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Abstract

The astrocytic cell responses to injury have been extensively studied in a 
variety of experimental models, and the term “astrogliosis” is often used to 
describe the astrocyte reactions to injury. Cells responding in these ways to injury 
are often referred to as “reactive astrocytes.” Glial scarring appears to be a critical 
feature of wound healing in the central nervous system (CNS), since elimination 
of the mitotically active contingent of reactive astrocytes leads to increase in the 
size of the wound. Reactive astrogliosis is a term coined for the morphological 
and functional events seen in astrocytes responding to CNS injury. The concept 
of reactive astrogliosis and its molecular and cellular definition in spinal cord 
injury (SCI) is still incomplete. Producing several inhibitory molecules discour-
ages regeneration of axons in the injured spinal cord. This inhibition is com-
pounded by the poor regenerative ability of most CNS axons. This is probably 
a more achievable therapeutic target than axon regeneration, and an effective 
treatment would be of assistance to the majority of patients with partial cord 
injuries. Of course, understanding about astrogliosis and producing mediators 
and inhibitory molecules such as signaling pathways help us to develop new 
treatment strategies for SCI.
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1. Introduction

Astrocytes are the most numerous glial cells in the CNS, which are pivotal for 
various structural and physiological functions [1]. SCI triggers astrocytes to become 
reactive and initiate astrogliosis. Reactive astrogliosis is characterized by the pro-
liferation and hypertrophy of astrocytes, which eventually leads to scar formation 
via the activation of signaling pathways such as Gp-130/activator of transcription 3 
(STAT3) and transforming growth factors-beta (TGF-β/Smad) [2]. With the onset 
of injury, changes occur in the phenotype and morphology of astrocytes. These 
changes include increasing in their expression of intermediate filaments such as 
nestin, glial fibrillary acidic proteins (GFAP), and vimentin. Reactive astrocytes 
also related to the release of pro-inflammatory and anti-inflammatory cytokines 
such as tumor necrosis factor-alpha (TNF-α), TGF-β, interferon-gamma (IFN-γ), 
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and interleukins (IL-1 and IL-6). It is well established that these cytokines can 
modulate inflammation and also secondary injury [3].

When astrocytes are activated, they change the composition of extracellular 
matrix (ECM) dramatically. Several ECM components including chondroitin sul-
fate proteoglycans (CSPGs) and tenascins are markedly upregulated in astrocytes. 
In addition to these phenotypic changes, astrocytes increase in number and migrate 
to the site of injury [4].

Therefore, astrocyte reactivity is considered as a part of endogenous mecha-
nisms to restrict the initial tissue injury to the spinal cord and prevent extension of 
damage into adjacent segments. The pivotal role of reactive astrocytes particularly 
at first stages of SCI is indicated by recent findings. Ablation of reactive astrocytes 
or altering with their activation at the time of SCI injury can intensify the damage 
by elevating tissue degeneration and disrupt to reconstruct blood-spinal barrier 
(BSB) [5]. However, over time after injury, inhibitory features of reactive astrocytes 
overcome their constructive properties. This is mostly contributed to the upregula-
tion of inhibitory molecules such as CSPGs that extremely prevent neuroregenera-
tion and neural repair [6].

Astrogliosis may be heterogeneous. Not all astrocytes with the morphological 
characteristics of reactive astrocytes (i.e., increased GFAP) are present in areas with 
increased levels of ECM. Perhaps not all astrocytes that react to injury play a role 
in the failure of CNS regeneration, and that only those astrocytes associated with 
inhibitory molecules are detrimental to axon growth while those further away from 
the lesion may be more conducive to neurite sprouting, functional plasticity, and 
long-distance regeneration [7].

2. Functions of astrocytes in a healthy brain

Based on previous studies, astrocytes were for decades considered to be assist-
ing and nurturing neurons. Regarding several studies, the protoplasmic astrocytes 
divide the whole gray matter of the brain and spinal cord into distinct domains, 
with blood vessels, neurons, and synapses contained within these domains [8], 
and the fibrous astrocytes are in the white matter and are in physical contact with 
oligodendrocytes and have an important role in myelinization; however, astrocyte 
functions go far beyond assistance and support [9, 10].

During development, they are considered in key developmental and postnatal 
traces in the CNS. Astrocytes release neurotrophic factors that regulate neuronal 
development, cell migration, and differentiation [11]. Developing astrocytes 
guide postmitotic neurons from the ventricular zone to their target destination in 
developing CNS. Radial glial cells, a subtype of astrocytes, guide new neurons for 
accurate migration [12]. Astrocytes secrete vascular endothelial growth factor that 
is necessary for the generation of new blood vessels in rostral migratory stream 
(RMS) [13]. Besides, astrocytes have connection with blood vessels through their 
end-feet. They can produce important mediators which contributed to vasocon-
striction or vasodilation such as arachidonic acid, nitric oxide (NO), or prostaglan-
dins [14]. Astrocytes play a critical role in the coupling of neuronal organization 
to signaling circuits. They are involved in hemodynamic responses with neurons 
through blood flow.

Astrocytes significantly contribute to the establishment and maintenance 
of blood-brain barrier (BBB) and BSB in the CNS [15]. Astrocytes also clear 
neurotransmitters such as gamma-aminobutyric acid (GABA), glycine, and glu-
tamate from the synaptic clefts and facilitate normal synaptic transmission [16]. 
Astrocytes have an important function in regulation of pH in CNS. They set up 



3

Reactive Astrocyte Gliosis: Production of Inhibitory Molecules
DOI: http://dx.doi.org/10.5772/intechopen.85570

proton shuttling through different proteins such as Na+/H+ exchanger, bicarbonate 
transporters acting in a sodium-dependent/independent mode, monocarboxylic 
acid transporters, carbonic anhydrase in both intra-and extracellular spaces, and 
the vacuolar-type proton ATPase [17].

Astrocytes are actively involved in the synthesis and maintenance of the ECM in 
the CNS. They produce a number of ECM components with both growth-promot-
ing and inhibitory properties [18]. Astrocytes also express tenascin-C and different 
CSPGs with growth inhibitory properties [19]. When neuronal maturation begins 
in the normal CNS, CSPGs are concentrated strongly in the perineuronal nets where 
they are critical for stabilizing synapses and limiting undesirable plasticity [20].

3. Reactive astrogliosis in SCI

After SCI, astrocytes undergo significant cellular, molecular, and functional 
changes along with profound alterations in their gene expression. The reactions of 
astrocytes to the injury include hypertrophy of processes and soma and increasing 
in proliferation and upregulation of intermediate filaments such as GFAP, vimentin, 
and nestin. These alterations are the important markers of a phenomenon known as 
reactive astrogliosis [7].

Reactive astrogliosis is also indicated by high production of CSPGs, several 
cytokines, and chemokines such as IL-1β, IL-6, TGF-β, ciliary neurotrophic factor 
(CNTF), adhesion molecules, and proteins such as cyclooxygenase2, inducible NO 
synthase (iNOS), and calcium-binding protein S100β. These factors are considered 
as the functional markers of astrocyte reactivity whose levels are upregulated fol-
lowing CNS injuries [21].

Astrogliosis can be categorized from moderate changes in astrocytes to high 
reactivity related to scar formation [22]. In initial stages, there is aberrant hyper-
trophy of astrocytes and low upregulation of GFAP levels; however, no important 
proliferative activities usually occur in mild astrogliosis [23]. Mild astrogliosis 
or “isomorphic gliosis” is seen in the cases of axotomy, chemical lesions, or mild 
injury where astrocytes are distal to the site of lesion [24]. These alterations can be 
turned by reducing the triggering effects of upstream signaling molecules. Over 
time, reactive astrocytes express GFAP highly and show substantial hypertrophy, 
and some degree of proliferation. These remarkable expansions lead to disruption 
of particular regions of astrocytes and cause tissue distortion [3]. In intensive 
injuries, astrocytic processes overlap and become densely packed. At this stage, 
a glial scar encircles the epicenter of spinal cord lesion. Glial scar that is formed 
after local disruption of spine parenchyma is invariable and is nominated as 
“anisomorphic gliosis” [25].

Although astrogliosis is an early important marker of SCI in rodents, in human 
SCI, astrocyte reactivity is not a prominent property at acute or subacute phases, 
and astrogliosis seems to evolve over the time and become more evident at interme-
diate and chronic phases of SCI [26]. The presence of dense astrogliosis at 11 days 
after SCI that was still evident after 1 year post-SCI has been reported in some 
evidences [27]. Further investigations for astrogliosis in human SCI are necessary 
to examine the impact and timing. This is particularly important when translating 
therapeutic strategies that target astrogliosis from rodent models to human SCI.

Meningeal fibroblasts also contribute to scar formation. In fact, the glial scar 
formation is adjusted by a cell-cell contact mechanism between reactive astrocytes 
and meningeal fibroblasts at the spinal cord lesion. Signaling between ephrin-B2 on 
reactive astrocytes and EphB2 receptors on meningeal fibroblasts appears to carry 
on this process [28].
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Reactive astrogliosis can be triggered through several signaling pathways such 
as signal transducers and activators of transcription (STAT) and TGF-β/Smad 
(Figure 1) [29]. Both beneficial and detrimental effects of SCI can be dependent 
to which signaling pathways and timing after SCI are involved. Understanding the 
beneficial and detrimental role of reactive astrocytes will allow us to plan thera-
peutic approaches.

4. Beneficial effects of reactive astrogliosis in SCI

Previously, astrocytes were known to be solely harmful in SCI, and their 
inhibition or ablation was considered as a therapeutic strategy. Recent studies have 
provided strong evidence that reactive astrocytes play pivotal roles in SCI repair 
with protective features [30, 31]. Repair responding by reconstructing the dam-
aged BSB and limiting the infiltration of peripheral leukocytes and activation of 
resident microglia [32], modulating blood flow by the release of vasoconstrictors 
and regulating blood vessels diameter [33], uptaking excess glutamate, protect-
ing neurons and oligodendrocytes from glutamate excitotoxicity, and producing 
antioxidants such as glutathione and defending against oxidative stress [34] 
are inconsiderable parts of beneficial roles of astrocytes. Reactive astrocytes 
upregulate the expression of intermediate filaments, GFAP, vimentin, and nestin. 
Interestingly, in hemisection model of SCI, double GFAP and vimentin knockout 
mice showed beneficial outcomes [35].

Besides, astrocytes are known to become reactive through STAT3 and sup-
pressor of cytokine signaling 3 (SOCS3) pathways. Some evidences indicated that 
knockout of SOCS3 or STAT3 in GFAP-Cre or nestin-Cre transgenic models caused 
limited migration of astrocytes to the site of lesion and interfered with the forma-
tion of glial scar. Failure of scar formation in these animals resulted in widespread 
lesion [36]. Also, astrocytes can promote tissue repair and regeneration as they 
upregulate their expression of fibroblast growth factor-2 (FGF-2) and S100β in the 
injured spinal cord [37]. Furthermore, astrocyte polarity and directional migra-
tion play an important role in astrocyte ability to react to injury. Recent findings 

Figure 1. 
Reactive astrogliosis is a response of activated astrocytes seen in spinal cord injury and can be triggered through 
various signaling pathways such as signal transducers and activators of transcription (STAT) and TGF-β/
Smad. In most situations, it can be viewed as a defensive reaction counteracting acute stress, restoring the CNS 
homeostasis, and limiting the tissue damage; however, persisting reactive astrogliosis can be lead to inhibition of 
neural plasticity and other regenerative responses.



5

Reactive Astrocyte Gliosis: Production of Inhibitory Molecules
DOI: http://dx.doi.org/10.5772/intechopen.85570

demonstrated that astrocytes depleted of the small RhoGTPase Cdc42, which is a 
key regulator of cell polarization, display impaired recruitment to the stab wound 
lesion, despite their upregulation of GFAP and hypertrophic response [38].

5. Detrimental roles of reactive astrocytes after SCI

Glial scar is a major detriment to regeneration of severed axons by upregulating 
a great number of molecules around the lesion and preventing regrowth of injured 
axons at the lesion area, including CSPGs, tenascin, semaphorin 3A, keratan sulfate 
proteoglycans (KSPGs), myelin-associated inhibitors, and ephrins/Eph receptors 
[6]. Reactive astrocytes and the ECM components generate a dense glial scar around 
the SCI lesion and create physical and chemical barriers on axonal regeneration. In 
fact, as axons come in close contact with the glial scar, they form dystrophic end-
bulbs and retract without any regeneration [39]. ECM components such as CSPGs 
[40], tenascins [41], and collagen [42] can be act as main inhibitory factors in 
axonal regeneration. They could upregulate in the glial scar after SCI and obstruct 
axonal elongation and sprouting [43].

6. Molecular mediators of reactive astrogliosis

6.1 STAT3

STAT3 is a member of the Janus kinase STAT family and a transducer of signals 
for many cytokines and growth factors, such as IL-6, leukemia inhibitory factor 
(LIF), and CNTF [44]. The effect on astrocyte activation may be mediated via the 
STAT3 signaling pathway, phosphorylation, and nuclear translocation of STAT3 in 
astrocytes as well as indirectly through the effects of these molecules on other cell 
types such as microglia, neurons, or endothelial cells [45]. One of the key media-
tors of astrocytic scar formation after SCI is STAT3 signaling. STAT3 conditional 
knockout mice failed to create a glial scar that led to a widespread lesion and poor 
recovery of function after SCI. Lack of STAT3 activation especially led to the inabil-
ity of astrocytes to move and migrate to the lesion site. This resulted in exacerbated 
infiltration of inflammatory cells at the site of SCI. This finding emphasized the 
importance of STAT3 activation in astrocytes and the impact of reactive astrogliosis 
in restraining leukocyte infiltration and reducing the initial insult after SCI [36].

6.2 Ephrins/Eph receptors

Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin 
ligands have attracted considerable attention since their discovery, due to their 
extensive distribution and unique bidirectional signaling between astrocytes 
and neurons [46]. Eph/ephrin signaling is involved in the glial scar formation 
in CNS disorders. It has been demonstrated in a model of spinal cord injury that 
the development of glial scars and the exclusion of meningeal fibroblasts from 
the site of damage are a result of cell contact-mediated bidirectional signaling 
cascades, which is stimulated by the interaction of ephrin-B2 and EphB2 with 
reactive astrocytes and meningeal fibroblasts, respectively [28]. Another previous 
study demonstrated that ephrin B2 (−/−) mice exhibited a reduction in astroglio-
sis and an accelerated regeneration of injured corticospinal axons, which resulted 
in the recovery of murine motor function following spinal cord injury (SCI) [47].
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6.3 TGF-β

TGF-β signaling is one of the mediators of reactive astrogliosis in SCI. TGF-β 
has been identified as a key trigger of CSPGs formation in the glial scar [48]. In 
experimental models of SCI, blockade of TGF-β signaling is shown to attenuate 
scar formation [49]. Interestingly, blood fibrinogen is a factor that activates TGF-β 
signaling after CNS injury. After vascular disruption and hemorrhage, blood 
fibrinogen is released into the CNS tissue, and reactive astrogliosis and CSPGs 
formation through the activation of TGF-β Smad2 pathway can be activated [50].

6.4 Nuclear factor-κB (NF-κB)

Activation of NF-κB transcription factor has been implicated in astrogliosis, 
although with some sophisticated evidence. In SCI, one study indicated that increased 
level of NF-κB was found in microglia/macrophages and endothelial cells but not 
in astrocytes [51]. However, in another study, reactive astrocytes were displayed to 
express NF-κB. Notably, studies in transgenic mice expressing IkBα, an inhibitor of 
NF-κB, under hGFAP promoter demonstrated that inactivation of astroglial NF-κB 
reduced the expression of TGF-β2 and CSPGs as well as other chemokines involved 
in glial scar formation such as C-X-C motif chemokine 10 (CXCL10) and C-C motif 
chemokine ligand 2 (CCL2). Moreover, blockade of NF-κB activation in astrocytes has 
resulted in white matter sparing and improved functional recovery after SCI [52].

6.5 Endothelins (ET)

ETs are peptides with vasoactive property. They can modulate reactive astro-
gliosis in various CNS diseases. ET-1 and its receptors are particularly increased 
in astrocytes after damage and seem to be one fundamental cause of astrogliosis 
[53]. In a stab wound injury, ET-1 receptor antagonist BQ788 decreased the activa-
tion and proliferation of astrocytes. ET-1 stimulates astrocyte proliferation via the 
activation of JNK/c-Jun signaling pathway in vitro [54].

6.6 Mitogen-activated protein kinase (MAPK)

MAPK and its downstream cascades mediate astrogliosis. It is indicated that 
c-mos proto-oncogene, which triggers the activation of MAPK signaling, stimulates 
astrogliosis. Several studies implicated the phosphorylation of extracellular signal-
regulated kinase/MAPK in reactive astrocytes in mice and humans [55].

6.7 Semaphorin 3A

Semaphorin 3A (Sema3A) is an important secreted repulsive guidance factor for 
many developing neurons [56]. Sema3A may be secreted from non-neuronal cells 
such as astrocytes. Sema3A continues to be expressed in adulthood, and expression 
of its receptor, neuropilin-1 (Nrp-1), can be altered by nerve injury [57]. Sema3As 
are regarded as one of the major classes of axon repulsive molecules that lead to 
the failure of axons to regenerate through the neural scar. Thus, interfering with 
Sema3A signaling can be beneficial for axonal regrowth [58].

6.8 Aquaporins

Aquaporins may play a role in the activities of astrocytes after SCI. In particular, 
recent studies showed that Aquaporin-4 is critical in glial scar formation [59].  
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In a cortical brain injury, Aquaporin-4 null mice displayed decreased migration of 
astroglia as a contribution to the injury site and less glial scarring. However, find-
ings from rat SCI indicated biphasic changes in astrocytic Aquaporin-4 levels with 
preliminary downregulation after SCI and a following long-lasting upregulation in 
subacute and chronic stages of damage. Further elucidation is needed to understand 
the impact of Aquaporin-4 in scar formation after SCI [60].

6.9 Components of ECM

The ECM comprises the molecules that form the structure of the matrix. There 
is a huge range of molecules that have been shed from the cell surface or secreted by 
neurons and glia [22]. Most of these shed or secreted molecules bind to the matrix 
to some extent, mainly to the negatively charged glycosaminoglycan (GAG) chains 
of the CSPGs and heparan sulfate proteoglycans (HSPGs). There are two families 
of cell surface-attached HSPGs, the transmembrane syndecans and the GPI-linked 
glypicans. Various matrix components, particularly tenascin-C and CSPGs, are 
upregulated in regions of CNS damage.

Tenascins are abundant in the ECM of developing vertebrate embryos. There 
are four members of the tenascin gene family: tenascin-C, tenascin-R, tenascin-X, 
and tenascin-W. Tenascin-C is the most intensely studied member of the family 
[61]. Tenascin-C is anti-adhesive to many forms of neuron in vitro and inhibits 
axon growth from many neurons, although it promotes axon growth from some 
embryonic neuronal types [62]. These dual properties have been assigned to 
different splice variants of tenascin-C and molecular epitopes within those splice 
variants [63].

The levels of CSPGs increase dramatically following various CNS injuries, 
including lesions in the spinal cord, cortex, fornix, and nigrostriatal area [20]. 
CSPGs are primarily generated by reactive astrocytes and to a lesser extent by 
oligodendrocytes and monocytes. CSPGs are a family of molecules characterized by 
a core protein to which the large and highly sulfated GAG chains are attached. The 
major CSPGs found in the CNS include lecticans (neurocan, versican, aggrecan, 
and brevican), phosphacan (6B4 proteoglycan), and NG2 [64].

KSPGs are another class of inhibitory ECM molecule, which are associated with 
spinal cord lesions [65]. Mice lacking GlcNAc6ST-1, an enzyme critical for keratan 
sulfate (KS) biosynthesis, have enhanced plasticity and functional recovery after 
SCI [66]. Recent findings show that using KS-specific degradative enzyme, kera-
tanase II (K-II), degrade KSPGs and allow substantial motor recovery in acute phase 
of SCI [67].

7. Conclusion

Beneficial and detrimental effects of astrogliosis have been reported by various 
researches. It depends on mediators and inhibitory molecules and also signaling 
pathways involved in SCI. Of course, more studies about astrogliosis as a complex 
and multifactorial phenomenon in SCI are essential. New strategies are required to 
minimize the detrimental effects of reactive astrocytes for increasing their benefi-
cial effects and improve repair and regeneration.

Limiting the amount of secondary damage done by inflammation to reduce 
cavitation, encouraging the production of molecules supportive of regeneration, 
and decreasing factors inhibiting axon growth will tip the delicate balance of 
growth-promoting and growth-inhibiting factors to a net environment that sup-
ports functional regrowth after CNS injury.
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