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Chapter

Antagonism of Opioid μ Receptors 
for Smoking Cessation
Xiu Liu

Abstract

Opioid neurotransmission plays a role in rewarding process including the 
reinforcing actions of nicotine. In the past four decades, a great effort has been 
exercised to test the effectiveness of nonselective opioid antagonists (mainly 
naloxone and naltrexone) for smoking cessation. However, both clinical and 
animal researches have yielded equivocal results. That may be attributable to the 
fact that opioid receptors have three distinctive subtypes (μ, δ, and κ), functions 
of which are from complimentary to opposite. Our laboratory studies have used 
animal models of nicotine self-administration to examine involvement of indi-
vidual opioid receptor subtypes in the reinforcement of nicotine. Specifically, rats 
were trained in daily 1-h sessions to press a lever to intravenously self-administer 
nicotine, and antagonists selective for the three subtypes of opioid receptors were 
administered prior to the test sessions. Results showed that selective blockade 
of the μ, but not δ or κ, opioid receptors effectively reduced nicotine self-
administration, whereas it produced no effect on food self-administration. These 
results indicate that activation of the opioid μ, but not δ or κ, receptors is specifi-
cally involved in nicotine reinforcement. It is suggested that opioid μ receptor-
mediated neurotransmission would be a promising target for developing smoking 
cessation medication.

Keywords: nicotine self-administration, opioid receptors, smoking cessation

1. Introduction

Tobacco-related diseases are a major problem in many perspectives from 
human health to social economics [1]. For example, in the United States, tobacco 
smoking becomes a leading cause of death, accounting for the loss of 480,000 
lives each year. Alarmingly, every day more than 3200 youth aged 18 years or 
younger smoke their first cigarette, and 2100 young people become daily cigarette 
smokers. The prevalence rates of smoking are 7.2% in middle and 20.2% in high 
school, accounting for a total young smokers being about 4 million [2]. Although 
almost all smokers want to quit smoking and make attempts, up to 97% of them 
relapse to tobacco smoking [3–6]. Unfortunately, the currently available medica-
tions, i.e., nicotine replacement, bupropion, and varenicline, show low clinical 
effectiveness [7–11].

Opioid neurotransmission has been implicated in mediating rewarding actions 
and dependence of drugs of abuse including nicotine [12–16]. For instance, nicotine 
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administration has been found to increase expression and release of opioid peptides 
in mesolimbic regions [17–22]. Opioid receptor antagonists have been reported to 
decrease nicotine-induced dopamine release in the nucleus accumbens, an impor-
tant terminal region of the mesolimbic dopamine circuitry [23], reduce nicotine 
reward [24, 25], and precipitate withdrawal symptoms in rats treated chronically 
with nicotine [26].

Over the past four decades or so, however, clinical effort to test the potential 
of opioid antagonists (mainly naloxone and naltrexone) for smoking cessation 
has yielded equivocal results: some trials reported that these antagonists reduced 
consumption of cigarettes, while others failed to find any benefit [27–37]. Similarly, 
laboratory animal research has also produced mixed findings. In our own studies, 
neither acute nor chronic pretreatment with naltrexone across seven daily nicotine 
self-administration test sessions altered nicotine intake in the rats trained to steadily 
self-administer nicotine [38]. That is consistent with previous reports showing that 
naloxone and naltrexone did not produce an effect on nicotine self-administration 
[39, 40]. However, intracranial manipulation studies have found that a μ-opioid 
agonist, DAMGO, microinjected into the ventral tegmental area [41] or the pedun-
culopontine tegmental nucleus [42] effectively reduced nicotine self-administration 
in rats. Studies using knockout mice showed that deletion of the μ-opioid receptors 
or their endogenous ligand β-endorphin resulted in decreased rewarding properties 
of nicotine as measured by the conditioned place preference paradigm [43, 44]. 
Moreover, a recent rat study reported that naloxone reduced nicotine self-adminis-
tration [45].

These inconsistent results in both clinical and animal research may be 
attributable to the existence of different subtypes of the opioid receptors. There 
are three main subtypes of the opioid receptors: μ, δ, and κ [46–48]. These 
receptors have quite divergent and in some cases even opposite actions. In the 
drug rewarding processes, for instance, activation of the μ and κ receptors may 
have opposite actions with the κ receptors opposing rewarding actions and/or 
enhancing aversive effects of drugs [49–52]. In knockout mice, animals defi-
cient in μ receptors showed decreased level of anxiety, whereas the δ receptor 
knockout mice had higher anxiety [53], suggesting these two subtypes have an 
opposite role in regulating anxiety states. In the tests measuring the anxiety 
states induced by nicotine, the μ and δ receptor antagonism produced opposite 
effects, whereas the κ receptor antagonist showed no effect [54]. Therefore, due 
to their broad spectrum of actions, the nonselective receptor antagonists such 
as naloxone and naltrexone can block different opioid receptors, and unfortu-
nately the effects of blocking individual types of receptors might have offset 
one another.

2. Research purposes

In light of the facts that nonselective antagonism of opioid receptors produced 
inconclusive results for smoking cessation, that three subtypes of opioid receptors 
exist with distinct and even opposing functions, and that effects of antagonizing 
these individual receptor subtypes have received little experimental attention, it is 
imperative to elucidate the involvement of the opioid receptor subtypes in mediat-
ing nicotine reinforcement. Thus, our laboratory used animal models of tobacco 
smoking and the currently available antagonists that are highly selective for the 
different subtypes of the opioid receptors to examine the roles of the μ, δ, and κ 
receptors in nicotine consumption behavior [55].
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3. Experimental procedures

Male Sprague-Dawley rats (n = 26) were trained in daily 1-h sessions to intrave-
nously self-administer nicotine (0.03 mg/kg/infusion, free base) after implantation 
of an indwelling intravenous catheter under isoflurane anesthesia. In each session, 
animals were placed in the standard operant conditioning chambers and connected 
to the drug delivery system. The sessions were initiated by introduction of two 
levers. Once responses on the active lever met a fixed-ratio 5 requirement, an infu-
sion of nicotine was dispensed with a presentation of an auditory/visual stimulus 
consisting of a 5 s tone and 20 s turn-on of the lever light. All rats received 25 daily 
self-administration training sessions before any pharmacological tests because our 
work showed that rats readily developed stable nicotine self-administration behav-
ior within 25 sessions [56].

4. Main research findings

Blockade of the μ opioid receptors by a selective antagonist naloxonazine 
dose-dependently reduced lever-press responses and correspondingly the number 
of nicotine infusions rats willingly self-administered. However, naloxonazine did 
not alter food self-administering responses, which was tested in the same set of rats 
that were retrained for food self-administration after completion of nicotine test. In 
contrast, neither did blockade of the δ receptors via administration of the selec-
tive antagonist naltrindole nor the κ-selective antagonist 5′-guanidinonaltrindole 
(GNTI) change nicotine self-administration behavior (Figure 1).

5. Discussion

The significant finding is that naloxonazine produced a specific suppressant 
effect on the lever-press responses maintained by nicotine self-administration, i.e., 

Figure 1. 
Effects of antagonists selective for μ (naloxonazine), δ (naltrindole), and κ (GNTI) receptors on nicotine 
self-administration in rats. The doses of these antagonists are in mg/kg. Nicotine self-administration data are 
expressed as mean (±SEM). *p < 0.05, **P < 0.01 significant difference from respective 0 (vehicle) condition.
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the primary reinforcement of nicotine. Given that naloxonazine did not change 
food self-administering responses, indicating no nonspecific interference with 
operant behavior directed to get natural reward, the results indicate the critical 
involvement of opioid neurotransmission via the μ receptors in the nicotine reward-
ing process. The underlying mechanism may involve the μ modulation of dopamine 
neurons in the mesolimbic circuitry, which mediates the rewarding properties of 
drug of abuse including nicotine. For example, in the ventral tegmental area, opioid 
peptides modulate dopamine neurotransmission predominantly via activation of 
the μ receptors [23], and in the nucleus accumbens, μ agonist inhibited dopamine 
overflow, and this effect was reversed by naloxonazine [57]. The suppressant effect 
of naloxonazine on nicotine intake is in line with previous research suggesting a role 
of the μ receptors in mediating the reinforcement of nicotine and tobacco smoking 
[27, 31, 35, 43–45]. Of significance is that our results further pinpoint the μ subtype 
of the opioid receptors in mediating reinforcement of nicotine. Therefore, these 
findings lend support for the continued clinical effort to test the effectiveness of 
opioid antagonists for smoking cessation and further instructively suggest that the 
effort focus should be shifted to targeting at the μ receptors.

The finding that naltrindole produced no effect on nicotine intake indicates 
that opioid neurotransmission via the δ receptors may not mediate the reinforc-
ing actions of nicotine as measured by the operant nicotine self-administration 
paradigm. It is in line with evidence showing that this agent produced no change 
in nicotine-induced sensitization [58] and consistent with another report showing 
unaltered nicotine intake after naltrindole pretreatment using similar nicotine self-
administration procedures [45]. However, these negative results seem to be at odds 
with a previous study using knockout mice that were deficient of preproenkephalin 
gene (producing enkephalin, the endogenous agonist for the δ receptors). These 
knockout mice showed a significant decrease in nicotine-induced conditioned 
place preference, indicating a reduction of the rewarding effects of nicotine [59]. 
This discrepancy regarding involvement of the δ receptors in nicotine reward may 
be attributable to the significant differences in subjects (rats versus gene knockout 
mice) and the methods of measuring nicotine reward (self-administration versus 
conditioned place preference). Besides, it is interesting to note the evidence show-
ing that the δ receptors have been implicated in other actions of nicotine. For 
instance, the δ receptor antagonists were reported to change nicotine-induced 
antinociception [60] and anxiogenic response [54]. Nevertheless, an alternative 
explanation of the knockout mouse data exists. Due to the fact that in addition to 
preferentially activating the δ receptors enkephalin also acts at the μ receptors [61], 
it is argued that the reduced rewarding actions of nicotine in these knockout mice 
may result at least to some extent from the diminished μ receptor activities. Thus, 
the results obtained from these knockout mice in fact reconcile with the suppression 
of nicotine self-administration by naloxonazine observed in our study.

There was no effect of κ-selective antagonist 5′-guanidinonaltrindole (GNTI) 
on nicotine self-administration. This finding is consistent with results obtained 
from gene knockout mice. In the mice deficient of prodynorphin genes, which 
produce dynorphin, the endogenous agonist for k receptors, the conditioned place 
preference induced by nicotine (and ethanol and cocaine as well) was comparable 
to that observed in their wild-type counterparts [51, 62, 63]. In another report [45], 
however, the elevated activation of the κ receptors by experimenter administered 
agonist seemed to interfere with operant behavior for nicotine intake. In that study 
[45], the selective κ receptor agonist U50,488 changed nicotine self-administering 
behavior in opposing directions depending on the doses administered. An increase 
of nicotine self-administration was observed after pretreatment with a low dose 
of 0.3 mg/kg, whereas rats decreased their nicotine self-administration after 
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administration of higher doses (1 and 3 mg/kg). It should be noted that U50,488 
was found to produce “abnormal” behaviors (such as biting the edge of behavioral 
testing arena) at doses above 0.9 mg/kg [64] and that the κ agonists may bind to 
other opioid receptors and thereby to produce opposing actions [65]. Furthermore, 
it is interesting to note that activation of the κ receptors may play a role in the 
increased drug self-administration in drug-dependent but not non-dependent 
subjects [66, 67]. For instance, nor-BNI (a κ receptor antagonist) has been found to 
effectively reduce the escalated cocaine self-administration in rats with a prolonged 
access to cocaine and the increased ethanol intake in rats that became ethanol 
dependent by an ethanol vapor inhalation procedure [67, 68].

6. Conclusions

These research results demonstrate that nicotine self-administration behavior 
is sensitive to pharmacological antagonism of the μ, but not the δ or the κ, opioid 
receptors. Together with the evidence showing that nicotine administration 
enhances release of the endogenous μ receptor ligand endorphin [19, 69–71], these 
data indicate a critical role of opioid neurotransmission via the μ receptors in the 
rewarding properties of nicotine. On one hand, these results help understand  
the inconsistent outcomes obtained from bot clinical trials and animal tests using 
the nonselective antagonists naloxone and naltrexone. On the other hand, the find-
ings suggest that focusing on manipulation of the μ receptor-mediated pathways 
within the opioid system might prove to be a fruitful strategy for the development 
of medication for nicotine addiction and smoking cessation.
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