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1. Introduction 

The advent of the internet has opened the door to remote computing, remote file sharing 
and remote instrumentation control. We have taken advantage of these capabilities to:  (1) 
satisfy our need for 24-hour access to the laser-microscope, and (2) facilitate collaboration 
and networking with investigators from other locations around the world. The remote 
operation of microscope systems has been demonstrated for electron microscopes 
(Chumbley, et al., 2002, Hadida-Hassan, et al., 1999, Takaoka, et al., 2000, Yamada, et al., 
2003), for light microscope evaluation of fixed samples (Kaplan et al., 2002, Molnar, et al., 
2003), and for laser scanning confocal microscopy (Youngblom, et al. 2001). Though there 
has been significant progress in developing real-time microscopy and radiological image 
sharing over the internet, this has not been extended to the domain of real-time 
interventional manipulation of live cells, tissues, and organelles (Botvinick & Berns, 2005). 
Technology is revolutionizing the biomedical field with the latest development of automatic 

image processing algorithms and real-time robotic devices in the study of scale of microns 

and even nanometers. Automated image processing algorithms have been successfully 

applied to tracking neurons (Cohen, et al., 1994, He, et al., 2003), Caenorhabditis elegans 

(Bao, et al., 2006), and sperm cells (Shi, et al., 2006a & 2006b, Nascimento, et al., 2006), 

identifying Sphacelaria algae (Yeom & Javida, 2006) and soil bacteria (Bloem, et al., 1995), 

and live embryos (Brodland & Veldhuis, 1998). Robotic telemicroscopy has been developed 

for general applications  (Lin, et al., 2003, Botvinick & Berns, 2005) and is currently being 

applied to pathology (Szymas, et al., 2001, Della Mea, et al., 2000, Burgess et al., 2002) and 

microsurgery (Knight, et al., 2005, Kuang, et al., 2005). 

Lasers are useful tools for micromanipulation of biological specimens (Prasad, 2003). With 
the addition of tightly focused laser beams, microscopes have been turned into elaborate 
tools that not only allow detailed observation of a specimen but also the capture, 
displacement, and microdissection of biological samples in vitro with astonishing ease and 
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accuracy (Conia, et al., 1997). Some commercial optical trapping and scissors systems are 
available, such as The LaserTweezers® Workstation and The LaserScissors® Workstation 
from Cell Robotics Inc, and PALM MicroLaser Systems from P.A.L.M. Microlaser 
Technologies. A review of this field is published in Methods in Cell Biology (Berns & 
Greulich, 2007) 
We have developed a system with remote operational capabilities using several different 
standard  microscope platforms that have evolved from a multi-parametric laser microscope 
described over two decades ago (Berns, et al., 1981). At that time, however, there was 
neither the computing power nor the internet of today, two of the key technologies that are 
combined with current opto-electronic microscopic systems. One goal of the “systems-
integrated” microscope (RoboLase) is to develop a platform that can be accessed by 
collaborators via the internet. The system has been used to image, ablate, and/or trap cells 
and their organelles by remote-control. In the laser ablation mode (laser scissors), all the 
electronic components, such as the microscope, cameras, laser power and ablation 
coordinates, are controlled by the local host computer but can be operated by remote 
collaborators. Delicate microsurgery on cell organelles, such as individual microtubules, 
spindle fibers, chromosomes and centrioles can be performed to study each organelle’s role 
in cell function. In addition, localized DNA damage inside the cell nucleus can be patterned 
to study DNA repair mechanisms. In the laser trapping (laser tweezers) mode, phase 
contrast images of swimming sperm are digitized to the computer at a video rate (30 frame 
per second) or higher (up to 90 frames per second). The custom trapping algorithm places a 
region of interest (ROI) centered about a sperm in response to a mouse click by a remote 
collaborator. All subsequent real-time tracking and trapping of the sperm are performed 
automatically to study relationships between sperm swimming force and swimming speed. 
With this system we have studied the effects of laser trap duration and power on sperm 
motility and are integrating real-time measurements of sperm energetics assessed by 
fluorescent molecules (Nascimento, et al., 2006). 

2. Robotic Laser Scissors Microscope System 

2.1 Microscope 
The robotic laser microscope is comprised of a motorized inverted microscope stand, 
external optics to direct the ablation laser into the microscope, a CCD digital camera, and a 
hardware-software suite for the control of laser power and firing position, mechanical 
shutters in the laser path, the specimen stage, and microscope stand focus and illumination. 
The major brands of research microscopes have all developed motorized versions of their 
inverted microscopes. Our system utilizes a Zeiss Axiovert 200M (Zeiss, Thornwood, NY) 
with motorized objective turret, reflector turret (for fluorescent filter cubes), condenser 
turret, halogen lamp shuttering with intensity control, mercury arc lamp shuttering, camera 
port selection, objective focus, and parfocality switching between objective lenses. The 
microscope also has a motorized optovar turret to increase the system magnification by 1.6X 
or 2.5X. For laser ablation experiments, a 63X, phase III, NA1.4 oil immersion microscope 
objective is used. The microscope stand has a built in computer which uses a controller area 
network (CAN) to communicate with motors and encoders within the microscope stand. 
The CAN can receive commands through a serial interface typically attached to a computer 
running an image acquisition/microscope control program. Rather than using the software 
provided with the microscope manufacture which we found to be cumbersome and slow, 
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we have developed custom control software capable of communicating with the CAN as 
described below.  
Features of the motorized microscope that are especially relevant to remote operation of a 
laser microscope are the shift-free reflector turret, microscope light path selection, 
illumination control and objective focus. The shift-free reflector turret allows the user to 
repeatedly switch between any of 5 fluorescent filter cubes in the turret without a detectable 
pixel shift in the image. This is of great importance when performing resolution-limited 
targeting for laser ablation as it ensures that the laser will always focus at the expected pixel 
location. Likewise, the Axiovert microscope can switch from camera port to laser ablation 
port and back to camera port with no detectable pixel shifts when initiating an ablation 
sequence.  
Specimens are mounted in an X-Y stepper stage (Ludl Electronic Products Hawthorne, NY) 
controlled with a PXI-7344 stepper motor controller (National Instruments, Austin, TX) and 
an MID-7604 power drive (National Instruments). The motion board is mounted in a PXI 
chassis (National Instruments), which is connected to the host computer through two MXI4 
boards (one in the PXI chassis, the other in the host computer) through the MXI-3 fiber-optic 
cable (National Instruments). Motorized objective focus control is achieved through the 
CAN by Zeiss’ Harmonic Drive DC motor providing 25nm steps with 10 mm travel for 
precise focus control over multiple objectives’ working distances. To achieve stable 
temperature control for specimens imaged by an oil-immersion objective lens both the 
specimen and the objective lens are heated. Specimens in 35 mm Petri dishes are heated with 
a stage heater (heater: DH-35; controller: TC-324B; Warner Instruments Corporation, 
Hamden, CT) while the objective is heated with a collar-type objective heater (OBJSTD with 
controller, Bioptechs, inc., Butler, PA).  

2.2 External laser optics and hardware 
Optics outside the microscope stand guide the ablation laser into the microscope and 
supplies RoboLase system with automated laser power control, laser shuttering, and laser 
positioning (Figure 1). The laser ablation light source is a diode-pumped Vanguard with a 
second harmonic generator (SHG) providing TEM00 mode 532 nm laser light linearly 
polarized with 100:1 purity, 76 MHz repetition rate, 12 ps pulse duration and 2W average 
power(Spectra-Physics, Mountain View, CA). The unattenuated laser power is far in excess 
of the threshold for resolution-limited subcellular laser ablation (Botvinick, et al., 2004) and 
left unattenuated is well above the plasma threshold causing catastrophic damage to cells in 
the vicinity of the laser. We built a beam attenuator from dual linear polarizers. The laser 
beam polarization purity is considerably increased from 100:1 through the first glan linear 
polarizer (CLPA-12.0-425-675, CVI Laser, LLC, Albuquerque, NM) with a 5 x 105 extinction 
ratio rotated for maximum transmission (95%). Laser power is controlled by rotating an 
identical glan linear polarizer placed in series to the first and mounted in a motorized 

rotational mount driven by an open loop 2-phase stepper motor with 0.05° accuracy 
(PR50PP, Newport Corp, New Port, CA). The stepper motor rotates the polarizer from its 
vertical orientation with maximum transmission (95%) to its horizontal orientation with 
minimum transmission well below the damage threshold of biological samples. The stepper 
motor is controlled via the motion board in the PXI chassis. Light exiting the second 
polarizer is partially reflected by a laser-line beam sampler with dual antireflection-coated 
surfaces. The sampled beam is measured by a photodiode (2032 photo receiver, NewFocus, 
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San Jose, CA) and converted to a voltage. A calibrated photometer (1825-C, Newport Corp) 
is used to determine the relationship between the photodiode voltage and average laser 
power in the main beam. A mechanical shutter (Vincent Associates, Rochester, NY) with a 
3ms duty cycle gates the main laser beam to provide ‘short’ bursts of pulses to the 
microscope (Botvinick & Berns, 2005). 

Ablation Laser
Polarizers 

Beam Expander 

Zeiss Microscope 

Focusing Lens 

Fast Scanning
Mirror 

Shutter 

 

Figure 1. External laser light path of robotic laser scissors microscope system 

The laser beam is then expanded using an adjustable-beam expander (2-8X, 633/780/803nm 
correction, Rodenstock, Germany) and lowered to a height just above the optical table by 
two additional mirrors. Telecentric beam steering is achieved by placing a dual-axis fast 
scanning mirror (Newport Corp) at an image plane conjugate to the back focal plane of the 
microscope objective. This image plane is formed by a 250 mm biconvex lens positioned 
with its front focal plane at the image plane of the microscope Keller-Berns camera port (We 
refer to the entry port underside the microscope as the Keller-Berns port as opposed to the 
Keller-port because the first Zeiss microscope with this port was built by Zeiss following the 
design requirements of Berns for the construction of the LAMP CATS microscope in the 
early 1990’s (see Berns, et al., 1998). In order to access the Keller-Berns port, the microscope 
is raised 70 mm above the table via custom machined metal alloy posts to leave room for a 

45° mirror which vertically redirects incident laser light running parallel to the table through 
the Keller-Berns port.  Once inside the microscope stand, the laser light passes through the 
tube lens and one of the five fluorescent filter cubes of the reflector turret before entering the 
back of the objective lens. The reflector turret can be set up either with one filter slot blank, 
or since the turret is automated, the system can position a fluorescent filter cube into place 
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with appropriate laser transmission characteristics. All external mirrors in the ablation laser 

light path are virtually loss-less dielectric mirrors optimized for 45° reflections of 532nm S-
polarized light (Y2-1025-45-S, CVI Laser LLC). It is important to note that the selection of the 
laser for RoboLase system was based upon our desire to produce cellular damage using 
multiphoton processes of the picosecond green second harmonic wavelength. We have built 
several other RoboLase systems using other short-pulsed lasers, such as the femtosecond 
Titanium sapphire laser at 800 nm (see Botvinick, et al., 2005, Wakida et al, 2006 and Gomez-
Godinez, 2007). 

2.3 Cameras 
A high quantum efficiency digital camera is used to capture transmitted and fluorescent 
images. RoboLase implements a Hamamatsu Orca-AG deep-cooled 1344 x 1024 pixel, 12-bit 
digital CCD camera with digital (fire wire) output (Hamamatsu Photonics, K.K., 
Hamamatsu, Japan). The ORCA can read out sub regions of the chip for increased frame 
rates, bin pixels for increased signal-to-noise, and adjust gain and exposure time to trade off 
between signal-to-noise characteristics and arc lamp exposure times. RoboLase uses 
Hamamatsu’s Video Capture Library for LabVIEW (ver 1.0) communicate with the ORCA 
camera controller through its DCAMAPI driver.  

2.4 Software 
The control software is programmed in the LabVIEW 8.2 (National Instruments) language 
and is responsible for control of the microscope, cameras and external light paths. The 
control software also manages image and measurement file storage. It communicates with 
the user through the graphic user interface or the ‘front panel’ in LabVIEW. The front panel 
receives user input and displays images and measurements. The control software interprets 
commands sent by the user into appropriate hardware calls and returns the results of that 
action to the front panel and/or computer’s hard drive. Emphasis was placed on the design 
of the front panel, such that it would be easy to learn while providing the features needed to 
search for a cell of interest and then to perform cellular manipulation on that cell.  
Figure 2 shows an image of the front panel of Robolase. The upper-left panel/tab contains 
laser parameter controls. This panel contains: 1) the Turn-on-Laser button to control the 
emission of the ablation laser inside the laser cavity, 2) the LaserShut button to control the 
laser’s internal shutter, 3) the % Power slider to select a percent of maximum laser ablation 
power (100% percent corresponding to 3.5 mW at the focal spot after the objective), 4) the 
Scissors-Filter-Cube selector to choose the filter cube turret position during ablation, 5) two 
fire buttons, Cut ROI and Fire at (0,0), to fire the laser either at user-drawn positions or the 
center of the field respectively. 
Once either fire button is pressed, the control software calls the microscope CAN to select 
the Keller-Berns port and the appropriate filter cube. The control software then continuously 
queries the CAN to ensure the completion of both actions before opening the mechanical 
shutter in the laser path for a pre-defined laser burst time. Beam steering is sufficiently 
faster than the camera port and filter turrets such that a quarry of its position prior to 
opening the shutter in unnecessary.  
The center panel on the left of the front panel of Robolase in Figure 2 contains 5 tabs: 1) The  
‘Stage Ctl’ tab contains left/right and up/down rockers to move the microscope stage with 
position feedback. A similar pair of rockers moves the microscope objective for focus 
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control. The ‘Click and Move’ control is a novel control designed to minimize exposure of 
the cells to the arc lamp light during stage movements. The user simply chooses the 
crosshairs tool from the toolbar to the left of the image and clicks on an object of interest in 
the image. The program then calculates that pixel’s displacement from the field center and 
moves the stage to center the object. 2) The ‘Coor List’ tab allows the user to store the 
current position in a list or to return to any stored coordinate. It also allows the user to load 
an old list of coordinates, to clear the current list, or to save the current list to the hard drive. 
3) The ‘Cut ROI’ tab contains controls for beam steering and for laser ablation through a 
series of z-coordinates. The user can select a shape tool (dot, line, rectangle, irregular shapes) 
from the tool bar and draw one or more shapes on the image. The region of interest (ROI) of 
that shape can be caved by firing single macropulse (one opening of the mechanical shutter 
which will pass multiple individual laser pulses). Since the laser causes near diffraction 
limited ablation (Botvinick, et al., 2004), the program calculates the number of macropulses 
necessary to fill in the shape based on the pixel dimensions of the shape and the pixel extent 
of a single diffraction-limited ablation. 4) The ‘Camera Ctl’ tab contains controls for camera 
gain, digitization offset, exposure time and binning. It also contains an area-of-interest 
control to only transfer image data from an area of interest defined with the rectangle tool in 
the image display. 5) The ‘Microscope Ctl’ tab contains controls for the microscope stand to 
select the objective, filter cube, condenser filter, optovar, and image port. 
The lower panel on the left of Robolase front panel in Figure 2 contains image acquisition 
controls. The ‘Image Acquisition’ tab contains controls for exposing single images (Expose), 
continuous acquisition (Focus), image save and image printing. The user can select the filter 
cube for fluorescence image acquisition, whether to open the arc lamp during the exposure. 
The ‘Root Directory’ control specifies the top directory for file saving using our automated 
file naming system, and an indicator displaying the full path and name of the last saved 
image. The file path and name are designed to prevent accidental overwriting of data 
during successive operations of the program coding the file name with the current time. The 
‘Time Series’ tab contains controls for acquiring a time series of images. The time series uses 
setting from the ‘Image Acquisition’ tab and contains controls for the number of images and 
the duration between images as well as an indicator of the last image saved in the time 
series.  
The lower panel on the right of Robolase front panel in Figure 2 displays the last acquired 
image plus the slider to control/indicate the brightness of the halogen lamp. The upper 
panel on the right contains a message box and the image histogram. The message box 
displays important messages, such as error notifications or equipment status, and draws 
user attention by pulsing the large green digital LED to the left of the message box when a 
new message arrives. The gray box controls the image display lookup table for mapping 12-
bit images to the 8-bit display. This control uses four modes of look-up table: 1) Full-
dynamic, in which the range of non-zero intensities are divided into 256 equally spaced 
bins, 2) 90%-dynamic, in which the dynamic range containing the middle 90% of the 
cumulated histogram of the image is divided into 256 equally spaced bins, 3) Given-range, 
in which the range of grayscale values specified by the ‘Maximum Value’ and ‘Minimum 
Value’ slider controls are equally divided into 256 bins, and 4) Down-shift, in which the 
grayscale values are shifted to the right in 8-bit increments as specified by a control. An 
image histogram displays the pixel intensity histogram of the last acquired image to aid in 
the selection of an appropriate lookup table.   
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Figure 2. Front panel of robotic laser ablation microscope system 

2.5 Internet-based laser ablation control 

 

(a)

(d)

(c)(b)

Figure 3. Irregular shape laser cuts on red blood cells on robotic laser scissors microscope 
system via internet. The irregular shapes were cut out with the ablation distance smaller 
than the actual ablation radius (3Ǎm) at high laser power as shown in (a). The discrete 
ablation spots can be clearly seen with bigger ablation distance at high laser power in (b) 
and at low laser power in (c). The patterns (MB and NYC) is laser-etched in 4(d) (Shi, et al., 
2006c, © 2006 IEEE) 

 

www.intechopen.com



Medical Robotics 408 

The robotic laser ablation microscope system at University of California, San Diego/Irvine 
can be operated via the internet using most internet accessible devices, including laptops 
and desktop computers. The experiment testing irregular shape cutting through the internet 
was conducted from New York City using the www.logmein.com web server as shown in 
Figure 3. Red blood cells were deposited on a microscope cover glass, allowed to air-dry, 
and mounted in a cell culture chambers (rose chamber, Shi, 2006a). The collaborator in New 
York City logged in to RoboLase system and drew multiple shapes on the captured image at 
San Diego. That collaborator also modified the ablation power and the ablation distance 
between the two ablation spots in the front panel of RoboLase as shown in Figure 3 (higher 
laser power and bigger ablation distance was used in (a), higher laser power and smaller 
ablation distance in (b), lower laser power and bigger ablation distance in (c), patterns of 
alphabet letters of MB and NYC were laser-etched in (d)). 

3. Robotic Laser Tweezers Microscope System 

The robotic laser tweezers microscope system can be designed in the robotic laser scissors 
microscope system similar to that discusses in Botvinick & Berns 2005 (the trapping laser 
was directed behind the microscope in the arc lamp illumination light path to merge the two 
light paths). The robotic laser tweezers microscope system may be designed and built as a 
stand-alone system as described in Shi, 2006c. Real-time automatic tracking and trapping of 
sperm (RATTS) is discussed in this paper as an example of RoboLase system. 

3.1 Hardware and optical design of RATTS 
A single point gradient trap was generated using a Nd:YVO4 continuous wave 1064nm 
wavelength laser (Model BL-106C, Spectra Physics) coupled into a Zeiss Axiovert S100 
microscope and a 40x, phase III, NA 1.3 oil immersion objective. The optical design is shown 
in Figure 4.  Laser light is reflected off two dielectric mirrors to orient the beam parallel to 
the table and along the optical axis of the microscope. The beam is expanded by two lenses 
(plano-concave lens, f = -25.5mm at ǌ = 1064nm, and plano-convex lens, f = 76.2mm at ǌ = 
1064 nm) in order to fill the objective’s back aperture.  A third lens (biconvex lens, f = 
200mm) focuses the beam onto the side port of the dual video adaptor to ensure the beam is 
collimated at the objective’s back aperture.  The dual video adaptor contains a filter cube 
with a dichroic mirror that allows laser light entering the side port to be transmitted to the 
microscope while reflecting visible light to the camera attached to the top port for imaging.  
A low pass filter (D535/40M, Chroma Technology Corp., Rockingham, VT) is placed in the 
filter cube to block back reflections of IR laser light while allowing visible light to pass.  The 
laser trap remains stationary near the center of the field of view. In order to trap a sperm the 
microscope stage is moved to bring the sperm to the laser trap location.  The laser trap 
location is determined prior to each experiment by trapping 10Ǎm-diameter polystyrene 
beads suspended in water within a 35 mm diameter glass bottom Petri dish.  The trap depth 
within the sample is kept to approximately 5 Ǎm (approximately one sperm head diameter) 
above the cover glass. This ensures that the trap geometry is not sensitive to spherical 
aberrations from the surrounding media (Nascimento, et al., 2006). Laser power in the 
specimen plane is attenuated by rotating a polarizer (CVI Laser LLC) that is mounted in a 
stepper-motor-driven rotating mount (PR50PP, Newport Corp).  The mount is controlled by 
a custom program that allows the experimenter to set the power decay rate (rotation rate of 
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polarizer) and record laser power at the moment a sperm escapes the trap. The specimen is 
imaged by a CCD camera (XC – 75, Sony, Sony, Japan operating at 30 frames per second or 
Cohu, Model 7800, San Diego, CA, operating up to 90 frames per second), coupled to a 
variable zoom lens system (0.33 – 1.6 X magnification) to demagnify the field of  view. For 
video rate RATTS operation, analog output (RS-170 format) from the Sony CCD is 
distributed to a TV monitor, a Camcorder (DCR-PC101, Sony, Japan) for recording, and the 
image acquisition board PXI-1409 (National Instruments) through a video distribution 
amplifier (IN3218HR,Extron Electronics, Anaheim, CA). For cases to acquire the sperm 
swimming images in higher frame rate, the digital output (RS-422 format) from the Cohu 
camera is connected to the 16-bit digital image acquisition board PCI-1422 (National 
Instrument) for image display and streaming. Note that only one camera is used at a time in 
RATTS. 

 

Figure 4. External laser light paths of robotic laser trapping microscope system 

3.2 Software design of RATTS 
RATTS is custom coded in the LabView 8.2 language (National Instruments) to process 
streaming images, calculate sperm trajectories, and drive the motion hardware (Shi, et al, 
2006b). RATTS implements the image segmentation and sperm tracking algorithm (SSTA) in 
real time (Shi et al., 2006a). Images are digitized by the image acquisition board and 
transferred into a continuous buffer from which they are retrieved for image analysis and 
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displayed in the front panel as shown in Figure 5. The bright dots in the image window are 
living sperm in a rose chamber. The command tab allows the user to define different 
features in the experiment: 
1. AutoStop: if checked, RATTS will track a sperm for pre-defined duration. If not 

checked, RATTS will track the sperm until the user press StopTracking or 
StropProgram button.  

2. RealTime: if checked, the live images of sperm swimming are acquired and displayed 
on the front panel. If it is not checked, RATTS will load the saved image based on the 
directory in SSTA tab. 

3. Decay: if checked, laser power is decayed after a sperm is trapped. Parameters are 
entered for maximum (or constant) laser power, rate of power decay, and if 
appropriate, duration of the trap in the Decay tab. If Decay is not checked, the laser 
power is held constant (0-420 mW at focal spot after the objective) for a fixed duration 
in the trapping phase of the experiment. 

During real-time experiments, image analysis detects when a tracked sperm has reached a 
defined rectangular boundary near the extremity of the field of view. RATTS moves the 
microscope stage to position the sperm centroid at the center of the field of view. If Chase is 
checked (in command tab, Figure 5), the sperm centroid position is extrapolated using a 
multi-thresholding method to predict the sperm’s position beyond the most recent image in 
order to compensate for swimming during the stage movement. Swimming parameters are 
calculated and saved in a continuously updated data file. Since new images arrive at 30 (or 
up to 90) frames per second, it is necessary to restrain net computation and data writing 
time to less than 33 ms (or less for the higher frame rates) in order to capture and process 
each image. RATTS is coded to use the most recent frame in the buffer. Sperm were 
recorded and tracked for extended durations to demonstrate variability in swimming 
parameters and variation in the swimming speed as a function of track length and track 
time. 
The automated trapping mode of RATTS replaces our manual protocol as previously 
described (Nacimental, et al., 2006). User input is limited to setting parameters prior to an 
experiment and selecting, via the computer mouse, a sperm for analysis within the 
continuously updated image display. During the experiment, the user selects a sperm to be 
analyzed by clicking on its image with the arrow curser on the front panel of RATTS in 
Figure 5. The curser coordinate is registered, passed to the tracking algorithm and 
computation proceeds with no further intervention. Once the specified number of frames 
has been processed, the stage is moved to place the sperm under the laser trap and the 
shutter is opened. 
During the trapping phase of the experiment, RATTS implements an escape detection 
subroutine to detect the presence of a sperm in the laser trap and to respond if the sperm 
escapes the trap. The subroutine monitors a small square pixel region (representing 
approximately 10 µm per side) centered about the laser trap. Using SSTA algorithms (Shi, et 
al., 2006a), the subroutine segments the image within this region and uses size threshold to 
detect the presence or absence of a sperm. A sperm must remain in the trap for a continuous 
15 frames or the subroutine declares a failed trapping attempt. 
During constant-power trapping experiments, the escape detection subroutine is used to 
ensure that, the sperm was successfully trapped, and second that it does not escape the trap 
during the trapping phase of an experiment. If the sperm is not initially trapped, RATTS will 

 

www.intechopen.com



“RoboLase”: Internet-accessible robotic laser scissors and laser tweezers microscope systems 411 

use the SSTA algorithm to again find the sperm and continue tracking it for a user-defined 
number of frames after which a new trapping attempt is made. RATTS will repeat this either 
until the sperm is trapped, or for a user-defined number of attempts. If a sperm escapes 
before the trap duration is completed, the algorithm will continue to track that sperm and 
attempt to re-trap it. 
 
 
 

 

Figure 5. Front panel of RATTS system 

In power decay experiments, the escape detection subroutine is used to ensure that a sperm 
is stably trapped.  The laser power used to first trap a sperm is a user-defined percentage of 
maximum power (or maximum transmission through the polarizer). Once a sperm is stably 
trapped, RATTS automatically decays the laser power by rotating the polarizer until the 
sperm is capable of swimming away from the trap. Once the escape is detected, the 
polarizer position (and thus laser power) is written to hard disk and the polarizer is 
automatically rotated back to its starting position. A running file is updated at video rate or 
higher to record real-time swimming parameters including frame-by-frame centroid 
coordinates, position, and escape power. Figure 6 shows a flow diagram of the RATTS 
algorithm for power decay experiments. 
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Figure 6. Flowchart of RATTS in power decay mode using the robotic laser tweezers 
microscope system (Shi, et al., 2006b) 
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4. Biological Experiments using Robolase Systems 

The robotic laser scissors microscope system has been used to perform nano-surgery on both 
single microtubules as well as microtubule spindles in living cells (Botvinick & Berns, 2004, 
Wakida, et al., 2006, Conia, et al., 1997, Baker, et al., 2006, Shi, et al., 2006c). As Figure 7 
demonstrates, a diffraction limited spot within a single fluorescent microtubule (transfected 
with a  cyan fusion protein)in a live rat kangaroo kidney epithelial cell (Ptk2) can be ablated 
and the post-irradiation depolymerization can be observed in subsequent images . The 
single microtubule (Figure 7(a)) was positioned under the laser ablation crosshairs as shown 
in Figure 7(b). By pressing the “Fire at (0,0)” button (Figure 2), a 20ms macropulse 
(Botvinick, et al. 2004) was delivered to the microtubule. Figure 7(c-f) showed the 
microtubule depolymerizing at 1 s (Figure 7(c)), 5 s (Figure 7(d)), 10 s (Figure 7(e)), and 15 s 
(Figure 7(f)) post ablation.  
 

 

5μm 

Figure 7. Effects on single microtubule of PTK2 cells using robotic laser scissors system.  (a) 
Fluorescent image before laser exposure. (b) Crosshairs depict exact location of laser focal 
point during laser exposure. (c-f)  Images captured immediately after laser exposure show a 
loss of fluorescence in the targeted region. (Shi, et al., 2006c, © 2006 IEEE, images courtesy of 
Nicole Wakida, University of California, Irvine)  

Experiments using the robotic laser scissors microscope system have also shown that 
ablation across both mitotic half spindles (severing microtubule connections between the 
spindle pole and chromosome at the metaphase plate) immediately after anaphase-onset 
results in either the prevention or delay of cytokinesis. The machinery by which 
chromosomes move from the metaphase plate to the poles appeared to be unaffected in cells 
of the rat kangaroo line (PTK2) stably transfected by ECFP-tubulin (Figure 8). Anaphase 
onset can be observed in either phase contrast (Figure 8(a)) or fluorescence (Figure 8(b)) 
microscopy. The experimenter draws two rectangular regions of interest (Figure 8(c, d)) 
each of which are scanned by the ablation laser. Figure 8(e) shown a fluorescent image 

(a) Pre-Cut (b) Single-Cut (c) Post-Cut 1s 

(d) Post-Cut 5s (e) Post-Cut 10s (f) Post-Cut 15s 
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acquired 90 seconds after ablation demonstrating recovery of the mitotic spindle. The 
chromosomes still underwent pole-ward anaphase movements via spindle contraction as 
shown in the phase contrast (Figure 8(f)) and fluorescence (Figure 8(g)), but cytokinesis did 
not occur after several hours as shown in Figure 8(h). 
 

 

(c) First Cut (d) Second Cut (a) Anaphase Onset (b) Anaphase Onset 

(e) Recovery (f) End of Anaphase (g) End of anaphase (h) No Cytokinesis 

Figure 8. Anaphase spindle cutting of PTK2 cells using robotic laser scissors system. (a) 
Anaphase onset shown in phase contrast image. (b)  Fluorescence image of anaphase onset. 
(c) Fluorescent image after the first cut. (d) Fluorescent image after the second cut. (e) 
Fluorescent image during recovery. (f)  Phase contrast image at end of anaphase. (g) 
Fluorescent image at end of anaphase. (h) No cytokinesis after several hours (Shi, et al., 
2006c, © 2006 IEEE, images courtesy of Norman Baker, University of California, San Diego) 

The robotic laser tweezers microscope system has been used to study the sperm motility and 
swimming force (RATTS). RATTS can track and trap fast moving sperm in real-time (Figure 
9). The continuous tracking mode can track single sperm over long durations. The longest 
duration we achieved was 11260 frames (6.25 min) for a dog sperm; its swimming trajectory 
is shown in Figure 9(a) (Note that the average survival time after the dog sperm is loaded to 
the microscope is about 20 min). The swimming trajectory of the sperm appears to be a 
relatively straight line when viewed in a stationary field of view as shown in the rectangle 
box (lower right corner) in Figure 9(a). The curvilinear velocity (VCL) in Figure 9(a) is 52 
Ǎm/s. Figure 9(b) shows an example of a single sperm tracked for 3 seconds, trapped it for 
10 seconds (at 350 mW at focal spot), released, and tracked again for 3 seconds. The sperm 
changed swimming direction after laser trapping. 
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Figure 9. Sperm trajectories using laser tweezers system. (a) Continuing tracking of single 
sperm for 6.25 min (b) Track and trap single sperm (Shi, et al., 2006b) 

 

 

Figure 10. Escape power assessed manually and automatically. The scatter plot shows 
escape power determined by RATTS (◦) and by user mouse click (*) as a function of 
curvilinear swimming speed (VCL). Delay time is defined as the RATTS measurement 
minus the manual measurement. Delay times between RATTS and manual detection of 
escape had a mean and standard deviations of [0.46, 0.4] seconds with delays as long as 3 
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seconds. Scatter plots (not shown) of error against either VCL or the RATTS measurement 
show no non-linear relationship. Linear regression of errors as a function of VCL yields 
[slope = 0.06, R2 = 0.04, p = 0.1], which casts doubt on a non-random relationship. Linear 
regression of errors against the RATTS measurement yields [slope = 0.02, R2 = 0.05, p < 
0.05], which indicates a very weak relationship, if any, with poor predictive power. Thus 
manual measurements cannot be corrected retrospectively (Shi, et al., 2006b) 

To compare escape power measurements assessed manually or by RATTS, a subroutine 
was written to record the polarizer orientation when escape is register by the user 
(register as a mouse click) and by RATTS. The power decay continues until both RATTS 
and the user respond. Latency in the human response result in negatively biased laser 
power measurements since the polarizer continues to rotate until the mouse is clicked. 

Figure 10 shows escape laser power of each individual sperm measured manually (*) and 
by RATTS (◦). Manual measurements were less than or equal to those of RATTS 95% of 
the time. Delay times between RATTS and manual detection of escape had a mean and 
standard deviations of [0.46, 0.4] seconds with delays as long as 3 seconds (Shi, et al, 
2006b).  
The RATTS system can also be accessed through the internet (Logmein.com server) as 
showed in Figure11. Collaborators from the University of Queensland, Brisbane, Australia 
accessed RATTS. Dog sperm were loaded into a rose chamber and onto the Robolase at 
University of California, San Diego. Images of the sperm swimming were seen in Australia 
through the internet. One of the collaborators in Australia clicked on a swimming sperm 
“of-choice” (Figure 11(a)) to initialize the RATTS to track the sperm for the next 5 seconds. 
The sperm was then relocated to the laser trap position and held under the trap (410 mW at 
focal spot) for 10 seconds (Figure 11(b)). 
 
 
 

 

(a) remote-click (b) Sperm in trap 

Figure 11. Remote-control of RATTS. (a) Collaborator from Australia clicked on a selected 
swimming dog sperm on the image screen in Australia which then activated RATTS in the 
UCSD lab. (b) The same sperm in (a) was held in the laser trap after tracking it for 5 seconds. 
It was trapped for 10 seconds (Shi, et al., 2006c, © 2006 IEEE) 
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5. Conclusion and future work 

In this paper, the structure and features of the robotic laser scissors and laser tweezers 
microscope systems are presented. The Robolase systems are shown to be accessible 
through the internet using the Logmein program, making it feasible to perform 
biological experiments with remote collaborators. Future developments may involve the 
creation of separate log-in software for simultaneous use by more than two 
users/collaborators as well as the use of dedicated fiber-optic lines between different 
locations. 
The robotic laser scissors microscope system can be used to ablate a single microtubule 
and to study the subsequent depolymerization. Ablating of both mitotic half spindles 
immediately after anaphase-onset was shown to prevent or delay cytokinesis while 
preserving chromosome pole-ward movement. We demonstrated that the robotic laser 
tweezers microscope system can be used to study sperm motility by integrating real-
time measurements of swimming parameters and laser tweezers assessment of 
swimming force. To facilitate remote operation of experiments, the user is allowed to 
select from different types of sperm analysis experiments: continuous tracking 
experiments to measure motility within a population, track and trap experiments at 
constant power to determine affects on sperm motility, and track and trap experiments 
with decaying laser power to study the relationship between sperm motility and sperm 
swimming force.  
The RoboLase systems are now being used in a variety of other biological experiments, 
including the molecular mechanism of DNA repair. Since the laser ablation can generate 
patterned DNA damage in defined areas of the nucleus at defined points in the cell cycle 

(Lisby & Rothstein, 2004), it is becoming a very powerful tool to study DNA repair 

mechanisms (Gomez-Godinez, et al., 2006). The studies involve studying the molecular 
mechanisms underlying the activation of checkpoints and the control of the progression 
through the cell cycle following laser-induced DNA damage (results not shown). Note 
that different pulse energies and irradiances will produce different damage modalities, 
and likely recruit different repair molecules. The Robolase project is pursuing this in 
multiple Robolase systems with nano, pico, and femto second lasers, as well as cw UV 
lasers (Chen, et al., 2005, Wakida, et al., 2006,  Gomez-Godinez, et al., 2006, Baker, et al., 
2006).  
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