Þ>T0
j .

The curves of the current contact temperatures decrease monotonically with the
growth of q, with Tþ qð Þ>T� qð Þ. On each of these curves, the points (nodes) are
selected, in which either the composition of the fluxes entering the equivalent flux
changes or the condensation/evaporation process takes place. In the latter case,
horizontal sections appear on the curves. On the curve T� qð Þ, there can be vertical

jumps if the flux temperature T0
j >Tj�1.

The interval δqν from one of the nodes on any of the contact curves to the
nearest node on the same or another curve is characterized by the same composition
and phase state of the contacting fluxes. We will call it the homogeneity interval.

For each such interval of δqν, three combinations of contacting fluxes are possible:

1. Both equivalent fluxes change their phase states.

2. The hot equivalent flux is cooled and the cold is heated.

3.One of the fluxes changes its phase state, and the other is cooled or heated.

Contact temperature curves provide all the data necessary to calculate the heat
transfer coefficient of the cell in which the contact is made:

—Water equivalents of Wþ,W� is equal to the sum of the equivalents of water
fluxes which are part of the equivalent contacting fluxes.

—Temperatures of equivalent fluxes at the inlet and outlet of the interval of
homogeneity is known.

—The thermal load of such a computational cell is δqν.
Depending on which of these contact combinations is implemented, it is possible

to select the type of cell hydrodynamics and find Kν. Finding the heat transfer
coefficient Kν for each ν interval of homogeneity and summing these coefficients
over all intervals, we obtain the total coefficient K, which can be achieved by
organizing the countercurrent heat exchange of equivalent fluxes. In turn, knowl-
edge of the heat load q and the total heat transfer coefficient allows us to calculate
the minimum possible entropy production σ ∗ by the formula (29) and estimate the

degree of thermodynamic perfection of the constructed system as η ¼ σ ∗

σ0
, where σ0

is total entropy production in the system.
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4. The region of realizability of systems

An irreversible factor affecting machine power or pump performance is
finite heat transfer coefficients αi between heat sources and the working fluid.
We substitute the minimum possible entropy production into Eq. (5) and obtain
the condition determining the maximum power:

p ¼ ηkqþ � σmin qþ
� �

T�: (41)

As σmin qþ
� �

increases faster than qþ, there exist a maximum of power in the

region of realizability.
To minimize the production of entropy, it is necessary that with each contact of

the working medium with the sources the conditions of minimum dissipation,
which depend on the dynamics of heat transfer, are met. For a source of infinite
capacity and the temperature of the working fluid in contact with, it should be
constant. For Newtonian dynamics, the ratio of working fluid temperature and
sources should have been constant. So, if the temperature of the source changes due
to the final capacity, then the temperature of the working fluid should change,
remaining proportional to the temperature of the source.

For sources of infinite capacity, the optimal cycle of a heat machine with maxi-
mum power for any heat transfer dynamics should consist of two isotherms and two
adiabats, and it turned out that the efficiency corresponding to the maximum
power (it is called the Novikov-Curzon-Ahlborn, ηnca) is only a function of the
Carnot efficiency:

ηnca ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ηC
p

: (42)

The maximum difference between ηC and ηnca is achieved when the ratio of
absolute temperature of the hot and cold sources is 0.25, when ηC=0.75.

For power that is less than the maximum possible, the maximum efficiency of
the heat machine is equal to

ηmax pð Þ ¼ 1� 1

2Tþ
Tþ þ T� � p

α
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tþ � T�ð Þ2 þ p

α

� �2
� 2

p

α
Tþ þ T�ð Þ

r

" #

:

(43)

In this case, α is expressed as

α ¼ αþα�
αþ þ α�

: (44)

As p ! 0, the efficiency ηmax tends to Carnot efficiency and as

p ! pmax ¼ α
ffiffiffiffiffiffiffi

Tþ
p

�
ffiffiffiffiffiffiffi

T�
p

� �2
: (45)

Corresponding thermal efficiency approaches the efficiency value obtained by
Novikov, Curzon, and Ahlborn (42).

The nature of the set of realization modes is shown in Figure 1.
Similar results can be obtained for the heat pumps. Since the flux of costs is

mechanical energy, the set of realizable modes has the form of a convex upward and
unbounded parabola.
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5. Rectification processes

In the separation process, energy is spending on getting the work of separation.
The work of separation can be obtained as an increase in the free energy of the streams
leaving the system compared to the energy of the mixture flux at the system inlet. The
energy expended can be thermal or mechanical. In systems of separation with thermal
energy, the set of realizable modes coincides in the form with heat engines. In this
case, the rectification processes will be the most important and energy-intensive. In
the section below, the process of thermal separation of a two-component mixture is
considered, and considerations which allow one to proceed to the determination of the
order of separation of multicomponent mixtures are obtained.

Let the following parameters be defined for a mixture of two components:
qi, Ti, si, pi, hi, xi, μi—molar consumption, temperature, molar entropy, pressure,
enthalpy, concentration of key component, and its chemical potential in ith stream.
Assume the index i ¼ 0 for the separated stream, index i ¼ 1 for the stream of the
enriched key component (for which x1>x0), and index i ¼ 2 for the stream cleared
of the key component x2 < x0ð Þ. Heat flux qþ+, brought (coming) from a source of

temperature Tþ, is supplied to the separation system, whereas heat flux q� is
rejected to a source of temperature T�. Equations of thermodynamic balances are of
the form:

g0 ¼ g1 þ g2, g0x0 � g1x1 � g2x2 ¼ 0,

qþ � q� þ g0h0 � g1h1 � g2h2 ¼ 0,

qþ
Tþ

� q�
T�

þ g0s0 � g1s1 � g2s2 þ σ ¼ 0:

(46)

The ratio of target mass flux g1 and heat flux qþ may be accepted as the thermal

efficiency of the separation process:

η ¼ g1
qþ

: (47)

Using material balances of Eq. (46), we shall express g2 in terms of g1 and
introduce coefficient a ¼ x1 � x0ð Þ= x0 � x2ð Þ. Then, the second flux satisfies
g2 ¼ ag1. Eq. (46) assumes the forms

qþ � q� þ g1 Δh01 þ aΔh02ð Þ ¼ 0, (48)

qþ
Tþ

� q�
T�

þ g1 Δs01 þ aΔs02ð Þ þ σ ¼ 0: (49)

Figure 1.
Power of thermal machine as a function of driving heat flux.
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Here, Δs01 ¼ s0 � s1, Δs02 ¼ s0 � s2 are the entropy increases, whereas
Δh01 ¼ h0 � h1, Δh02 ¼ h0 � h2 are enthalpy increases in corresponding streams.
It is mandatory that the concentrations of the key component in streams are
prescribed.

We transform Eq. (48) to the form q� ¼ qþ þ g1 Δh01 þ aΔh02ð Þ and substitute

the expression obtained into Eq. (49). The frontier of the realization set is charac-
terized by the following equation:

g1 ¼
1

F
1� T�

Tþ

� �

qþ � σ
T�
F

: (50)

Here, F ¼ T� Δs01 þ aΔs02ð Þ � Δh01 � ah02. The increases of enthalpy and
entropy contained in F have the forms

Δh0i ¼ Cp T0 � Tið Þ, i ¼ 1, 2, (51)

Δs0i ¼ Cp0lnT0 � CpilnTi � Rln
P0

Pi
þ Δsmix0 � Δsmix i, i ¼ 1, 2:

The entropy of mixing per one mole of mixture is:

Δsmix i ¼ R 1� xið Þln 1� xið Þ þ xiln xi½ �, i ¼ 0, 2: (52)

Note that the ratio T-/F depends on reversible factors only. In the reversible
process, the entropy production σ is zero, and the thermal efficiency reaches a
maximum equal to the multiplier at the heat flux in Eq. (42).

As a productivity you can take any of the streams, even the stream of a separated
mixture, because with given compositions of the streams they are proportional.

A reversible estimate of the thermal efficiency of the separation process and the
shape of the border of the realizability region can be clarified by finding the mini-
mum possible for a given productivity and dynamics of heat and mass transfer
value σ and its dependence on the coefficients of dynamics and heat flux.

If the dynamics of heat transfer can be approximated by the Fourier law and the
mass transfer flux is proportional to the difference of chemical potentials, then the
minimum dissipation is proportional to the square of the cost of heat. The boundary
of the set of realizable modes in this case has a parabolic form

g ¼ bq� aq2: (53)

Then, the efficiency of a separation column in the maximum productivity mode
is equal to one half of the reversible efficiency:

η ∗ ¼ 0, 5η0 ¼ 0, 5b: (54)

Qualitative expressions linking characteristic coefficients a and b with parame-
ters of the separation column were obtained [38]:

b ¼ TB � TD

TBAG
¼ ηk

AG
, a ¼ 1

βBTBTþ
þ 1

βDTDT�
þ 2 xD � xBð Þ

kr2

	 


TD

AG
: (55)

Here, AG is the molar reversible work of mixture separation, equal to the differ-
ence between molar free energy of streams leaving the column and the free energy
of raw stream, TD, TB are the temperatures in the condenser and the kettle of the
column, r is the molar evaporation heat, βD, βB are the coefficients of heat exchange
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in the condenser and the kettle, and k is the effective coefficient of mass transfer for
column height.

The coefficients a and b can be found not only by Eq. (55) but also by the results
of measurements on the current column. This allows us to solve many problems
associated with finding a set of realizability, including the problem of choosing the
order of separation. It is important that the efficiency in maximum performance
mode depends only on the reversible efficiency. The following condition, sufficient
for to be independent of a, is valid.

The sufficiency condition for independence of η ∗ of a [34]:

If the partial derivative ∂σ a; b; qð Þ
∂q depends continuously on some scalar function z a; qð Þ

and the ratio σ a; b; qð Þ
q is a function of z, then the thermal efficiency in the maximum

productivity mode is defined exclusively in terms of variables b, characterizing the
reversible process. The condition is satisfied for thermal machines and for binary
rectification.

In Figure 2 shows an example of the boundaries of realizable sets in cases where
σ a; b; qð Þð Þ does not depend on a.

With decreasing dynamic coefficients, the entropy production increases. The set
of realizable modes is compressed, while the maximum performance points with a
corresponding heat flux remain on a straight line with a slope of η ∗:

5.1 Order of separation: rule of temperature multipliers

We arrange the substances according to the property γ used for separation
(boiling point in the rectification processes). We normalize γ so that it is in the
range from 0 to 1. The order of separation of substances may be direct or reverse. In
the case of a direct order, the stream with the components γ < γ 1 is first separated,
and then, the stream with large values of γ is divided into two sub-streams so that
the first one has γ 1≤ γ < γ 2 and the second one γ ≥ γ 2. In the case of reverse
order, the stream with the components γ > γ 2 is first separated, and then, the
stream with lower values of γ is divided into two sub-streams so that the first one
has γ 1≤ γ < γ 2 and the second one γ ≤ γ 1.

Let A denote the work of separation of the mixture. The A includes the factor
RT0, where R is the universal gas constant and T0 is the ambient temperature.
Then, the entropy of the separated fluxes will decrease in proportion to the work of
separation A. In a reversible case, a decrease in the entropy of the material flux
should be compensated by an increase in the entropy of the heat flux. If Tþ and T�

Figure 2.
Nature of change of the realization frontier with the irreversibility increase.
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are the temperatures of heat supply and removal, then the increase in entropy of the
heat flux can be expressed as δsq ¼ q 1=T� � 1=Tþð Þ. The total cost of heat depends
on the order of separation, while the total work does not depend on the order of
separation. At each separation stage, the heat flux is proportional to the separation

work at this stage, with the proportionality multiplier KT ¼ TþT�
Tþ�T�

. Temperature

factors are determined by the choice of the separation boundary. Denote by KT1 and
KT2 the temperature factors corresponding to the separation boundary γ 1 and γ 2,
respectively, and by A21 and A22 the work of separation of the mixture in the
second stage in the direct and inverse order of separation. The total cost of heat
per mole of the input mixture in the direct and reverse order of separation can be
written as:

q1 ¼ KT1 A0 � A21ð Þ þ KT2A21, q2 ¼ KT2 A0 � A22ð Þ þ KT1A22: (56)

To determine the separation order, it is necessary to calculate the difference:

Δq ¼ KT1 � KT2ð Þ A0 � A21 � A22½ �: (57)

If the result of the calculation Eq. (57) is negative, then it is reasonable to choose
a direct separation order. If the result is positive—a reverse order.

In the case of a multistage system, this rule applies to each of two successive
stages. It is easy to see that the expression in square brackets in Eq. (57) is non-
negative. From here follows the rule of temperature multipliers (see [39]): The
separation boundaries must be chosen so that the temperature multipliers do not
decrease from stage to stage. In the case when the separation efficiency in the
maximum performance mode depends only on the reversible efficiency, the rule of
temperature multipliers is also valid. It is important that the information that is
needed to calculate temperature factors is much more accessible and accurate than
the information on the dynamics of the processes in the column.

6. Conclusions

This chapter discusses the problems of optimization of thermodynamics and
methods of analysis of systems and describes the types of thermodynamic balances,
the relationship between the performance of the process, and the production of
entropy. Also, it is shown that in the absence of irreversibility, the thermal effi-
ciency is equal to the Carnot efficiency.

The conditions are found under which the thermodynamic processes at a given
average intensity have minimal dissipation, expressions for determining the mini-
mum dissipation and entropy with the Newtonian heat transfer law are obtained,
and expressions for the cases of vector flux, one-sided isothermal, and two-sided
equimolar mass transfer are given.

The synthesis algorithm makes it possible to build heat exchange systems with
minimal irreversibility, in which restrictions on water equivalents, temperatures,
and phase states of the flows are fulfilled, which imply combining the fluxes into
two equivalent ones. The nature of the set of realizable modes of heat engines and
pumps is described. It is shown that the efficiency corresponding to the maximum
power mode does not depend on heat transfer coefficients, but is only a function of
the Carnot efficiency.

Separation processes are considered, and estimates of the thermal efficiency of
the separation process and the shape of the realizable area boundary are obtained

17

Minimal Dissipation Processes in Irreversible Thermodynamics and Their Applications
DOI: http://dx.doi.org/10.5772/intechopen.84703



for them. It is shown that the efficiency in the mode of maximum performance
depends only on the reversible efficiency. The rule of temperature multipliers is
described, which allows to determine the separation order in multistage systems.
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