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Chapter

Polynomials with Symmetric
Zeros
Ricardo Vieira

Abstract

Polynomials whose zeros are symmetric either to the real line or to the unit circle
are very important in mathematics and physics. We can classify them into three
main classes: the self-conjugate polynomials, whose zeros are symmetric to the real
line; the self-inversive polynomials, whose zeros are symmetric to the unit circle;
and the self-reciprocal polynomials, whose zeros are symmetric by an inversion with
respect to the unit circle followed by a reflection in the real line. Real self-reciprocal
polynomials are simultaneously self-conjugate and self-inversive so that their zeros
are symmetric to both the real line and the unit circle. In this survey, we present a
short review of these polynomials, focusing on the distribution of their zeros.

Keywords: self-inversive polynomials, self-reciprocal polynomials, Pisot and
Salem polynomials, Möbius transformations, knot theory, Bethe equations

1. Introduction

In this work, we consider the theory of self-conjugate (SC), self-reciprocal (SR),
and self-inversive (SI) polynomials. These are polynomials whose zeros are sym-
metric either to the real line R or to the unit circle S ¼ z∈C : jzj ¼ 1f g. The basic
properties of these polynomials can be found in the books of Marden [1],
Milovanović et al. [2], and Sheil-Small [3]. Although these polynomials are very
important in both mathematics and physics, it seems that there is no specific review
about them; in this work, we present a bird’s eye view to this theory, focusing on the
zeros of such polynomials. Other properties of these polynomials (e.g., irreducibil-
ity, norms, analytical properties, etc.) are not covered here due to short space,
nonetheless, the interested reader can check many of the references presented in
the bibliography to this end.

2. Self-conjugate, self-reciprocal, and self-inversive polynomials

We begin with some definitions:
Definition 1. Let p zð Þ ¼ p0 þ p1zþ⋯þ pn�1z

n�1 þ pnz
n be a polynomial of

degree n with complex coefficients. We shall introduce three polynomials, namely
the conjugate polynomial p zð Þ, the reciprocal polynomial p ∗ zð Þ, and the inversive
polynomial p† zð Þ, which are, respectively, defined in terms of p zð Þ as follows:

p zð Þ ¼ p0 þ p1zþ⋯þ pn�1z
n�1 þ pnz

n,

p ∗ zð Þ ¼ pn þ pn�1zþ⋯þ p1z
n�1 þ p0z

n,

p† zð Þ ¼ pn þ pn�1zþ⋯þ p1z
n�1 þ p0z

n,

(1)
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where the bar means complex conjugation. Notice that the conjugate, reciprocal,
and inversive polynomials can also be defined without making reference to the
coefficients of p zð Þ:

p zð Þ ¼ p zð Þ, p ∗ zð Þ ¼ znp 1=zð Þ, p† zð Þ ¼ znp 1=zð Þ: (2)

From these relations, we plainly see that if ζ1,…, ζn are the zeros of a complex
polynomial p zð Þ of degree n, then, the zeros of p zð Þ are ζ1 ,…, ζn , the zeros of p ∗ zð Þ
are 1=ζ1,…, 1=ζn, and finally, the zeros of p† zð Þ are 1=ζ1 ,…, 1=ζn . Thus, if p zð Þ has k
zeros on R, l zeros on the upper half-plane Cþ ¼ z∈C : Im zð Þ.0f g, andm zeros in
the lower half-plane C� ¼ z∈C : Im zð Þ,0f g so that kþ lþm ¼ n, then p zð Þ will
have the same number k of zeros on R, l zeros in C

� and m zeros in C
þ. Similarly, if

p zð Þ has k zeros on S, l zeros inside S and m zeros outside S, so that kþ lþm ¼ n,
then both p ∗ zð Þ as p† zð Þwill have the same number k of zeros on S, l zeros outside S
and m zeros inside S.

These properties encourage us to introduce the following classes of polynomials:
Definition 2. A complex polynomial p zð Þ is called1 self-conjugate (SC), self-

reciprocal (SR), or self-inversive (SI) if, for any zero ζ of p zð Þ, the complex-conjugate
ζ, the reciprocal 1=ζ, or the reciprocal of the complex-conjugate 1=ζ is also a zero of
p zð Þ, respectively.

Thus, the zeros of any SC polynomial are all symmetric to the real line R, while
the zeros of the any SI polynomial are symmetric to the unit circle S. The zeros of
any SR polynomial are obtained by an inversion with respect to the unit circle
followed by a reflection in the real line. From this, we can establish the following:

Theorem 1. If p zð Þ is an SC polynomial of odd degree, then it necessarily has at least
one zero on R. Similarly, if p zð Þ is an SR or SI polynomial of odd degree, then it
necessarily has at least one zero on S.

Proof. From Definition 2 it follows that the number of non-real zeros of an SC
polynomial p zð Þ can only occur in (conjugate) pairs; thus, if p zð Þ has odd degree,
then at least one zero of it must be real. Similarly, the zeros of p† zð Þ or p ∗ zð Þ that
have modulus different from 1 can only occur in (inversive or reciprocal) pairs as
well; thus, if p zð Þ has odd degree then at least one zero of it must lie on S. □

Theorem 2. The necessary and sufficient condition for a complex polynomial p zð Þ to
be SC, SR, or SI is that there exists a complex number ω of modulus 1 so that one of the
following relations, respectively, holds:

p zð Þ ¼ ωp zð Þ, p zð Þ ¼ ωp ∗ zð Þ, p zð Þ ¼ ωp† zð Þ: (3)

Proof. It is clear in view of (1) and (2) that these conditions are sufficient. We
need to show, therefore, that these conditions are also necessary. Let us suppose
first that p zð Þ is SC. Then, for any zero ζ of p zð Þ the complex-conjugate number ζ is
also a zero of it. Thus, we can write

1 The reader should be aware that there is no standard in naming these polynomials. For instance, what

we call here self-inversive polynomials are sometimes called self-reciprocal polynomials. What we mean

positive self-reciprocal polynomials are usually just called self-reciprocal or yet palindrome polynomials

(because their coefficients are the same whether they are read from forwards or backwards), as well as,

negative self-reciprocal polynomials are usually called skew-reciprocal, anti-reciprocal, or yet anti-

palindrome polynomials.
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p zð Þ ¼ pn
Y

n

k¼1

z� ζk
� �

¼ pn
Y

n

k¼1

z� ζkð Þ ¼ pn=pn
� �

p zð Þ ¼ ωp zð Þ, (4)

with ω ¼ pn=pn so that ∣ω∣ ¼ pn=pn
�

�

�

� ¼ 1. Now, let us suppose that p zð Þ is SR.
Then, for any zero ζ of p zð Þ, the reciprocal number 1=ζ is also a zero of it; thus,

p zð Þ ¼ pn
Y

n

k¼1

z� 1
ζk

� �

¼ �1ð Þnznpn
ζ1⋯ζn

Y

n

k¼1

1
z
� ζk

� �

¼ �1ð Þnzn
ζ1⋯ζn

p
1
z

� �

¼ ωp ∗ zð Þ,

(5)

with ω ¼ �1ð Þn= ζ1…ζnð Þ ¼ pn=p0; now, for any zero ζ of p zð Þ (which is neces-
sarily different from zero if p zð Þ is SR), there will be another zero whose value is 1=ζ
so that ζ1…ζnj j ¼ 1, which implies ∣ω∣ ¼ 1. The proof for SI polynomials is analogous
and will be concealed; it follows that ω ¼ pn=p0 in this case. □

Now from (1), (2) and (3), we can conclude that the coefficients of an SC, an SR,
and an SI polynomial of degree n satisfy, respectively, the following relations:

pk ¼ ωpk , pk ¼ ωpn�k, pk ¼ ωpn�k , ∣ω∣ ¼ 1, 0⩽ k⩽ n: (6)

We highlight that any real polynomial is SC—in fact, many theorems which are
valid for real polynomials are also valid for, or can be easily extended to, SC poly-
nomials.

There also exist polynomials whose zeros are symmetric with respect to both
the real line R and the unit circle S. A polynomial p zð Þ with this double symmetry
is, at the same time, SC and SI (and, hence, SR as well). This is only possible if all
the coefficients of p zð Þ are real, which implies that ω ¼ �1. This suggests the
following additional definitions:

Definition 3. A real self-reciprocal polynomial p zð Þ that satisfies the relation
p zð Þ ¼ ωznp 1=zð Þ will be called a positive self-reciprocal (PSR) polynomial if ω ¼ 1
and a negative self-reciprocal (NSR) polynomial if ω ¼ �1.

Thus, the coefficients of any PSR polynomial p zð Þ ¼ p0 þ⋯þ pnz
n of degree n

satisfy the relations pk ¼ pn�k for 0⩽ k⩽ n, while the coefficients of any NSR
polynomial p zð Þ of degree n satisfy the relations pk ¼ �pn�k for 0⩽ k⩽ n; this last
condition implies that the middle coefficient of an NSR polynomial of even degree is
always zero.

Some elementary properties of PSR and NSR polynomials are the following: first,
notice that, if ζ is a zero of any PSR or NSR polynomial p zð Þ of degree n⩾4, then the
three complex numbers 1=ζ, ζ and 1=ζ are also zeros of p zð Þ. In particular, the
number of zeros of such polynomials which are neither in S or in R is always a
multiple of 4. Besides, any NSR polynomial has z ¼ 1 as a zero and p zð Þ= z� 1ð Þ is
PSR; further, if p zð Þ has even degree then z ¼ �1 is also a zero of it and p zð Þ= z2 � 1ð Þ
is a PSR polynomial of even degree. In a similar way, any PSR polynomial p zð Þ of
odd degree has z ¼ �1 as a zero and p zð Þ= zþ 1ð Þ is also PSR. The product of two
PSR, or two NSR, polynomials is PSR, while the product of a PSR polynomial with
an NSR polynomial is NSR. These statements follow directly from the definitions of
such polynomials.

We also mention that any PSR polynomial of even degree (say, n ¼ 2m) can be
written in the following form:

p zð Þ ¼ zm p0 zm þ 1
zm

� �

þ p1 zm�1 þ 1
zm�1

� �

þ⋯þ pm�1 zþ 1
z

� �� �

þ pm, (7)
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an expression that is obtained by using the relations pk ¼ p2m�k, 0⩽ k⩽ 2m, and
gathering the terms of p zð Þ with the same coefficients. Furthermore, the expression
Zs zð Þ ¼ zs þ z�sð Þ for any integer s can be written as a polynomial of degree s in the
new variable x ¼ zþ 1=z (the proof follows easily by induction over s); thus, we can
write p zð Þ ¼ zmq xð Þ, where q xð Þ ¼ q0 þ⋯þ qmx

m is such that the coefficients
q0,…, qm are certain functions of p0,…, pm. From this we can state the following:

Theorem 3. Let p zð Þ be a PSR polynomial of even degree n ¼ 2m. For each pair ζ
and 1=ζ of self-reciprocal zeros of p zð Þ that lie on S, there is a corresponding zero ξ of the
polynomial q xð Þ, as defined above, in the interval �2; 2½ � of the real line.

Proof. For each zero ζ of p xð Þ that lie on S, write ζ ¼ eiθ for some θ∈R. Thereby,
as q xð Þ ¼ q zþ 1=zð Þ ¼ p zð Þ=zm, it follows that ξ ¼ ζ þ 1=ζ ¼ 2 cos θ will be a zero of
q xð Þ. This shows us that ξ is limited to the interval �2; 2½ � of the real line. Finally,
notice that the reciprocal zero 1=ζ of p zð Þ is mapped to the same zero ξ of q xð Þ. □

Finally, remembering that the Chebyshev polynomials of first kind, Tn zð Þ, are
defined by the formula Tn

1
2 zþ z�1ð Þ
	 


¼ 1
2 zn þ z�nð Þ for z∈C, it follows as well that

q xð Þ, and hence any PSR polynomial, can be written as a linear combination of
Chebyshev polynomials:

q xð Þ ¼ 2 p0Tm xð Þ þ p1Tm�1 xð Þ þ⋯þ pm�1T1 xð Þ þ 1
2
pmT0 xð Þ

� �

: (8)

3. How these polynomials are related to each other?

In this section, we shall analyze how SC, SR, and SI polynomials are related to
each other. Let us begin with the relationship between the SR and SI polynomials,
which is actually very simple: indeed, from (1), (2), and (3) we can see that each
one is nothing but the conjugate polynomial of the other, that is

p† zð Þ ¼ p ∗ zð Þ ¼ p ∗ zð Þ, and p ∗ zð Þ ¼ p† zð Þ ¼ p† zð Þ: (9)

Thus, if p zð Þ is an SR (SI) polynomial, then p zð Þ will be SI (SR) polynomial.
Because of this simple relationship, several theorems which are valid for SI poly-
nomials are also valid for SR polynomials and vice versa.

The relationship between SC and SI polynomials is not so easy to perceive. A
way of revealing their connection is to make use of a suitable pair of Möbius trans-
formations, that maps the unit circle onto the real line and vice versa, which is often
called Cayley transformations, defined through the formulas:

M zð Þ ¼ z� ið Þ= zþ ið Þ, and W zð Þ ¼ �i zþ 1ð Þ= z� 1ð Þ: (10)

This approach was developed in [4], where some algorithms for counting the
number of zeros that a complex polynomial has on the unit circle were also formu-
lated.

It is an easy matter to verify thatM zð Þmaps R onto SwhileW zð Þmaps S onto R.
Besides, M zð Þ maps the upper (lower) half-plane to the interior (exterior) of S,
while W zð Þ maps the interior (exterior) of S onto the upper (lower) half-plane.
Notice that W zð Þ can be thought as the inverse of M zð Þ in the Riemann sphere
C∞ ¼ C∪ ∞f g, if we further assume that M �ið Þ ¼ ∞, M ∞ð Þ ¼ 1, W 1ð Þ ¼ ∞, and
W ∞ð Þ ¼ �i.
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Given a polynomial p zð Þ of degree n, we define two Möbius-transformed
polynomials, namely

Q zð Þ ¼ zþ ið Þnp M zð Þð Þ, and T zð Þ ¼ z� 1ð Þnp W zð Þð Þ: (11)

The following theorem shows us how the zeros of Q zð Þ and T zð Þ are related with
the zeros of p zð Þ:

Theorem 4. Let ζ1,…, ζn denote the zeros of p zð Þ and η1,…, ηn the respective zeros of
Q zð Þ. Provided p 1ð Þ 6¼ 0, we have that η1 ¼ W ζ1ð Þ,…, ηn ¼ W ζnð Þ. Similarly, if
τ1,…τn are the zeros of T zð Þ, then we have τ1 ¼ M ζ1ð Þ,…, τn ¼ M ζnð Þ, provided that
p �ið Þ 6¼ 0.

Proof. In fact, inverting the expression for Q zð Þ and evaluating it in any zero ζk
of p zð Þ we get that p ζkð Þ ¼ �i=2ð Þn ζk � 1ð ÞnQ W ζkð Þð Þ ¼ 0 for 0⩽ k ⩽ n. Provided
that z ¼ 1 is not a zero of p zð Þwe get that ηk ¼ W ζkð Þ is a zero of Q zð Þ. The proof for
the zeros of T zð Þ is analogous. □

This result also shows that Q zð Þ and T zð Þ have the same degree as p zð Þ whenever
p 1ð Þ 6¼ 0 or p �ið Þ 6¼ 0, respectively. In fact, if p zð Þ has a zero at z ¼ 1 of multiplicity
m then Q zð Þ will be a polynomial of degree n�m, the same being true for T zð Þ if
p zð Þ has a zero of multiplicity m at z ¼ �i. This can be explained by the fact that the
points z ¼ 1 and z ¼ �i are mapped to infinity by W zð Þ and M zð Þ, respectively.

The following theorem shows that the set of SI polynomials are isomorphic to
the set of SC polynomials:

Theorem 5. Let p zð Þ be an SI polynomial. Then, the transformed polynomial
Q zð Þ ¼ zþ ið Þnp M zð Þð Þ is an SC polynomial. Similarly, if p zð Þ is an SC polynomial,
then T zð Þ ¼ z� 1ð Þnp W zð Þð Þ will be an SI polynomial.

Proof. Let ζ and 1=ζ be two inversive zeros an SI polynomial p zð Þ. Then,
according to Theorem 4, the corresponding zeros of Q zð Þ will be:

W ζð Þ ¼ �i
ζ þ 1
ζ � 1

¼ η and W
1
ζ

� �

¼ �i
1=ζ þ 1
1=ζ � 1

¼ i
ζ þ 1
ζ � 1

¼ W ζð Þ ¼ η:

(12)

Thus, any pair of zeros of p zð Þ that are symmetric to the unit circle are mapped
in zeros of Q zð Þ that are symmetric to the real line; because p zð Þ is SI, it follows that
Q zð Þ is SC. Conversely, let ζ and ζ be two zeros of an SC polynomial p zð Þ; then the
corresponding zeros of T zð Þ will be:

M ζð Þ ¼ ζ � i

ζ þ i
¼ τ and M ζ

� �

¼ ζ � i

ζ þ i
¼ � 1=ζ þ i

1=ζ � i
¼ 1M ζð Þ ¼ 1

τ
: (13)

Thus, any pair of zeros of p zð Þ that are symmetric to the real line are mapped in
zeros of T zð Þ that are symmetric to the unit circle. Because p zð Þ is SC, it follows that
T zð Þ is SI. □

We can also verify that any SI polynomial with ω ¼ 1 is mapped to a real polyno-
mial throughM zð Þ and any real polynomial is mapped to an SI polynomial with
ω ¼ 1 throughW zð Þ. Thus, the set of SI polynomials with ω ¼ 1 is isomorphic to the
set of real polynomials. Besides, an SI polynomial with ω 6¼ 1 can be transformed into
another one with ω ¼ 1 by performing a suitable uniform rotation of its zeros. It can
also be shown that the action of the Möbius transformation over a PSR polynomial
leads to a real polynomial that has only even powers. See [4] for more.
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4. Zeros location theorems

In this section, we shall discuss some theorems regarding the distribution of the
zeros of SC, SR, and SI polynomials on the complex plane. Some general theorems
relying on the number of zeros that an arbitrary complex polynomial has inside, on,
or outside S are also discussed. To save space, we shall not present the proofs of
these theorems, which can be found in the original works. Other related theorems
can be found in Marden’s book [1].

4.1 Polynomials that do not necessarily have symmetric zeros

The following theorems are classics (see [1] for the proofs):
Theorem 6. (Rouché). Let q zð Þ and r zð Þ be polynomials such that ∣q zð Þ∣, ∣r zð Þ∣

along all points of S. Then, the polynomial p zð Þ ¼ q zð Þ þ r zð Þ has the same number of
zeros inside S as the polynomial r zð Þ, counted with multiplicity.

Thus, if a complex polynomial p zð Þ ¼ p0 þ⋯þ pkz
k þ⋯þ pnz

n of degree n is
such that pk

�

�

�

�. p0 þ⋯þ pk�1 þ pkþ1 þ⋯þ pn
�

�

�

�, then p zð Þ will have exactly k

zeros inside S, counted with multiplicity.
Theorem 7. (Gauss and Lucas) The zeros of the derivative p0 zð Þ of a polynomial

p zð Þ lie all within the convex hull of the zeros of the p zð Þ.
Thereby, if a polynomial p zð Þ has all its zeros on S, then all the zeros of p0 zð Þ will

lie in or on S. In particular, the zeros of p0 zð Þ will lie on S if, and only if, they are
multiple zeros of p zð Þ.

Theorem 8. (Cohn) A necessary and sufficient condition for all the zeros of a
complex polynomial p zð Þ to lie on S is that p zð Þ is SI and that its derivative p0 zð Þ does not
have any zero outside S.

Cohn introduced his theorem in [5]. Bonsall and Marden presented a simpler
proof of Conh’s theorem in [6] (see also [7]) and applied it to SI polynomials—in
fact, this was probably the first paper to use the expression “self-inversive.” Other
important result of Cohn is the following: all the zeros of a complex polynomial
p zð Þ ¼ pnz

n þ⋯þ p0 will lie on S if, and only if, ∣pn∣ ¼ ∣p0∣ and all the zeros of p zð Þ
do not lie outside S.

Restricting ourselves to polynomials with real coefficients, Eneström and
Kakeya [8–10] independently presented the following theorem:

Theorem 9. (Eneström and Kakeya) Let p zð Þ be a polynomial of degree n with
real coefficients. If its coefficients are such that 0, p0 ⩽ p1 ⩽ ⋯⩽ pn�1 ⩽ pn, then all the
zeros of p zð Þ lie in or on S. Likewise, if the coefficients of p zð Þ are such that
0, pn ⩽ pn�1 ⩽ ⋯⩽ p1 ⩽ p0, then all the zeros of p zð Þ lie on or outside S.

The following theorems are relatively more recent. The distribution of the zeros
of a complex polynomial regarding the unit circle S was presented by Marden in [1]
and slightly enhanced by Jury in [11]:

Theorem 10. (Marden and Jury) Let p zð Þ be a complex polynomial of degree n

and p ∗ zð Þ its reciprocal. Construct the sequence of polynomials Pj zð Þ ¼ ∑
n�j
k¼0Pj,kz

k such

that P0 zð Þ ¼ p zð Þ and Pjþ1 zð Þ ¼ pj,0Pj zð Þ � pj,n�jP
∗
j zð Þ for 0⩽ j⩽ n� 1 so that we

have the relations pjþ1,k ¼ pj,0pj,k � pj,n�jpj,n�j�k . Let δj denote the constant terms of the

polynomials Pj zð Þ, i.e., δj ¼ pj,0 and Δk ¼ δ1⋯δk. Thus, if N of the products Δk are

negative and n�N of the products Δk are positive so that none of them are zero, then p zð Þ
has N zeros inside S, n�N zeros outside S and no zero on S. On the other hand, if
Δk 6¼ 0 for some k, n but Pkþ1 zð Þ ¼ 0, then p zð Þ has either n� k zeros on S or n� k
zeros symmetric to S. It has additionally N zeros inside S and k�N zeros outside S.

6
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A simple necessary and sufficient condition for all the zeros of a complex poly-
nomial to lie on S was presented by Chen in [12]:

Theorem 11. (Chen) A necessary and sufficient condition for all the zeros of a
complex polynomial p zð Þ of degree n to lie on S is that there exists a polynomial q zð Þ of
degree n�m whose zeros are all in or on S and such that p zð Þ ¼ zmq zð Þ þ ωq† zð Þ for
some complex number ω of modulus 1.

We close this section by mentioning that there exist many other well-known
theorems regarding the distribution of the zeros of complex polynomials. We can
cite, for example, the famous rule of Descartes (the number of positive zeros of a real
polynomial is limited from above by the number of sign variations in the ordered
sequence of its coefficients), the Sturm Theorem (the exact number of zeros that a
real polynomial has in a given interval a; bð � of the real line is determined by the
formula N ¼ var S bð Þ½ � � var S að Þ½ �, where var S ξð Þ½ � means the number of sign vari-
ations of the Sturm sequence S xð Þ evaluated at x ¼ ξ) and Kronecker Theorem (if all
the zeros of a monic polynomial with integer coefficients lie on the unit circle, then
all these zeros are indeed roots of unity), see [1] for more. There are still other
important theorems relying on matrix methods and quadratic forms that were
developed by several authors as Cohn, Schur, Hermite, Sylvester, Hurwitz, Krein,
among others, see [13].

4.2 Real self-reciprocal polynomials

Let us now consider real SR polynomials. The theorems below are usually
applied to PSR polynomials, but some of them can be extended to NSR polynomials
as well.

An analog of Eneström-Kakeya theorem for PSR polynomials was found by
Chen in [12] and then, in a slightly stronger version, by Chinen in [14]:

Theorem 12. (Chen and Chinen) Let p zð Þ be a PSR polynomial of degree n that is

written in the form p zð Þ ¼ p0 þ p1zþ⋯þ pkz
k þ pkz

n�k þ pk�1z
n�kþ1 þ⋯þ p0z

n

and such that 0, pk, pk�1,⋯, p1, p0. Then all the zeros of p zð Þ are on S.
Going in the same direction, Choo found in [15] the following condition:
Theorem 13. (Choo) Let p zð Þ be a PSR polynomial of degree n and such that its

coefficients satisfy the following conditions: npn ⩾ n� 1ð Þpn�1 ⩾⋯⩾ kþ 1ð Þpkþ1.0

and kþ 1ð Þpkþ1 ⩾ ∑k
j¼0 jþ 1ð Þpjþ1 � jpj

�

�

�

�

�

� for 0⩽ k⩽ n� 1. Then, all the zeros of p zð Þ
are on S.

Lakatos discussed the separation of the zeros on the unit circle of PSR poly-
nomials in [16]; she also found several sufficient conditions for their zeros to be all
on S. One of the main theorems is the following:

Theorem 14. (Lakatos) Let p zð Þ be a PSR polynomial of degree n. 2. If
pn
�

�

�

�⩾∑n�1
k¼1 pn � pk

�

�

�

�, then all the zeros of p zð Þ lie on S. Moreover, the zeros of p zð Þ are
all simple, except when the equality takes place.

For PSR polynomials of odd degree, Lakatos and Losonczi [17] found a stronger
version of this result:

Theorem 15. (Lakatos and Losonczi) Let p zð Þ be a PSR polynomial of odd degree,

say n ¼ 2mþ 1. If p2mþ1

�

�

�

�⩾ cos 2 ϕmð Þ∑2m
k¼1 p2mþ1 � pk

�

�

�

�, where ϕm ¼ π= 4 mþ 1ð Þ½ �,
then all the zeros of p zð Þ lie on S. The zeros are simple except when the equality is strict.

Theorem 14 was generalized further by Lakatos and Losonczi in [18]:
Theorem 16. (Lakatos and Losonczi) All zeros of a PSR polynomial p zð Þ of degree

n. 2 lie on S if the following conditions hold: pn þ r
�

�

�

�⩾∑n�1
k¼1 pk � pn þ r

�

�

�

�, pnr⩾0, and
pn
�

�

�

�⩾ rj j, for r∈R.

7

Polynomials with Symmetric Zeros
DOI: http://dx.doi.org/10.5772/intechopen.82728



Other conditions for all the zeros of a PSR polynomial to lie on S were presented
by Kwon in [19]. In its simplest form, Kown’s theorem can be enunciated as follows:

Theorem 17. (Kwon) Let p zð Þ be a PSR polynomial of even degree n⩾ 2 whose
leading coefficient pn is positive and p0 ⩽ p1 ⩽ ⋯⩽ pn. In this case, all the zeros of p zð Þ
will lie on S if, either pn=2 ⩾∑n

k¼0 pk � pn=2

�

�

�

�

�

�, or p 1ð Þ⩾0 and pn ⩾
1
2∑

n�1
k¼1 pk � pn=2

�

�

�

�

�

�.

Modified forms of this theorem hold for PSR polynomials of odd degree and for
the case where the coefficients of p zð Þ do not have the ordination above—see [19]
for these cases. Kwon also found conditions for all but two zeros of p zð Þ to lie on S in
[20], which is relevant to the theory of Salem polynomials—see Section 5.

Other interesting results are the following: Konvalina and Matache [21] found
conditions under which a PSR polynomial has at least one non-real zero on S. Kim
and Park [22] and then Kim and Lee [23] presented conditions for which all the
zeros of certain PSR polynomials lie on S (some open cases were also addressed by
Botta et al. in [24]). Suzuki [25] presented necessary and sufficient conditions,
relying on matrix algebra and differential equations, for all the zeros of PSR poly-
nomials to lie on S. In [26] Botta et al. studied the distribution of the zeros of PSR
polynomials with a small perturbation in their coefficients. Real SR polynomials of
height 1—namely, special cases of Littlewood, Newman, and Borwein polynomials—
were studied by several authors, see [27–35] and references therein.2 Zeros of the
so-called Ramanujan Polynomials and generalizations were analyzed in [37–39].
Finally, the Galois theory of PSR polynomials was studied in [40] by Lindstrøm,
who showed that any PSR polynomial of degree less than 10 can be solved by
radicals.

4.3 Complex self-reciprocal and self-inversive polynomials

Let us consider now the case of complex SR polynomials and SI polynomials.
Here, we remark that many of the theorems that hold for SI polynomials either also
hold for SR polynomials or can be easily adapted to this case (the opposite is also
true).

Theorem 18. (Cohn) An SI polynomial p zð Þ has as many zeros outside S as does its
derivative p0 zð Þ.

This follows directly from Cohn’s Theorem 8 for the case where p zð Þ is SI.
Besides, we can also conclude from this that the derivative of p zð Þ has no zeros on S

except at the multiple zeros of p zð Þ. Furthermore, if an SI polynomial p zð Þ of degree
n has exactly k zeros on S, while its derivative has exactly l zeros in or on S, both
counted with multiplicity, then n ¼ 2 lþ 1ð Þ � k.

O’Hara and Rodriguez [41] showed that the following conditions are always
satisfied by SI polynomials whose zeros are all on S:

Theorem 19. (O’Hara and Rodriguez) Let p zð Þ be an SI polynomial of degree n

whose zeros are all on S. Then, the following inequality holds:∑n
j¼0 pj

�

�

�

�

�

�

2
⩽ p zð Þk k2, where

p zð Þk k denotes the maximum modulus of p zð Þ on the unit circle; besides, if this inequality
is strict then the zeros of p zð Þ are rotations of nth roots of unity. Moreover, the following

inequalities are also satisfied: akj j⩽ 1
2 p zð Þk k if k 6¼ n=2 and akj j⩽

ffiffi

2
p

2 p zð Þk k for
k ¼ n=2.

Schinzel in [42], generalized Lakatos Theorem 14 for SI polynomials:

2 The zeros of such polynomials present a fractal behavior, as was first discovered by Odlyzko and

Poonen in [36].
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Theorem 20. (Schinzel) Let p zð Þ be an SI polynomial of degree n. If the inequality

pn
�

�

�

�⩾ infa,b∈C:∣b∣¼1∑
n
k¼0 apk � bn�kpn

�

�

�

�

�

�, then all the zeros of p zð Þ lie on S. These zero are

simple whenever the equality is strict.
In a similar way, Losonczi and Schinzel [43] generalized theorem 15 for the

SI case:
Theorem 21. (Losonczi and Schinzel) Let p zð Þ be an SI polynomial of odd degree,

i.e., n ¼ 2mþ 1. If p2mþ1

�

�

�

�⩾ cos 2 ϕmð Þinfa,b∈C:∣b∣¼1∑
2mþ1
k¼1 apk � b2mþ1�kp2mþ1

�

�

�

�

�

�, where

ϕm ¼ π= 4 mþ 1ð Þ½ �, then all the zeros of p zð Þ lie on S. The zeros are simple except when
the equality is strict.

Another sufficient condition for all the zeros of an SI polynomial to lie on S was
presented by Lakatos and Losonczi in [44]:

Theorem 22. (Lakatos and Losonczi) Let p zð Þ be an SI polynomial of degree n

and suppose that the inequality pn
�

�

�

�⩾ 1
2∑

n�1
k¼1 pk

�

�

�

� holds. Then, all the zeros of p zð Þ lie on
S. Moreover, the zeros are all simple except when an equality takes place.

In [45], Lakatos and Losonczi also formulated a theorem that contains as special
cases many of the previous results:

Theorem 23. (Lakatos and Losonczi) Let p zð Þ ¼ p0 þ⋯þ pnz
n be an SI poly-

nomial of degree n⩾ 2 and a, b, and c be complex numbers such that a 6¼ 0, ∣b∣ ¼ 1, and

c=pn ∈R, 0⩽ c=pn ⩽ 1. If pn þ c
�

�

�

�⩾ ap0 � bnpn
�

�

�

�þ∑n�1
k¼1 apk � bn�k c� pn

� �

�

�

�

�

�

�þ
apn � pn
�

�

�

�, then, all the zeros of p zð Þ lie on S. Moreover, these zeros are simple if the

inequality is strict.
In [46], Losonczi presented the following necessary and sufficient conditions for

all the zeros of a (complex) SR polynomial of even degree to lie on S:
Theorem 24. (Losonczi) Let p zð Þ be a monic complex SR polynomial of even

degree, say n ¼ 2m. Then, all the zeros of p zð Þ will lie on S if, and only if, there exist real
numbers α1,…, α2m, all with moduli less than or equal to 2, that satisfy the inequalities:

pk ¼ �1ð Þk∑ k=2½ �
l¼0

m� kþ 2l

l

� �

σ2mk�2l α1;…; α2mð Þ, 0⩽ k⩽ m, where σ2mk α1;…; α2mð Þ

denotes the kth elementary symmetric function in the 2m variables α1,…, α2m.
Losonczi, in [46], also showed that if all the zeros of a complex monic reciprocal

polynomial are on S, then its coefficients are all real and satisfy the inequality

pn
�

�

�

�⩽
n

k

� �

for 0⩽ k⩽ n.

The theorems above give conditions for all the zeros of SI or SR polynomials to
lie on S. In many cases, however, we need to verify if a polynomial has a given
number of zeros (or none) on the unit circle. Considering this problem, Vieira in [47]
found sufficient conditions for an SI polynomial of degree n to have a determined
number of zeros on the unit circle. In terms of the length, L p zð Þ½ � ¼ p0

�

�

�

�þ⋯þ pn
�

�

�

�

of a polynomial p zð Þ of degree n, this theorem can be stated as follows:
Theorem 25. (Vieira) Let p zð Þ be an SI polynomial of degree n. If the inequality

pn�m

�

�

�

�⩾ 1
4

n
n�m

� �

L p zð Þ½ �, m, n=2, holds true, then p zð Þ will have exactly n� 2m zeros

on S; besides, all these zeros are simple when the inequality is strict. Moreover, p zð Þ will
have no zero on S if, for n even and m ¼ n=2, the inequality pm

�

�

�

�.
1
2L p zð Þ½ � is satisfied.

The case m ¼ 0 corresponds to Lakatos and Losonczi Theorem 14 for all the
zeros of p zð Þ to lie on S. The necessary counterpart of this theorem was considered
by Stankov in [48], with an application to the theory of Salem numbers—see
Section 5.1.

Other results on the distribution of zeros of SI polynomials include the following:
Sinclair and Vaaler [49] showed that a monic SI polynomial p zð Þ of degree n
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satisfying the inequalities Lr p zð Þ½ �⩽ 2þ 2r n� 1ð Þ1�r or Lr p zð Þ½ �⩽ 2þ 2r l� 2ð Þ1�r,
where r⩾ 1, Lr p zð Þ½ � ¼ p0

�

�

�

�

r þ⋯þ pn
�

�

�

�

r
, and l is the number of non-null terms of

p zð Þ, has all their zeros on S; the authors also studied the geometry of SI polynomials
whose zeros are all on S. Choo and Kim applied Theorem 11 to SI polynomials in
[50]. Hypergeometric polynomials with all their zeros on S were considered in
[51, 52]. Kim [53] also obtained SI polynomials which are related to Jacobi poly-
nomials. Ito and Wimmer [54] studied SI polynomial operators in Hilbert space
whose spectrum is on S.

5. Where these polynomials are found?

In this section, we shall briefly discuss some important or recent applications of
the theory of polynomials with symmetric zeros. We remark, however, that our
selection is by no means exhaustive: for example, SR and SI polynomials also find
applications in many fields of mathematics (e.g., information and coding theory
[55], algebraic curves over a finite field and cryptography [56], elliptic functions
[57], number theory [58], etc.) and physics (e.g., Lee-Yang theorem in statistical
physics [59], Poincaré Polynomials defined on Calabi-Yau manifolds of superstring
theory [60], etc.).

5.1 Polynomials with small Mahler measure

Given a monic polynomial p zð Þ of degree n, with integer coefficients, the Mahler
measure of p zð Þ, denoted by M p zð Þ½ �, is defined as the product of the modulus of all
those zeros of p zð Þ that lie in the exterior of S [61]. That is

M p zð Þ½ � ¼
Y

n

i¼1

max 1; ζij jf g, (14)

where ζ1,…, ζn are the zeros
3 of p zð Þ. Thus, if a monic integer polynomial p zð Þ

has all its zeros in or on the unit circle, we have M p zð Þ½ � ¼ 1; in particular, all
cyclotomic polynomials (which are PSR polynomials whose zeros are the primitive
roots of unity, see [1]) have Mahler measure equal to 1. In a sense, the Mahler
measure of a polynomial p zð Þ measures how close it is to the cyclotomic polyno-
mials. Therefore, it is natural to raise the following:

Problem 1. (Mahler) Find the monic, integer, non-cyclotomic polynomial with the
smallest Mahler measure.

This is an 80-year-old open problem of mathematics. Of course, we can expect
that the polynomials with the smallest Mahler measure be among those with only
a few number of zeros outside S, in particular among those with only one zero
outside S. A monic integer polynomial that has exactly one zero outside S is called a
Pisot polynomial and its unique zero of modulus greater than 1 is called its Pisot
number [62]. A breakthrough towards the solution of Mahler’s problem was given
by Smyth in [63]:

Theorem 26. (Smyth) The Pisot polynomial S zð Þ ¼ z3 � z� 1 is the polynomial
with smallest Mahler measure among the set of all monic, integer, and non-SR poly-
nomials. Its Mahler measure is given by the value of its Pisot number, which is,

3 The Mahler measure of a monic integer polynomial p zð Þ can also be defined without making reference

to its zeros through the formula M p zð Þ½ � ¼ exp
Ð 1
0 log p e2πit

� �	 


dt
n o

—see [61].
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σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
þ 1
2

ffiffiffiffiffi

23
27

r

3

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
� 1
2

ffiffiffiffiffi

23
27

r

3

s

≈ 1:32471795724: (15)

The Mahler problem is, however, still open for SR polynomials. A monic integer
SR polynomial with exactly two (real and positive) zeros (say, ζ and 1=ζ) not lying
on S is called a Salem polynomial [62, 64]. It can be shown that a Pisot polynomial
with at least one zero on S is also a Salem polynomial. The unique positive zero
greater than one of a Salem polynomial is called its Salem number, which also equals
the value of its Mahler measure. A Salem number s is said to be small if s, σ; up to
date, only 47 small Salem numbers are known [65, 66] and the smallest known one
was found about 80 years ago by Lehmer [67]. This gave place to the following:

Conjecture 1. (Lehmer) The monic integer polynomial with the smallest Mahler

measure is the Lehmer polynomial L zð Þ ¼ z10 þ z9 � z7 � z6 � z5 � z4 � z3 þ zþ 1,
a Salem polynomial whose Mahler measure is Λ ≈ 1:17628081826, known as Lehmer’s
constant.

The proof of this conjecture is also an open problem. To be fair, we do not even
know if there exists a smallest Salem number at all. This is the content of another
problem raised by Lehmer:

Problem 2. (Lehmer) Answer whether there exists or not a positive number ϵ such
that the Mahler measure of any monic, integer, and non-cyclotomic polynomial p zð Þ
satisfies the inequality M p zð Þ½ �. 1þ ϵ.

Lehmer’s polynomial also appears in connection with several fields of mathe-
matics. Many examples are discussed in Hironaka’s paper [68]; here we shall only
present an amazing identity found by Bailey and Broadhurst in [69] in their works
on polylogarithm ladders: if λ is any zero of the aforementioned Lehmer’s polyno-
mial L zð Þ, then,

λ315 � 1
� �

λ210 � 1
� �

λ126 � 1
� �2

λ90 � 1
� �

λ3 � 1
� �3

λ2 � 1
� �5

λ� 1ð Þ3

λ630 � 1
� �

λ35 � 1
� �

λ15 � 1
� �2

λ14 � 1
� �2

λ5 � 1
� �6

λ68
¼ 1: (16)

5.2 Knot theory

A knot is a closed, non-intersecting, one-dimensional curve embedded on R
3

[70]. Knot theory studies topological properties of knots as, for example, criteria
under which a knot can be unknot, conditions for the equivalency between knots,
the classification of prime knots, etc.; see [70] for the corresponding definitions. In
Figure 1, we plotted all prime knots up to six crossings.

One of the most important questions in knot theory is to determine whether or
not two knots are equivalent. This, however, is not an easy task. A way of attacking
this question is to look for abstract objects—mainly the so-called knot invariants—
rather than to the knots themselves. A knot invariant is a (topologic, combinatorial,
algebraic, etc.) quantity that can be computed for any knot and that is always the
same for equivalents knots.4 An important class of knot invariants is constituted by
the so-called Knot Polynomials. Knot polynomials were introduced in 1928 by Alex-
ander [71]. They consist in polynomials with integer coefficients that can be written
down for every knot. For about 60 years since its creation, Alexander polynomials
were the only known kind of knot polynomial. It was only in 1985 that Jones [72]

4 We remark, however, that different knots can have the same knot invariant. Up to date, we do not

know whether there exists a knot invariant that distinguishes all non-equivalent knots from each other

(although there do exist some invariants that distinguish every knot from the trivial knot). Thus, until

now the concept of knot invariants only partially solves the problem of knot classification.
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came up with a new kind of knot polynomials—today known as Jones polynomials—
and since then other kinds were discovered as well, see [70].

What is interesting for us here is that the Alexander polynomials are PSR poly-
nomials of even degree (say, n ¼ 2m) and with integer coefficients.5 Thus, they
have the following general form:

Δ tð Þ ¼ δ0 þ δ1zþ⋯þ δm�1t
m�1 þ δmt

m þ δm�1t
mþ1 þ⋯þ δ1t

2m�1 þ δ0t
2m, (17)

where δi ∈N, 0⩽ i⩽ m. In Table 1, we present the δm�1Alexander polynomials
for the prime knots up to six crossings.

Knots theory finds applications in many fields of mathematics in physics—see
[70]. In mathematics, we can cite a very interesting connection between Alexander
polynomials and the theory of Salem numbers: more precisely, the Alexander poly-
nomial associated with the so-called Pretzel Knot P �2; 3; 7ð Þ is nothing but the
Lehmer polynomial L zð Þ introduced in Section 5.1; it is indeed the Alexander poly-
nomial with the smallest Mahler measure [73]. In physics, knot theory is connected
with quantum groups and it also can be used to one construct solutions of the Yang-
Baxter equation [74] through a method called baxterization of braid groups.

5.3 Bethe equations

Bethe equations were introduced in 1931 by Hans Bethe [75], together with his
powerful method—the so-called Bethe Ansatz Method—for solving spectral prob-
lems associated with exactly integrable models of statistical mechanics. They consist
in a system of coupled and non-linear equations that ensure the consistency of the

Figure 1.
A table of prime knots up to six crossings. In the Alexander-Briggs notation these knots are, in order, 01, 31, 41,
51, 52, 61, 62, and 63.

Knot Alexander polynomial Δ tð Þ Knot Alexander polynomial Δ tð Þ

01 1 52 2� 3t þ 2t2

31 1� tþ t2 61 2� 5t þ 2t2

41 1� 3t þ t2 62 1� 3t þ 3t2 � 3t3 þ t4

51 1� t þ t2 � t3 þ t4 63 1� 3tþ 5t2 � 3t3 þ t4

Table 1.
Alexander polynomials for prime knots up to six crossings.

5 Alexander polynomials can also be defined as Laurent polynomials, see [70].
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Bethe Ansatz. In fact, for the XXZ Heisenberg spin chain, the Bethe Equations
consist in a coupled system of trigonometric equations; however, after a change of
variables is performed, we can write them in the following rational form:

xLi ¼ �1ð ÞN�1
Y

N

k¼1, k 6¼i

 
xixk � 2Δxi þ 1
xixk � 2Δxk þ 1

, 1⩽ i⩽ N, (18)

where L ∈ N is the length of the chain, N ∈ N is the excitation number and Δ ∈ R

is the so-called spectral parameter. A solution of (18) consists in a (non-ordered) set
X ¼ x1;…; xNf g of the unknowns x1,…, xN so that (18) is satisfied. Notice that the
Bethe equations satisfy the important relation xL1x

L
2⋯xLN ¼ 1, which suggests an

inversive symmetry of their zeros.
In [76], Vieira and Lima-Santos showed that the solutions of (18), for N ¼ 2 and

arbitrary L, are given in terms of the zeros of certain SI polynomials. In fact, (18)
becomes a system of two coupled algebraic equations for N ¼ 2, namely,

xL1 ¼ � x1x2 � 2Δx1 þ 1
x1x2 � 2Δx2 þ 1

, and xL2 ¼ � x1x2 � 2Δx2 þ 1
x1x2 � 2Δx1 þ 1

: (19)

Now, from the relation xL1x
L
2 ¼ 1 we can eliminate one of the unknowns in (19)

—for instance, by setting x2 ¼ ωa=x1, where ωa ¼ exp 2πia=Lð Þ, 1⩽ a⩽ L, are the
roots of unity of degree L. Replacing these values for x2 into (19), we obtain the
following polynomial equations fixing x1:

pa zð Þ ¼ 1þ ωað ÞzL � 2Δωaz
L�1 � 2Δzþ 1þ ωað Þ ¼ 0, 1⩽ a⩽ L: (20)

We can easily verify that the polynomial pa zð Þ is SI for each value of a. They also
satisfy the relations pa zð Þ ¼ zLp ωa=zð Þ, 1⩽ a⩽ L, which means that the solutions of
(19) have the general form X ¼ ζ;ωa=ζf g for ζ any zero of pa zð Þ. In [76], the
distribution of the zeros of the polynomials pa zð Þ was analyzed through an applica-
tion of Vieira’s Theorem 25. It was shown that the exact behavior of the zeros of the
polynomials pa zð Þ, for each a, depends on two critical values of Δ, namely

Δ 1ð Þ
a ¼ 1

2
ωa þ 1j j, and Δ 2ð Þ

a ¼ 1
2

L

L� 2

� �

ωa þ 1j j, (21)

as follows: if ∣Δ∣⩽ Δ 1ð Þ
a , then all the zeros of pa zð Þ are on S; if ∣Δ∣⩾Δ 2ð Þ

a , then all the
zeros of pa zð Þ but two are on S; (see [76] for the case Δ 1ð Þ

a , ∣Δ∣,Δ 2ð Þ
a andmore details).

Finally, we highlight that the polynomial pa zð Þ becomes a Salem polynomial for
a ¼ L and integer values of Δ. This was one of the first appearances of Salem poly-
nomials in physics.

5.4 Orthogonal polynomials

An infinite sequence P ¼ Pn zð Þf gn∈N
of polynomials Pn zð Þ of degree n is said to

be an orthogonal polynomial sequence on the interval l; rð Þ of the real line if there
exists a function w xð Þ, positive in l; rð Þ∈R, such that

ðr

l
Pm zð ÞPn zð Þw zð Þdz ¼

Kn, m ¼ n,

0, m 6¼ n,

�

m, n∈N, (22)

where K0, K1, etc. are positive numbers. Orthogonal polynomial sequences on
the real line have many interesting and important properties—see [77].
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Very recently, Vieira and Botta [78, 79] studied the action of Möbius transfor-
mations over orthogonal polynomial sequences on the real line. In particular, they
showed that the infinite sequence T ¼ Tn zð Þf gn∈N

of the Möbius-transformed
polynomials Tn zð Þ ¼ z� 1ð ÞnPn W zð Þð Þ, where W zð Þ ¼ �i zþ 1ð Þ= z� 1ð Þ, is an SI
polynomial sequence with all their zeros on the unit circle S—see Table 2 for an
example. We highlight that the polynomials Tn zð Þ∈ T also have properties similar
to the original polynomials Pn zð Þ∈P as, for instance, they satisfy an orthogonality
condition on the unit circle and a three-term recurrence relation, their zeros lie all
on S and are simple, for n⩾ 1 the zeros of Tn zð Þ interlaces with those of Tnþ1 zð Þ and
so on—see [78, 79] for more details.

6. Conclusions

In this work, we reviewed the theory of self-conjugate, self-reciprocal, and self-
inversive polynomials. We discussed their main properties, how they are related to
each other, the main theorems regarding the distribution of their zeros and some
applications of these polynomials both in physics and mathematics. We hope that
this short review suits for a compact introduction of the subject, paving the way for
further developments in this interesting field of research.
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Hermite polynomials Möbius-transformed Hermite polynomials

H0 zð Þ ¼ 1 H0 zð Þ ¼ 1

H1 zð Þ ¼ 2z H1 zð Þ ¼ �2i� 2iz

H2 zð Þ ¼ �2þ 4z2 H2 zð Þ ¼ �6� 4z� 6z2

H3 zð Þ ¼ �12zþ 8z3 H3 zð Þ ¼ �20iþ 12izþ 12iz2 þ 20iz3

H4 zð Þ ¼ 12� 48z2 þ 16z4 H4 zð Þ ¼ 76þ 16zþ 72z2 þ 16z3 þ 76z4

Table 2.
Hermite and Möbius-transformed Hermite polynomials, up to 4th degree.
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