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Chapter

Multimodal Biometrics for Person
Authentication
Ryszard S. Choras

Abstract

Unimodal biometric systems have limited effectiveness in identifying people,
mainly due to their susceptibility to changes in individual biometric features and
presentation attacks. The identification of people using multimodal biometric sys-
tems attracts the attention of researchers due to their advantages, such as greater
recognition efficiency and greater security compared to the unimodal biometric
system. To break into the biometric multimodal system, the intruder would have to
break into more than one unimodal biometric system. In multimodal biometric
systems: The availability of many features means that the multimodal system
becomes more reliable. A multimodal biometric system increases security and
ensures confidentiality of user data. A multimodal biometric system realizes the
merger of decisions taken under individual modalities. If one of the modalities is
eliminated, the system can still ensure security, using the remaining. Multimodal
systems provide information on the “liveness” of the sample being introduced.
In a multimodal system, a fusion of feature vectors and/or decisions developed by
each subsystem is carried out, and then the final decision on identification is made
on the basis of the vector of features thus obtained. In this chapter, we consider a
multimodal biometric system that uses three modalities: dorsal vein, palm print,
and periocular.

Keywords: feature transform, multimodal biometric recognition, levels of fusion,
dorsal vein, periocular, palm print, PCA

1. Introduction

Biometrics is a technology that uses physical and/or behavioral characteristics of
people to identify them. Systems of this type implement two processes (Figure 1) [1]:

i. Enrollment

ii. Authentication

The physical features are fingerprints, hand geometry, handprint, facial image,
iris, retina, and ear. Behavioral features are signature, lip motion, speech, dynamics
of typing, hand movements, and gait.

The characteristics of effective biometrics are:

1. Unique features for each individual
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2. Invariant traits over time (e.g., due to the effect of aging)

3. Features that are relatively easy to obtain (computational complexity small)

4.Precise algorithms enabling classification

5. Resistance to various types of attacks

6.Low cost

7. Ease of implementation

The security of the biometric system is usually assessed on the basis of some
indicators. These are:

• False match rate (FMR). It belongs to the group of matching errors. This
indicator is defined as the expected probability that the downloaded sample
will be falsely matched to the template in the database, but it will not be the
test user pattern. If the indicator is high, it means that there is a risk that an
unauthorized person will be recognized as a system user.

• False rejection (FRR) is equivalent to the FMR. The difference between these
indicators is that FMR refers to a single match, and the FRR refers to a situation
where one or more attempts to match a sample to a template from the database
may occur. The FRR error is referred to in the literature as type I error.

• False discrepancy (FNMR). This is the coefficient determining the probability
that the sample taken will not be matched to the pattern in the database
belonging to the user from whom the sample was taken. In biometric
verification (1:1) systems, the indicator means that the sample has not been
identified by a specific pattern, while in biometric identification systems (1:N),
this indicator determines the probability that a given pattern will not be found
in the database.

• The false acceptance factor (FAR) is equivalent to the FNMR indicator. The
difference between him and FNMR is the same as between FRR and FMR.

• Equal error rate (EER). It is defined as the intersection of the FAR and FRR
characteristics in the graph of the dependence of these errors on the threshold

Figure 1.
Biometric recognition system.
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of sensitivity (t). This factor indicates the optimal sensitivity threshold at
which the same number of people is incorrectly rejected and incorrectly
accepted. The lower the EER error value, the better the biometric system is.

The FMR (FRR) and FNMR (FAR) parameters can also be represented by
graphs (Figure 2):

• Receiver operating characteristic (ROC) curve showing the dependence of
FNMR on FMR. You can use it to show the accuracy of the system.

Figure 2.
The graph of FAR, FRR, and EER in receiver operating characteristic (ROC) curve.

Name Description

Distortion of the input

biometric data

Distorted biometric data may prevent the correct alignment process with

database templates, as a result of which users are incorrectly rejected or

identified

Intra class variations Biometric data obtained from the person during authentication may differ

from the data used to generate the template during registration, thus

affecting the matching process. The biometric template should have a small

intra-class variance

Interclass similarities Biometric features should be significantly different for different people and

should ensure small similarities between classes in the feature space. There

is an upper limit to the users who can be effectively distinguished by any

biometric system. The capacity of the identification system cannot be

arbitrarily increased for fixed sets of feature vectors and the matching

algorithm. The biometric template should have large interclass variations

Non-universality Obtaining accurate (useful) biometric data from the users is not always

possible

Intruder attacks Attacks of this type involve the manipulation of biometric features to avoid

recognition. It is also possible to create artificial biometric patterns in order

to accept the identity of another person

Table 1.
Limitations of unimodal biometrics.
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• Detection error trade-off (DET) showing error rates on both axes, most often
on a logarithmic scale. This curve is plotted for both matching errors and
decisions (Figure 2).

If we use only one biometric authentication system, the results obtained are not
always good enough. Unimodal biometric systems using a single sensor have many
limitations, such as lack of uniqueness, universality, and lack of interference level
associated with the acquired data, as a result of which they are unable to provide the
required level of identification/verification efficiency (Table 1). This is due to the
fact that the reliability of the biometric modality applied is affected by the precision
of a single biometric system (Table 2).

2. Multi-biometric systems

2.1 Types of multi-biometric systems

The multi-biometric system can be (Figure 3) (a) a multi-sensor system that
allows obtaining data from various sensors using one biometric feature, (b) a
system with multiple algorithms processing a single biometric feature, (c) a system
consolidating multiple occurrences of the same body trait, (d) a system using

Name Description

Recognition

accuracy

The multi-biometric system ensures greater accuracy and reliability thanks to

many independent biometric features that are difficult to attack

Continuous

monitoring

In case when one biometric modality is obstructed, other modalities of the multi-

biometric system ensure correct user identification

Privacy Multi-biometric systems provide greater resistance to certain types of loopholes

and attacks. It is difficult and/or impossible to steal many biometric patterns

(templates) stored in the biometric database

Biometric data

enrollment

When biometric input data is unavailable or unacceptable by a biometric system,

another biometric system modality may be used

Resistance on spoof

attacks

Usually the attacker is not able to use many relevant (accurate) spoofed

biometrics

Table 2.
Advantages of multi-biometric systems.

Figure 3.
Types of multi-biometric systems.
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multiple templates of the same biometric method obtained with the help of a single
sensor, and (e) a multimodal system combining information about the biometric
features of the individual to establish his identity [2–4].

2.2 Fusion levels

In multimodal biometric systems, there are a number of strategies (scenarios)
for the fusion of biometric information:

• Data fusion from sensors. Data from various sensors form one vector. Fusion of
information obtained from many different sensors for a single biometric
feature.

• The fusion of feature vectors extracted from various biometric modalities for
further processing. A merger of information obtained from several unimodal
biometric systems that process different body characteristics of the same
person (Figure 4a).

• Fusion at the decision level. The merger of decisions developed on the basis of
information from different biometric modalities, and the resultant feature
vector defines two main classes, i.e., rejection or acceptance (Figure 4b).

Figure 4.
Levels of fusion. (a) Feature level fusion and (b) score/rank level fusion.
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• Rank level fusion. The classifier determines the rank of each registered
biometric identity. A high position is a good indicator of a good fit (Figure 4b).

2.3 Related work

The fusion of biometrics modalities on different levels of multi-biometrics
system is extensively studied in the literature (Table 3). For all that the merger at
the level of feature vectors is relatively poorly discussed. The merger at this level
includes the integration of feature vectors corresponding to many sources of infor-
mation. Because the feature vectors contain more elements than the input biometric
data, it is obvious that the merger at the feature vectors level will provide better

Biometrics traits Fusion

methods

Description of the implementation method References

Fingerprint and

face

Feature In [5], it was proposed to extract face and fingerprint

characteristics invariant to the rotation and scaling of

Zernike moments (ZM). On the basis of ZM, the fusion

of facial features and fingerprints is realized. The RBF

network implements the decision-making process. The

accuracy rate is 96.55%. Testing result of authentication

rate are FAR, 4.95%, and FRR, 1.12%

[5]

Score In [6], authors presented score level fusion technique

using the SIFT features for the face and the minutiae

features for fingerprint. Results are: FAR = 1.98%,

FRR = 3.18%, and accuracy = 97.41

[6]

Fingerprint,

finger knuckle

print,

finger vein

Finger shape

Feature The multi-set canonical correlation analysis is used to

fuse multiple feature sets. The feature based on MCCA

achieves the recognition performance, with

EER = 2.3900e-04

[1]

With the help of the unified Gabor filter, fingerprint

codes and finger vein codes are generated. The

extraction of features is carried out by using a supervised

local canonical correlation analysis (SLPCCA), and

finally the NN-classifier is used

[7]

Fingerprint and iris Score In [8], authors propose a frequency approach to generate

a unified homogeneous template for fingerprint and iris

features. Scores generated from these templates are

fused using the sum rule

[8]

Palm print and

hand shape

Feature Information from the face image and gait image are

combined at the function level. Using the principal

component analysis (PCA) method, facial features were

obtained The result of multiple discrimination analysis

(MDA) is gait energy image (GEI) Recognition rate

results are 91.3%

[9]

Palm print and iris Feature In system described in [10], texture parameters are

extracted based on Gabor filters.

[10]

Fusion of the palm print features and iris features is

based on the wavelets. Decision is obtained using kNN

classifier. Recognition accuracy is 99.2% and FRR = 1.6%

In [11], fusion method for the information of phases

about the iris and palm utilizes a Baud limited image

product (BLIP)

[11]

Finger knuckle and

palm print

Feature In this paper, feature extraction method for palm print is

monogenic binary coding; for inner knuckle print

recognition, two algorithms named ridgelet transform

[12]
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authentication results. However, mergers at this level are difficult to implement in
practice because (i) sets of features of many modalities may be incompatible,
(ii) the combination of two feature vectors may result in a vector of features with
very large dimensionality, and (iii) a complex comparing system is required.

3. The proposed multi-biometric system

The multi-biometric system (dorsal vein + periocular + palm print) is presented
in Figure 5.

In our proposed method, the first is preprocessing block including noise elimi-
nation, ROI detection and normalization, and contrast normalization. For all three

Biometrics traits Fusion

methods

Description of the implementation method References

and SIFT are proposed. The extracted feature vectors are

classified using SVM

Palm print and face Feature The PCA is used to extract features of palm and face

images. Fusion technique concatenated the feature

vectors of the face and palm modalities into one fused

vector, and feature selection is performed.

[13]

Face and gait Feature Method is based on learning face and gait features in

image transform spaces. Two methods are considered—

PCA and LDA

[14]

Face and iris Score Multi-biometrics system using dual iris, visible and

thermal face traits is considered. 1D Log-Gabor and

Complex Gabor Jet Descriptor (CGJD) were used to

extract feature vectors. Authors proposed a score level

fusion algorithm

[15]

The ordinal measures and local binary pattern (LBP)

methods are proposed to extract features from iris and

face regions, respectively

[16]

Feature Paper [17] presents the extractions of iris features based

on 2D Gabor and facial features using the PCA method

[17]

Face and hand

geometry

Feature The 2D DCT is used to extract discriminant face features

which are concatenated with hand geometric features.

The resultant feature vector is classified using SVM

[18]

Face and ear Scores To match score level, fusion is proposed in [19]. Authors

use Dempster-Shafer decision theory for each modality.

Recognition rate is 95.53% with 4.47% EER

[19]

Ocular—iris and

conjunctival

vascular

Score In [4], authors presented fusion of both iris and

conjunctival vascular information. A weighted fusion

method is proposed for each modality. The fusion

resulted in an EER of 2.83%

[4]

Face, ear, and

signature

Rank In [20], the PCA and Fisher’s linear discriminant (FLD)

methods in the face, ear, and signature, multimodal

biometrics system is proposed. Local features are

extracted from face, ear, and signature data. Features are

matched using Euclidean distance. This system is using

rank level fusion

[20]

Table 3.
Summary of works on multimodal biometric systems.
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modalities, noise elimination for an image f x; yð Þ is performed using median filter-
ing (2D MF) operation formulated as [21]:

f̂ x; yð Þ ¼ medianA1 f x; yð Þ ¼ median f xþ r; yþ sð Þ½ � (1)

where A1is the MF window.
Next step in preprocessing phase is ROI detection and normalization (Figure 6).

This operation is quite different for dorsal vein images, palm print images, and
periocular images. For dorsal vein images, we use distance transform to detect the
dorsal image center and build square ROI based on this center coordinates [22, 23].
The ROI design for palm print images is based on hand-specific points (finger
valleys) and two angles [24]. The periocular region is detected based on the center

Figure 5.
Considered multi-biometric system architecture.
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of the iris. Using the conventional algorithm for detecting the iris, we determine the
center of the iris and its diameter. The periocular area is a rectangle centered in the
iris center [25, 26].

After the ROI detection, we perform image size normalization and apply the
contrast normalization by using CLAHE algorithm. The image is divided into non-
overlapping areas of equal size, and the histograms of each region are calculated.
Next, the cutoff threshold for histograms is obtained, and each histogram is
processed in such a way that its height does not exceed the cutoff threshold [21].

The sample input images after normalization operations and operations using
the CLAHE algorithm are shown in Figure 7. Next processing blocks include feature
extraction, feature selection, fusion, and classification.

3.1 Gabor feature extraction

In biologically inspired vision models, receptor fields exist that are the primary
aspect of early visual processing in mammalian vision systems. Gabor functions are
widely used in image feature analysis because they are similar to receptive field
profiles in mammalian cortical simple cells. These fields are modeled using Gabor
filters [27].

Imitation of mammalian vision systems (or some of them) in object recognition
systems leads to their increased efficiency and plausibility. Object recognition sys-
tems that are inspired by the biological approach use filter banks, in particular
Gabor filters (Figure 8) [28–32].

The 2D Gabor filter family can be represented as expressed in Eq. (2):

Gabω,θ x; yð Þ ¼
1

2πσxσy
Gθ x; yð ÞSω,θ x; yð Þ (2)

where Gθ x; yð Þ ¼ e
�

xcosθþysinθð Þ2

2σ2x
þ

�sinθþycosθð Þ2

2σ2y

� �

and Sω,θ x; yð Þ ¼ ei ωxcosθþωysinθð Þ � e�
ω2σ2

2 .

Figure 6.
ROI area for dorsal vein images (a), palm print images (b), and periocular images (c).

Figure 7.
Images after normalization (size 150 � 150 pixels) and after applying the CLAHE algorithm.
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The Gabω,θ x; yð Þ can be decomposed into a real R Gabω,θ x; yð Þf g ¼
1

2πσ2 Gθ x; yð ÞR Sω,θ x; yð Þf g and an imaginary.

I Gabω,θ x; yð Þf g ¼ 1
2πσ2 Gθ x; yð ÞI Sω,θ x; yð Þf g parts (for σx ¼ σy ¼ σÞ.

Gabor response images are obtained by convolution operation of multiscale and
multi-orientation Gabor filters Gabω,θ x; yð Þ with the image f (x, y).

Gω,θ x; yð Þ ¼ f x; yð Þ ∗Gabω,θ x; yð Þ ¼ Magω,θ x; yð Þei Phω,θ x;yð Þ (3)

Magω,θ x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R Gabω,θ x; yð Þf g2 þ I Gabω,θ x; yð Þf g2
q

,

Phω,θ x; yð Þ ¼ arctan
I Gabω,θ x; yð Þf g

R Gabω,θ x; yð Þf g
,

where and ∗ is the convolution operator.
The Gabor filter responses for palm print image and dorsal vein image are shown

in Figures 9 and 10, respectively.

3.2 Periocular feature extraction by LBP

The periocular area contains the iris, eyes, eyelids, eyelashes, and partially
eyebrows. The LBP method can be used to describe the texture of the periocular

Figure 8.
2D functions and 2D Gabor filter.

Figure 9.
Imaginary part of the Gabor filter responses of a palm print image.
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area, and the feature vectors contain LBP features. The operator of local binary
patterns (LBP) was proposed by Ojala [33] as a texture descriptor.

LBP divides the image into non-overlapping blocks of the same size. Local image
features are calculated for each block separately. For a set of pixels belonging to a
given block, the LBP values are calculated and then a histogram is created. The
feature vectors (histograms) of each block are combined to form a global vector of
features of the entire image.

LBP analyzes the local neighborhood consisting of gp points located on a circle

with radius R and surrounding the center point of gc and checks whether the points
of gp are greater or lesser than the gc point value.

The LBP value of thegc point is specified as follows:

LBPP,R ¼ ∑
P�1

p¼0
S gp � gc

� �

2p (4)

where gp and gc are the luminance values of the neighborhood and center point,

respectively.
The idea of this operator is presented in Figure 11.
For an image size M�N, the image descriptor is a histogram created from the

LBP values:

Figure 10.
Imaginary part of the Gabor filter responses of a dorsal vein image.

Figure 11.
The basic idea of LBP approach.
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H kð Þ ¼ ∑
M

i¼1
∑
N

j¼1
f LBPP,R i; jð Þ; kð Þ; k∈ 0;K½ � (5)

f x; y
� �

¼
1, x ¼ y

0, otherwise

	

where k is one LBP pattern and K is the maximal LBP pattern value (number bin
of the histogram).

Using the LBP operator, we obtain 2P different output values corresponding to

2P different binary patterns created by P of neighboring pixels. Certain binary
patterns contain more information than others, so we can only consider this subset
of LBP values. Patterns of this subset are called uniform patterns. So we have a

standard LBPP,R operator and an LBPu2
P,R operator.

Typically image is divided into n blocks and histograms of each block are con-
catenate into feature vector [34].

In the case LBPP,R operator, the histogram contains 256 bins. In the case

of LBPu2
P,R operator, the histogram contains 59 bins (Figures 12 and 13).

4. Feature reduction and data fusion

The multi-biometric system has been tested using certain parts of the following
databases: PolyU palmprint [24], IIITD periocular database [25], and Bosphorus

Figure 12.
The original image (a) and image as a result of the LBP operator (b).

Figure 13.
The LBPP,R histogram (a), histograms of the n blocks (b), and the LBPu2

P,R histogram (c).
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hand vein database [35]. We choose 20 subjects with 10 images per subject at
random. From 10 images, 5 images are used for training and 5 for the testing.

The combination of feature vectors at this level is difficult to achieve in practice
due to the combination of certain fundamentally different feature vectors that can
result in a resulting vector of features with very large dimensionality. In a merger at
the level of feature vectors, each individual modality process generates a feature
vector. The fusion process combines these feature vectors into one vector.

For dorsal vein images and for palm print images, we perform the same image
processing operations that the feature vectors have the same sizes. As a result of
convolution operation of multiscale and multi-orientation Gabor filters with the
input image, we get the Gabor response images. The feature vector has a very large
size of (M x N x k x l)whereM x N is the image size, k is the number of scales, and l
is the number of orientations. In our case, for both dorsal vein images and palm
print images, we get a feature vector containing (150 � 150 � 3 � 6) = 405,000
items. The images subjected to the Gabor filtration are rescaled with a scale factor of
0.1, which allows obtaining a vector of features with a size of 1 � 4050 elements.

For periocular images, the feature vector has a size of 36 � 59 = 2124.
Next we reduce dimensionality of these vectors used in PCA method (Figure 14

and Table 4) [5]. Separated features are normalized using zero mean and unit
variance as

Figure 14.
Steps to image processing using PCA.

PCA algorithm

Organizing the training set of images

T ¼ G1;G2;⋯;Gq


 �

where q is the number of images in the training set

Calculating the average of the set T

Ψ ¼ 1
q∑

q
1Gq

Calculating

Φi ¼ Gi–Ψ

Calculating the covariance matrix C

C ¼ 1
q∑

q
1ΦiΦ

t
i ¼ AAt

The eigenvectors and corresponding eigenvalues are computed

C vi ¼ λivii ¼ 1,⋯, q

The eigenvectors and their corresponding eigenvalues are paired and ordered from high to low.

Approximated image is calculated as

G ¼ vwþ Ψ

for v ¼ v1; v2;⋯; vkð Þ

Table 4.
PCA algorithm.
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f i ¼
f i � μi

σi
(6)

where μi and σi are the mean value and standard deviation of the i-th feature, f i
is the normalized i-th feature vector.

Table 5 shows the recognition performance depending on the number of
selected eigenvectors.

5. Conclusion

In this chapter, Gabor’s functions and LBP features are proposed for recognition
in a multi-biometric system that uses three modalities: dorsal vein, periocular, and
palm print. Using PCA method dimensionality feature vectors from these modality
are reduced. Feature vectors are normalized and fused using concatenation opera-
tion. Based on the results, we suggest that multi-biometric system using the fusion
of dorsal vein, periocular, and palm print images can offer recognition rate which
the unimodal biometric system cannot.
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Modality Number of the eigenvectors

k = 40 k = 60 k = 80 k = 100

Dorsal vein 88 89.3 91.4 92.6

Palm print 88.7 89.3 90.6 92.8

Periocular 86 86.8 89 89.2

Dorsal vein + palm print 90.3 91.1 92.3 93.1

Dorsal vein + periocular 91.1 92 92.4 92.8

Palm print + periocular 90.7 91.4 91.8 92.1

Dorsal vein + periocular + palm print 93.2 94 94.5 95.3

Table 5.
Recognition rates [%] for different modality.
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