We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Combined Deep Learning and
Traditional NLP Approaches for
Fire Burst Detection Based on
Twitter Posts

Konstantinos-George Thanos, Andrianna Polydouri,
Antonios Danelakis, Dimitris Kyriazanos
and Stelios C.A. Thomopoulos

Abstract

The current chapter introduces a procedure that aims at determining regions
that are on fire, based on Twitter posts, as soon as possible. The proposed scheme
utilizes a deep learning approach for analyzing the text of Twitter posts announcing
fire bursts. Deep learning is becoming very popular within different text applica-
tions involving text generalization, text summarization, and extracting text infor-
mation. A deep learning network is to be trained so as to distinguish valid Twitter
fire-announcing posts from junk posts. Next, the posts labeled as valid by the
network have undergone traditional NLP-based information extraction where the
initial unstructured text is converted into a structured one, from which potential
location and timestamp of the incident for further exploitation are derived. Analytic
processing is then implemented in order to output aggregated reports which are
used to finally detect potential geographical areas that are probably threatened by
tire. So far, the part that has been implemented is the traditional NLP-based and has
already derived promising results under real-world conditions’ testing. The deep
learning enrichment is to be implemented and expected to build upon the perfor-
mance of the existing architecture and further improve it.

Keywords: deep learning, NLP procedure, fire burst detection, twitter posts,
valid posts

1. Introduction

Due to their cost and easy access, social media and Twitter, among them, are
widely used as sources of news and means of information spreading. Among others,
fire bursts are such breaking news that can be initially made known through Twitter
posts.

Mega fires often result in significant environmental destructions, major damages
on infrastructures, and economic loss. Most importantly, they put at stake the lives,
not only of the civilians but also of the forest fire personnel. Thus, technologies that
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facilitate early fire detection are important for reducing fires and their negative
effects.

Our approach proposes the combination of a deep learning architecture along
with a more traditional natural language processing (NLP) one. The deep learning
component of the system is responsible for filtering out the fake from the valid fire-
related posts, so that only posts containing true fire-related information are
retained. For this part of the system, we refer to current state-of-the-art systems for
detecting fake news and adopt the one that suits the needs of our problem best.
Once the fake posts are filtered out, each valid post is afterward fed into the NLP-
based subsystem. By converting the unstructured, raw text into a structured one,
the NLP-based subsystem is able to extract information, such as the geographical
area of the fire reported in the post. In order to draw final conclusions about the
possible fire sources, aggregation statistics over the posts containing similar fire-
related information are computed, and probability values for each potential fire
source are given as output.

The rest of the chapter is organized as follows: Section 2 describes and analyzes
the deep learning-based architecture to be utilized for detecting valid Twitter posts
regarding fire bursts. Section 3 illustrates the typical NLP-based architecture for
extracting meaningful information from the unstructured text of a valid Twitter
post. Section 4 presents the overall scheme and its final output. Finally, before the
conclusions, Section 5 highlights the results of the up-to-date validated part of the
overall proposed scheme.

2. Deep learning-based architecture for false Twitter post detection
2.1 Introduction

Social media are low-cost and easy-to-access means of information sharing and,
thus, nowadays are widely used as source of news and information. However,
getting informed from social media is not always safe, as posts expressing fake news
(i.e., news containing false information) are exponentially widespread, simulta-
neous to the boosting development of online social networks. In fact, fake news
tends to outperform the valid ones in the near future [1].

In case of fire burst news, deciding whether a Twitter post is fake or not can be
proven of crucial twofold importance. On the one hand, the required time and
money for purposeless activation of the firefighting mechanisms are saved. On the
other hand, timely confrontation of mega fires is facilitated. This will, in turn, make
it less likely for human lives, the environment, and infrastructures to be jeopar-
dized.

Thus, before extracting the crucial fire burst information at a later NLP-based
stage, a preprocessing step, deciding whether a Twitter post that declares a fire
burst is fake or not, is necessary. To this end, a deep learning-based architecture is
to be implemented. The purpose of this architecture is to filter out the posts that will
be characterized as “fake” and provide the sequential NLP procedure only with the
“valid” posts.

2.2 Candidate deep learning architectures

In this subsection, the candidate state-of-the-art deep learning architectures for
the detection of fake posts are described. The purpose of the subsection is to
illustrate the most recent and modern approaches that have appeared from 2017
onward and have been examined. The input data, used by all architectures, is the
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text provided by social media posts, especially focused on Twitter. The output is the
decision whether the input text corresponds to a “valid” or “fake” post.

The 3HAN architecture [2] utilizes a three-level hierarchical attention
network. Each of the three levels corresponds to words, sentences, and headline
analysis. The three-edge analysis results in the construction of a news vector which
represents the input post. The latter vector is used for classifying the reliability
of the post.

The architecture presented in [3], namely, ConvNet, uses a convolutional layer
to capture the dependency between the text and its metadata. For the case of the
metadata, a standard max pooling and a bidirectional Long Short-Term Memory
(LSTM) auto-encoder layer follow. For the case of the text, only a max-pooling
layer is implemented. Finally, the max-pooled text representations are concatenated
with the metadata representation from the bidirectional LSTM. The merged con-
catenations are fed to a fully connected layer with a softmax activation function.
This generates the final prediction.

The work in [4] presents the FakeNewsTracker architecture. This is a deep
learning architecture which is divided into two sub-schemes. The first sub-scheme
uses an LSTM deep network [5] in order for the system to be trained on the post
representation context. The second sub-scheme utilizes a recursive neural network
(RNN) in order to be trained on the context of social engagements. The output
features of the aforementioned sub-schemes are fused together to perform a binary
classification procedure which labels the input news as “fake” or “valid.”

The DeClarE architecture [6] is based on bidirectional LSTMs in order to result
in a credibility score related to the input post. The scheme also considers post source
and claims information, which is processed within the bidirectional LSTM dense
layers. The concatenated output is also processed by two dense layers and a softmax
layer before the prediction of the credibility score.

The work in [7] introduces a hybrid architecture approach which combines an
LSTM and a convolutional neural network (CNN) model. Throughout this chapter,
the aforementioned architecture will be called Hybrid LSTM-CNN. The LSTM was
adopted for the sequence classification of the data. The 1D CNN was added imme-
diately after the word embedding layer of the LSTM model. A max-pooling layer is
also recruited to reduce dimensionality of the input layer, thus avoiding training
over-fitting of the training data. This also helps in reducing the resources for the
training of the model.

The FakeDetector architecture [8] relates post creators to posts and subjects. It
contains a Hybrid Feature Vector Unit (HFLU) which extracts the feature vector
based on a specific input. The feature vector is fed to the gated diffusive unit (GDU)
model for effective relationship modeling among news articles, creators, and sub-
jects. Formally, the GDU model accepts multiple inputs from different sources
simultaneously. The GDU applies softmax operation on the output vector before
assigning a credibility label. For a more explicit sight on deep learning architectures,
the reader is referred to [9].

2.3 Procedural requirements

Before deciding which architecture fits best in our specific case, the direct
requirements of the overall procedure should be recorded.

To begin with, detecting fake posts in real time is an essential requirement of the
process. Rapid decision whether a fire-bursting declaration post is fake or not leads
to fast implementation of the NLP procedure (as described in Section 3). The latter,
in turn, facilitates the timely detection of the geographical areas threatened by fire
as soon as possible which helps toward the prevention of the majority of negative
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effects caused by mega fires. Therefore, the proposed architecture of [3] is not
suitable for our use case, as it is not implemented in a fully automated manner.

Fake news detection accuracy is very important. High detection accuracy guar-
antees that the great majority of the posts that fed to be processed in the sequential
NLP phase (see Section 3) express sincere fire burst claims. Thus, the final resulting
fire-threatened geographical areas are much more likely to be actually threatened.
Furthermore, the aforementioned accuracy needs to have been achieved in publicly
available datasets and benchmarks. This windows the performance of the architec-
ture much more reliable than others, tested on proprietary datasets. To this end, the
FakeNewsTracker architecture [4] is not suitable for our use case, as it is tested on a
proprietary dataset.

Last but not least, the architecture needs to be domain invariant. In other words,
it needs to be generally applicable to any domain, other than the one(s) used for
conducting training and testing procedures. More precisely, the accuracy of a sys-
tem, detecting fake post that deal with fire burst, should not be significantly altered
in the case of post that deal with any other domain (politics, sports, etc.). This
makes the system architecture much more flexible and adoptable. From the
remaining architectures analyzed in this section, only DeClarE [6] and the Hybrid
LSTM-CNN [7] claim to be domain invariant. DeClarE has been tested on PolitiFact
dataset [10] achieving accuracy 67.32%, while the Hybrid LSTM-CNN has been
tested on PHEME dataset [11, 12] achieving 82.00% accuracy. Both datasets are
publicly available. PolitiFact is a respected fact-checking website releasing a list of
sites manually investigated and labeled. It mostly contains posts of political content.
PHEME is also another EU-funded project whose results include collecting and
annotating rumor tweets which are associated with nine different breaking news
contents. Therefore, PHEME is a richer dataset with a wider variety of themes that
makes the Hybrid LSTM-CNN system architecture [7] it has been tested on more
suitable for our use case.

The procedural requirements for the fake post detection scheme with respect to
the architectures analyzed in Section 2 are summarized in Table 1.

2.4 Implementation architecture

Based on the aforementioned requirements, the baseline of the architecture
selected to be implemented follows the Hybrid LSTM-CNN architecture [7]. The
overall architecture is illustrated in Figure 1. The input layer consists of Twitter
posts which are, in fact, unstructured raw texts. A word embedding layer follows,
within which the input text is parsed and is divided into a series of words and,
consequently, into a series of sentences.

Architectures Procedural requirements
Real time Accuracy Public dataset Domain invariance

3HAN [2] v v 4 X
ConvNet [3] X X v X
FakeNewsTracker [4] X v X X
DeClarE [6] i v v v
Hybrid LSTM-CNN [7] v v v/
FakeDetector [8] v v/ X

Table 1.
Procedural requirements for fake post detection part.
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Figure 1.
Suggested fake post detection architecture.

Each sentence is then consumed by the CNN layer of the architecture which is
made up of a set of 1D CNNs based on the work presented in [13]. The CNNs of this
layer are structured as illustrated in the upper part of Figure 1. The 1D convolu-
tions, taking place within the CNNs (as defined by Eq. (10) of the Appendix),
operate on sliding windows of the words of the sentence. Before outputting the
outcome of the layer, max pooling is performed to reduce dimensionality and avoid
over-fitting of the training data. This also helps toward reducing computational
complexity of the training process. The output of each CNN is a fixed length vector,
acting as a digital signature of the corresponding sentence and describing the nature
of the sentence. Thus, a set of such description vectors (descriptors) are fed forward
for further process.
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The LSTM layer follows, which is the core of the architecture. This layer consists
of a set of LSTMs. It uses as input the sentence descriptors resulting from the CNN
layer and outputs the final decision vector indicating whether the claim of the post
is fake (F) or valid (V). Each LSTM of the layer is structured as presented in the
lower part of Figure 1. LSTMs are chosen because they are proven to be robust for
representing a series of data, such as the one we are dealing with here (i.e., series of
words or sentences), as they are capable of capturing their internal temporal
dependencies [9]. The LSTM layer is very interesting in terms of mathematics. For
more information the reader is referred to Appendix.

3. NLP-based architecture for Twitter post information extraction
3.1 Introduction

This component consists of two sub-modules: (a) the fire incident report detec-
tion sub-module and (b) the fire incident report analytic sub-module. The first one
is responsible for acquiring reports made by civilians on the Twitter platform and
detects reports that refer to a potential fire incident. These reports are stored in a
structured way. The fire incident report analytic sub-module is responsible for
aggregating the detected fire incident reports, and based on the number of these
reports and the location these reports refer to, it concludes to a probability that
there was a significant amount of people that reported a fire incident at a specific
location. The final output is the result along with a geographic area and a reliability
score of each location and the coordinates of each location.

3.2. Fire incident detection
3.2.1 Introduction to information extraction

Natural language processing (NLP) is a field of computer science responsible
for the study and analysis of raw text. The purpose of this field is to enhance
human-computer communication by constructing systems that are capable of
understanding raw text and incorporate interaction interfaces based on textual
messages. Some of the main topics of NLP are learning syntactic and semantic
rules and determining concept, topics, and sentiment from a document, automatic
summarization, machine translation, natural language generation, information
extraction, etc. [14].

Information extraction corresponds to the section of NLP which is responsible
for the analysis of unstructured textual pieces and conversion to a structured form.
For example, the conversion of the following unstructured text (raw text):

“Yesterday, New York based Foo Inc. announced their acquisition of Bar Corp.”

to the structured form:

MergerBetween(‘Foo Inc’, ‘Bar Corp’, date ...)

The above-structured form corresponds to a relation of various entities that
were embedded in the initial unstructured raw text. The benefit of this conversion
is that structured relations can be manipulated by computer algorithms and finally
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be exploited by computer algorithms. Apparently, for a given unstructured text,
many structured forms correspond each one holding different knowledge and
representing different relations. As a result, the algorithm designer has the respon-
sibility of selecting the appropriate structured form.

The information extraction procedure consists of the following steps:

1. Sentence segmentation: the procedure of distinguishing different sentences.

2. Tokenization: the procedure of splitting each sentence to structural components
(words and punctuations).

3. Part of speech tagging: the procedure of characterizing each token of each
sentence to the corresponding part of speech.

4.Entity recognition: the procedure of characterizing tokens or set of tokens of
each sentence based on previous knowledge. For example, characterize words
referring to geographic locations as “city,” “country,” “mountain,” etc.

5. Relation recognition: the procedure of detecting specific combination of tokens
that corresponds to a specific meaning relation among them. For example, the
following segmented tagged sentence ‘George’ (SUBJECT, NAME) « ‘lives’
(VERB, RELEVANT TO LOCATION) « ‘in’ < ‘Athens’ (OBJECT,
LOCATION) leads to the relation lives(‘George’, ‘Athens’).

The above procedures make use of text processing algorithms, knowledge rep-
resentation, and information retrieval algorithms. In order to achieve text segmen-
tation (sentence segmentation or tokenization), each text should be treated as an
array of characters. Segmentation is based on the a priori knowledge of special
characters that in most cases are used for splitting. For example, sentences usually
end with a period mark “.” or exclamation mark “!” or question mark “?” and begin
with a capital letter. As a result a general rule for segmenting sentences would be to
search for pairs: (special character < capital letter) or (special character < end of
text).

Tagging procedures are usually based on knowledge databases and information
retrieval algorithms. For this task, there is a need of having a lexical and syntactic
and semantic database, which we call a corpora (of course different for each lan-
guage!), which holds characterizations of several words to conceptual entities, and
their relations in a structural way. Consequently, segmented texts (tokenized texts)
are used as key vectors in order to retrieve from the corpora the corresponding
characterization set. The most common approaches for this task are:

((')’

* Sequential classification algorithms: Hidden Markov Models (HMM) and
Conditional Random Fields (CRF).

* Classification algorithms: Support Vector Machines (SVM) and Artificial Neural
Networks (ANN).

Finally, relation extraction procedures demand from the algorithm designer to
predefine either directly by specifying relation rules and use matching algorithms in
order to detect word patterns corresponding to specific rule or indirectly by pro-
viding to the system several examples of annotated tagged sentences and then use
classification algorithms in order to specify the corresponding relations.
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3.2.2 Information extraction from Twitter

In this section, a real-case scenario of a system that was realized and evaluated
for the purposes of real-time automatic fire detection as demanded by the EU-
funded research project “AF3” is presented [15]. The suggested solution comprises a
training phase where, via surveys, a variety of tweet samples for various
predetermined occasions were collected. These samples were used in order to create
a language model (template) that refers to fire incident report.

Training phase: The system presented here is responsible for acquiring reports
and comments made by civilians about fire incidents at specific locations. In order
to define the algorithms to be used, first it is needed to determine the requirements
of these algorithms, the desired performance, and efficiency [16]. Consequently, as
a first step, a training comment platform was constructed where users were asked to
make some comments about a fire incident that they were witnessed hypothetically
(see Figure 2). Moreover, they were asked to make some comments that use
phrases that refer to fire reports, but the comment should not refer to a fire incident
but to something else (see Figure 3). For example, “John has a burning desire to
succeed in his new business” (here “burning” means “very strong”).

Bl
AF: o) ik
[Advanced Forest Firefighting a4 1:i

DEMOKRITOS

AF3 social media training

Condition 1 out of 5

during a visit on Imitos, you come across

ke the one presented in the photo. Write
eets about this incident (in english).

Figure 2.
Training comment platform: declarvation of fire burst.

L T

Figure 3.
Training comment platform: tricky “fire” word usage.
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3.2.3 Figure training comment platform interface
The results of the training phase were passed through (a) sentence segmenta-

tion, (b) tokenization, (c) part of speech tagging, and (d) name entity detection
algorithms, so consequently each report was converted to a tagged sentence form:

E.g. <T> <‘think’™> <‘there’> <‘is’, DEFINING VERB> < ‘fire’, FIRE RELATED
WORD> < ‘at’> < ‘Immitos’, LOCATION>

As a result, this procedure concluded to a set of tagged sentences that we know
that they refer to fire incident report. Next, these reports were aggregated based on
their similarity. Finally, the most common aggregated ones were kept in a regular
expression form in order to represent the variations. These aggregated rules corre-
spond to the relation rules that will be used by the relation recognition step of the
information extraction module. The selected rules are the following:

1. <FIRE RELATED WORD> <EXCLAMATION MARK> * <TIME> +
EXCLAMATION MARK> * <VERB LOCATION DEFINITION> + <PREPOSITION> + <
HASHTAG> + <LOCATION>

2. <FIRE RELATED NOUN> <EXCLAMATION MARK> * <FIRE RELATED VERB>

3. <FIRE RELATED NOUN> <EXCLAMATION MARK> *<VERB RELATED TO
SMOKE> + <PREPOSITION> + <HASHTAG> + <LOCATION>

4. <LOCATION> <EXCLAMATION MARK> * <SENSITIVE AREA> + <FIRE
EXPRESSION>

5. <LOCATION> <EXCLAMATION MARK> * <SENSITIVE AREA> + <
EXCLAMATION MARK> * <HASHTAG> + <FIRE RELATED NOUN>

6. <LOCATION> <EXCLAMATION MARK> * <FOREST> + <EXCLAMATION> * <
FIRE RELATED VERB> <EXCLAMATION MARK> * <HASHTAG> + <FIRE RELATED
NOUN>

7. <SENSITIVE AREA> + <EXCLAMATION MARK> * <FIRE EXPRESSION> <
EXCLAMATION MARK> * <HASHTAG> + <LOCATION>

where

FIRE-RELATED NOUN: ‘fire’, ‘flames’, ‘smoke’, etc.

VERB LOCATION DEFINITION: verbs that define location (‘exists’, ‘is located’,
is’, etc.)
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FIRE LOCATION VERB: ‘burn’, ‘fire’, etc.
VERB-RELATED TO SMOKE: ‘covering’, ‘smoke’, etc.
SENSITIVE AREA: forest, trees, park, etc.

3.3 Fire incident aggregation and potential fire incident prediction
3.3.1 Overview

In the previous section, the procedure of fire incident report acquisition was
presented. The result is the gathering of various fire incident reports on different
locations with different timestamps. Despite the fact that these reports may seem
reliable, due to the severity of the situation, there would be cases, however, that a
report may indeed refer to a false fire incident, either because of false fire incident
detection from the information extraction component or because of a false report
by a civilian [17]. It should be highlighted here that a false report is not made
intentionally (like fake news, e.g., as examined in Section 2), but it is an outcome of
misunderstanding or a tricky usage of the word fire and its derivatives (i.e., pants
on fire). In order to ensure that fire incident notification alerts correspond to a
noteworthy event, such reports should be checked of their validity before they are
reported to the ingestion server. Consequently, the system consists of an analytic
process responsible for the confirmation of the reports based on the number and the
location of them. The analytic process implements a reliability model which aggre-
gates the reports and concludes to a fire incident event report along with a reliability
score. The reliability score corresponds to the level of how many trustful reports of
fire incidents refer to a specific location. The reliability model is presented in more
detail in the next section.

3.3.2 Implementation

Initially, the analytic process clusters incident reports based on their geo-
coordinates (longitude, latitude). Due to the fact that fire incident reports usually
are distributed densely along the fire locations, DBSCAN algorithm [18] was used
for report clustering, which is a very efficient dense-based unsupervised classifica-
tion algorithm for two-dimensional spaces and Euclidean distance as proximity
measure and is able to detect accurately various cluster shapes. Then, for each
cluster, the reliability model is applied where, finally, a geographical area that it is
suspected of being threatened by fire incident is estimated, along with a reliability
score.

3.3.3 Reliability model

The reliability model was designed by assuming that very few reports for spe-
cific location probably would mean that these reports are probably false alarms, but
above a specific threshold, it is almost clear that there is a significant number of
people reported a fire incident. In other words if, for example, there emerges one
tweet referring to a great fire at the center of Athens, apparently there would be
doubts about the validity of this report. Probably, we would say that either this
report was a joke or the author of this comment might mean something different
that of the literal meaning of a fire incident. On the other hand, if 100 tweets
reported a fire incident, probably a real fire incident in the center of Athens is very
likely. Apparently, some more tweets would not do the difference. As a result, an
exponential model was selected which is parameterized by:

10
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* Low threshold: The bottom threshold of the number or reports, where below
of it these reports are considered unreliable

* High threshold: The upper threshold of the number of reports, where above of
it these reports are considered very reliable

* Low threshold probability (Pl): reliability corresponding to the low threshold
* High threshold probability (Ph): reliability corresponding to the high threshold

The reliability score is given by
Reliability score =1—b - ¢ NoR

The term NoR stands for the number of results. In case of

NoR = low threshold then we set reliability score < Ph (1)

NoR = high threshold then we set reliability score < Pl (2)

Thus:

Eq.(2) <> 1— b - e*low threshold _ ppy . I (1 — PI))/b) = a - low threshold ~ (3)

Similarly:

Eq.(3) < In((1— Ph))/b) = a - high threshold (4)

In((1—-Pl))/b), (In(1—Pl)—In(b)) Low threshold

Eq-(4): Bq-05) = 10 (A= Ph))/b) ~ (In(1=DPh) —In (b)) _ High threshold )
Let:
. L(')w threshold (6)
High threshold
Then:
Eq.(6),Eq.(7) = In(1—Pl) —~In(b) =c-In(1—Ph) —c-In(b) = b=¢~ o1 (7)
Moreover:
1 In (1 — Ph))/b) ®)

Eq.(5), Eq.(8) —a = High threshold '

4. Overall proposed scheme for Twitter post-based fire burst detection

Based on the system architectures presented in Sections 2 and 3, we propose a
hybrid architecture for detecting fire bursts in real time based on Twitter posts. The
proposed architecture can be divided into two parts: a deep learning scheme for
distinguishing false from valid Twitter posts and a typical NLP scheme for

11
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Figure 4.

Proposed overall architecture.

extracting the crucial information with respect to the declared fire burst post. The
overall combined scheme is illustrated in Figure 4. The deep learning network part
represents the scheme presented in Section 2, while the information extractor of the
typical NLP part represents the scheme presented in Section 3.

For the fake post detection part, we are to recruit the aforementioned deep
learning scheme as it performs twice as good as the related NLP-based methods
[19]. Thus, Twitter post processing is expected to work much faster than in the case
of implementing a typical NLP-based procedure of the state of the art. In addition,
the availability of large posts/news datasets [10-12] facilitates the reliable training
of such systems.

Despite the current trend of massively turning to deep neural networks, we
designed and constructed a rather typical NLP-based architecture for the informa-
tion extraction part of our system. This is highly related to the prerequisites that the
training procedure of a deep neural network sets, as well as the nature of the
problem itself. To begin with, due to lack of a publicly available (i.e., dataset
containing a large number of fire burst-related Twitter posts), appropriate dataset
for this task, a deep learning approach would be one of only few chances of success.
More importantly, the nature of the task itself points to the direction we followed;
fire-related posts on a social media platform are reasonably expected to have some
common characteristics that make it suitable for a human to model them in order to
obtain the desired information. For example, such posts are expected to be short in
length, declaring the area of the fire source while containing words and phrases
from a fire-related expression set of manageable size. So, our NLP-based subsystem
is human and not machine modeled, is proven to be efficient, and is human intui-

tive and understandable, something that makes it easier to manipulate and expand,
if needed.

5. Validation

The system was tested during the AF3 pilot exercise in Skaramagas naval base in
two scenarios: (a) fire incident indication based on reports coming from mobile app
and (b) fire incident indication based on reports coming from Twitter posts
(tweets) containing the hashtag #af3EUprojectFireDetection_TRIAL.

During the first scenario test, a controlled fire was set at an open area inside the
naval base. After a while actors, members of the pilot exercise, pretending to be
citizens passing by, started posting reports about the fire incident they witnessed.
These posts were analyzed by the fire incident detection module and return a
notification of a potential of fire incident along with the estimated location and a
reliability score. The results were visualized by the public information channel,
where fire incident notifications were presented on the map as an area that it was

12
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AF3

Advaroed Faret FireRghsing

Figure 5.

Validating the scenarios.
Source Expected results Validation
Fire incident indication based on  Collect the post coming from Twitter and Done
reports coming from Twitter posts containing the hashtag successfully
(tweets) #af3EUprojectFireDetection_TRIAL

* Pass these posts through the information
extraction sub-module in order to
distinguish the tweets that referred to fire
incidents from the ones that did not

¢ Cluster the posts referring to fire incidents,
and detect fire incident areas along with the
corresponding reliability score

 Send result to ingestion server via the REST
API

Table 2.
Validation vesults of the NLP-based scheme.

estimated that the fire was located along with the post comments of the reports,
photos attached with the reports, and the reliability score (see Figure 5).

During the second scenario test, a controlled fire was set at an open area near the
military airport in Aktio [20]. After a while actors, members of the pilot exercise,
similarly with the first scenario, committed posts about the fire incident on the
Twitter instead of the mobile app. These tweets were collected by the fire incident
detection component, analyzed, and distinguished the ones that refer to the fire
incident. These reports were gathered by the analytic module and, as described
above, clustered, and finally the corresponding notifications were sent to the inges-
tion server. The results, similar to the first case, were visualized by the public
information channel and exploited by the data fusion component in order to
enhance its estimation. Table 2 illustrates the validation results.

6. Conclusions

Fire bursts are a dangerous problem of great importance worldwide. Mega fires
often result in significant environmental destructions, major damages on infra-
structures, and economic loss. Most importantly, they put at stake the lives, not
only of the civilians but also of the forest fire personnel. Thus, technologies that
facilitate early fire detection are important for reducing fires and their negative
effects.
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This chapter aims to provide an alternative view for early fire detection based on
twitter posts, instead of expensive sensors and other infrastructures. A hybrid
system architecture is introduced which combines a deep learning process for the
detection of valid twitter posts regarding fire bursts and a NLP process which
extracts the crucial information (place, time, etc.) from the valid tweets. Finally,
risk assessment, based on analytics, is performed which derives the geographical
places threatened by fire at the current time.

Part of the architecture is already validated under real-world conditions, and the
results are promising. The overall system performance is expected to be further
improved once the deep learning scheme is entirely utilized.
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A. Appendices and nomenclature

The mathematical definition of the convolution process between two one-
dimensional signals f(¢) and g(¢) follows in Eq. (9). The mathematics behind LSTM
layer architecture follows in Egs. (10)-(13). Functions ¢ and tanh represent the
sigmoid and hyperbolic tangent function, respectively. Parameter W corresponds to
weighting matrices:

(Fre)0) = | frigte — e ©
2 = 6(W; - [O;_1,0y]) (10)

1y = o(W, - [0;-1,04]) (11)

W, = tanh(W - [r; + O,_1, O;)) (12)
Oy = (1—2) %Oy 1 +2 %hs (13)
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