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Abstract

Spinal cord injury (SCI) involves damage to the spinal cord causing both 
structural and functional changes, which can lead to temporary or permanent 
alterations. Even though there have been many advances in its treatment, the results 
of clinical trials suggest that the current therapies are not sufficiently effective. 
Recently, there has been a lot of interest in regulating this harmful environment 
by transplanting cultured cells and boosting their antiinflammatory cytokines and 
growth factors production. Several types of cells have been studied for SCI therapy 
including, Schwann cells (SC’s), olfactory ensheathing cells (OECs), choroid plexus 
epithelial cells (CPECs), and immune cells (ICs) (lymphocytes, dendritic cells and 
alternative macrophage and microglia phenotypes). These treatments have shown 
to be promising and in this chapter, we will review the general aspects of trans-
planting these cells for SCI therapy as well as the neuroprotective and regenerative 
responses that different types of cells have reached in different SCI models. The 
mesenchymal stem cells (MSC) are one of the most well studied cell types; how-
ever, they were not included in this section because they will be reviewed in another 
chapter of this book.

Keywords: spinal cord injury, cultured cells, therapy

1. Introduction

SCI is a catastrophic condition that goes through two successive stages, which 
involves disturbances on ionic homeostasis, local edema, ischemia, focal hemor-
rhage, free radicals stress and inflammatory response [1]. SCI also causes partial or 
complete loss of sensory, motor and autonomic functions below the injury level, 
due to the interruption of the neural pathways. Nevertheless, cultured cells have 
successfully proved to achieve neuroprotective effects, by replacing or repairing 
damaged tissue, by neuronal survival, axonal growth, regulation of cytokine 
profiles and inflammation and motor recovery in animal models [2]. Cultured cells 
are promising strategies due to high variety of autologous cells that can be isolated 
and transplanted to patients; neural cells can up-regulate neurotrophic, growth 
and vascular factors to enhance the repair process in the spinal cord (SC). Also, 
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non-neural cells can be polarized in vitro to evoke antiinflamatory responses in 
order to modulate SCI microenvironment. This still requires intensive investiga-
tion because cells from neural tissues such as OECs could only be retrieved by 
craniotomy with general anesthesia, which needs, optimized chirurgical practices 
and excellent preclinical and clinical cares [3]. However, mononuclear cells such as 
macrophages or lymphocytes isolated from peripheral blood, become a less invasive 
strategy [4, 5]. Although the current treatments for SCI have proven to have certain 
improvement effects, there is no actual cure for SCI [6]. That is why in recent years 
cell transplantation has become one of the most investigated approaches to treat 
this kind of disorder [7, 8].

2. Cultured cells

In this section, we will review each cell type separately because there are many 
differences and similarities among them which are worth mentioning.

2.1 Schwann cells

Numerous cell types have been studied and proposed for transplantation, 
however, SC’s have always been considered as one of the best candidates for this 
treatment [9–11].

SC’s are the principal glia of the peripheral nervous system (PNS) [12]. SC’s 
wrap around long segments of peripheral nerves and produce myelin, forming a 
multilayered membranous sheath that allows axons to propagate action potentials at 
a high speed [12, 13]. The myelination of the axons by glial cells (oligodendrocytes 
in the central nervous system (CNS) and SC’s in the PNS) is believed to be the last 
evolutionary step in the vertebrae nervous system and it’s key in understanding 
neurophysiology [12, 14]. There are two types of SC’s, the myelinating and non-
myelinating both come from the neural crest cells in early development stages [15]. 
SC’s precursors migrate along with growing axons in peripheral nerves where they 
receive specific signaling such as Neuregulin 1 (NRG 1) in order to survive and later 
on differentiate into myelinating SC’s [15, 16].

SC’s are essential for normal motor and cognitive functions, long-time 
integrity of the axons and they play a crucial role in axonal regeneration in the 
PNS after injury [6, 14, 17]. SC’s regeneration role is more evident when you 
compare the outcome of a blunt injury in the SC with a similar injury in a periph-
eral nerve in rodents [18]. In several studies, it was seen that after sciatic nerve 
crush, the axons were able to rapidly grow back to their targets, also redundant 
myelin was removed and replaced with new myelin surrounding the regenerated 
axons, resulting in a generally normal tissue at an impressive speed (3–4 weeks) 
[14, 19]. On the other hand, crushing the SC results in the formation of a lesion 
filled with fluid or matrix leading to axonal retraction, permanency of myelin 
debris and absence of axonal regeneration [20]. In the PNS, the injury triggers 
a broad set of changes in the differentiation of both injured neurons and SC’s, 
causing neurons to switch their function from cell to cell signaling to axonal 
growth and SC’s change their function from axonal maintenance to support 
axonal regeneration [18, 21, 22]. This means that the glia in CNS does not suffer 
the same remarkable transformation as the PNS to repair the nervous tissue after 
the injury [19].

Those are some characteristic that have led them to become one of the biggest 
proposed treatments in cell transplants seeking to recover motor functions after SCI 
[9, 11].
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2.1.1 Schwann cell response to injury

Even though axonal degeneration in the distal stump takes about 2–4 days, SC’s 
response to axonal damage can be detected within hours of the injury, suggesting 
there is some communication between injured axons and SC’s which needs further 
investigation [23]. As said before, right after de injury, SC’s and undergo a large 
series of changes in gene expression to dedifferentiate into a non-myelinating 
immature type of SC’s and proliferate extensively [24]. In this process myelin 
associated molecules such as the key myelin transcription factor Egr2 (Krox20), 
cholesterol synthesis enzymes, structural proteins, including P0, myelin basic pro-
tein (MBP), and membrane-associated proteins like myelin-associated glycoprotein 
(MAG) and periaxin are down-regulated, whereas molecules that characterize SC’s 
in their immature stage (before myelination) are up-regulated [25]. These include 
L1, Neural cell adhesion molecule (NCAM), neurotrophin receptor p75NTR, and 
glial fibrillary acidic protein (GFAP) [24].

Another process in this response is the presence of phenotypes which are not 
associated neither with immature SCs nor with the SCs of an undamaged nerve. 
The appearance of these cells is critical, and since their main function is repair-
ing, we refer to them as repair SC’s or Bungner cells (BC’s) [24]. The repair process 
includes, first, the up-regulation of neurotrophic factors such as, Glial cell-derived 
neurotrophic factor (GDNF), artemin, Brain-derived neurotrophic factor (BDNF), 
Neurotrophin-3 (NT3), Nerve growth factor (NGF), Vascular endothelial growth 
factor (VEGF), and pleiotrophin which promotes the survival of injured neurons 
and axonal regeneration [26]. Second, the BC’s up-regulates the expression of 
inflammatory cytokines including tumor necrosis factor (TNF)-a, interleukin 
(IL)-1a,IL-1b, Leukemia inhibitory factor (LIF), and Monocyte chemoattractant 
protein-1 (MCP-1), in order to recruit macrophages that will eliminate redundant 
myelin that inhibit axonal growth [27].

2.1.2 Schwann cell transplantation in spinal cord injury

One of the first clues implicating that SC’s transplantation could serve as a 
treatment for SCI was found in a set of experiments held by David and Aguayo in 
1981. The experiments demonstrated that peripheral neurons (PN) lose their ability 
to regenerate over long distances in the PNS when they are submitted within the 
environment of a CNS graft and contrariwise the limited ability of CNS neurons to 
regenerate after an injury was enhanced within the environment of a PNS graft  
[19, 28]. Thanks to those landmark studies and decades of research, we now know 
that the introduction of SC’s after a SCI can promote axonal regeneration, reduce 
tissue loss, and facilitate myelination of axons in order to improve sensory motor 
function [11, 29, 30].

One of the best-known mechanisms by which SC’s promotes axonal regeneration 
is by the formation of bridges across the lesion site. The bridge is a multicellular 
structure that crosses the lesion rostrally to caudally, providing an environment in 
which axons can grow and also covering the glial scar which limits axonal regenera-
tion [31]. Furthermore, the transplantation of SCs provides a neuroprotective effect 
preventing neuronal death from the continuous inflammatory reaction involved in 
the SCI [10, 11].

The PN-auto graft was one of the first techniques to promote axonal regenera-
tion in the CNS after SCI. The nerve graft, besides providing supportive SCs it also 
endorses the survival of axotomized SC neurons by upregulating the expression 
of neuronal nitric oxide synthase (eNOS), furtherly activating the NO- dependent 
cyclic-GMP pathway, which enhances survival in these neurons [32, 33].  
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In addition, the PN-grafts promote the expression of growth factors in the host SC 
such as NGF and BDNF, delaying the formation of the glial scar, which is key for 
successful regeneration [34]. Another studied strategy is transplanting dissociated 
SCs alone into the injury. After transplantation, dissociated SCs are able to elicit 
axonal in-growth and align to secrete substrates, serving as guidance for axonal 
regeneration [35]. Moreover, when it comes to transplanting, the SCs alone have an 
advantage over the PN-graft, which is that purified SCs have the potential of being 
engineered to overexpress growth-promoting factors and/or adhesion molecules to 
enhance axon growth [36]. Even though several studies indicate that they cannot 
migrate into the host tissue, therefore regeneration outside the injury/graft site was 
limited [37].

However, their repair effect is not enough to induce an axonal response that 
leads to a full recovery of the locomotor function [38]. This could be due to the fact 
that a high percentage of SCs are lost in apoptotic or necrotic processes in the first 
3 weeks after transplant [39]. This low survival rate post transplantation may be 
attributed to the prejudicial environment of the SCI in which low oxygen levels, 
inflammatory cytokines, reactive oxygen species (ROS) and cell-mediated immune 
reactions predominate [10, 39]. Also, after the injury reactive astrocytes, meningeal 
cells, and microglia form the glial scar which becomes a physical and chemical 
barrier for axons to grow. The glial scar induces the secretion of axonal growth and 
myelin-associated inhibitors such as chondroitin sulfate proteoglycans (CSPGs), 
semaphorins, and myelin-associated proteins which limits the regenerative capacity 
of SCs when transplanted alone [37]. This suggests that SC transplantation needs 
to be combined with additional interventions in order to ensure successful axonal 
regeneration and sufficient functional recovery after SCI [29].

Because of the multiple mechanisms and complex pathophysiology involved in 
SCI, a significant therapeutic effect on functional recovery may not occur with the 
transplantation of SCs alone, meaning that a combinational therapy strategy is most 
likely to be the best option [9]. There are many different strategies that have been 
studied and have shown to have beneficial results. First, the suspension of SCs in 
bioactive matrices promotes their survival and enhances their capacity for support-
ing axonal regeneration. Second, the complementary administration of neuropro-
tective agents, growth factors and other molecules improves the effects of SCs at the 
lesion site. Third, the inhibition of the glial scar formation and/or the reduction of 
its inhibitory cues to obtain axonal growth from grafts into the adjacent SC. Fourth, 
the co-transplantation of SCs with other cell types such as OECs, neural stem cells 
(NSCs), MSC and others. The different types of combinations as well as their 
characteristics and outcomes are described in Table 1.

The use of another cell population like OECs in the combinatory cell therapy had 
demonstrated to boost the SCs effects.

2.2 Olfactory ensheathing cells

OECs are a population of glia cells that are residents in the PNS and CNS, which 
are commonly located in the central olfactory bulb (OB) and the nasal olfactory 
mucosa (OM) [56]. They are accompanied by the envelope of olfactory nerve 
fibroblasts (ONFs), so they can embrace the bundles of olfactory nerve fibers from 
the nasal mucosa to allow the synapsis in the OB [57]. Recent studies have demon-
strated that OB transplants could be differentiated to create relationships with the 
periphery and brain [56].

OECs express a lot of neurotrophic factors, including BDNF, GDNF, and NGF 
which are relevant for the propagations and guidance of axons, sharing properties 
with astrocytes and SC’s [2]. Neurotrophic factors secreted by them is capable 
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of protecting neurons, due to its faculty to inhibit scar formation and promote 
regeneration of axons (see Table 2) [58]. They also have an important ability in 
neural regeneration that consists in their proliferation and migration from PNS 
and CNS.

This attribute explains that enhancement of axonal extension after injury is pos-
sible and it can help neural regeneration, as a result of the expression of molecules 
implicated in that process (Table 2) [2, 59].

OECs phenotypes are different depending on their location in CNS or PNS. It has 
been shown that they express different types of molecules implicated in neurore-
generation, such as adhesion molecules, neurotrophic factors, proteases, cytokines 
and inhibitory factors.

Outcome Reference

Suspension matrices

Matrigel (BD) Significantly enhances long-term cell survival as well as graft 

vascularization and the amount of axonal ingrowth

[40]

PuraMatrix (BD) Promotes their survival in the injured SC and reduces 

astrogliosis and locomotor impairment.

[41]

Alginic acid hydrogel Reduces SC apoptosis and enhances recovery of locomotor 

function.

[42]

Growth factors and other molecules

GDNF Reduces astrogliosis and promotes axon regeneration, synapse 

formation, and locomotor recovery after SCI

[43, 44]

NRG1 + MSC Reduce the size of cystic cavities, promotes axonal regeneration 

and locomotor recovery.

[45]

Rolipram + SCs grafts/

analog of cyclic AMP/

D15A

Promote significant supraspinal and proprioceptive axon 

sparing/regeneration and myelination.

Promotes growth of serotonergic fibers into and beyond grafts, 

and significantly improves locomotion.

Increases the size of SC grafts, the number of serotonergic 

fibers in the grafts, and the number of axons from the reticular 

formation below the lesion/implant.

[6]

[6]

[46]

Inhibition of the glial scar formation

ChABC Compared grafts treatment, it also improves forelimb and 

hindlimb movements as well as open-field locomotion.

Decreases CSPGs both outside and within the SC transplant.

[47]

[5, 48],

Polysialic acid This leads to improved SC migration, axon regeneration, and 

locomotion.

[49, 50]

Combination cells

MSC Reduction of the size the size of cystic cavities, promotes axonal 

regeneration and locomotor recovery compared with SCs or 

MSC transplantation alone.

[45]

NSC Promotes neuronal differentiation and functional recovery in 

after SCI in rats.

Improves locomotion, increases axonal regeneration/

myelination, and reduces neuronal loss.

[51]

[52, 53]

OECs Regeneration of both proprio- and supra-spinal axons beyond 

the SC bridge.

Significantly promotes axonal regeneration and improves 

locomotion.

[54]

[55]

Table 1. 
Combination of SCs transplantation with novel molecules/materials.
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Otherwise, many studies have proved that OECs are capable of replacing apop-
totic or necrotic neural cells, secreting numerous neurotrophins, and contributing 
to remyelination. Although they do not do the last function in the individual olfac-
tory sensory axons, they enwrap abundant bundles of them, to assemble the nerve 
fascicles [60]. Recent findings have shown that neuroblasts recently generated in 
the subventricular zone, migrate into the OB [56].

2.2.1 Olfactory ensheating cells in response to injury

Studies showed that OECs have a significant therapeutic importance because 
they [47] interact with astrocytes from the CNS and establish connections with 
the second neurons. They have the aptitude to guide transected axons of the 
corticospinal tract throughout the focus of injury that causes the restoration of paw 
movements, supraspinal control of breathing and improvements in climbing after 
transplantation into high cervical SC injuries [47, 60].

It is well known that the SC enclose the long motor tracts descending from the 
brain and the long sensory tracts ascending to the brain. Therefore, it is essential to 
reconstruct them, and if it is not possible, it is necessary to at least establish a new 
circuitry with the ability to provide access to the information which was cut off by 
the injury [61].

2.2.2 Olfactory ensheating cells transplantation in spinal cord injury

Studies showed that OECs have a significant therapeutic importance because 
they interact with astrocytes from the CNS and establish connections with the 
second neurons. The implantation of these cells into the injured SC can intensify 
neurite growths into the distal part, promoting functional recovery. They have the 
aptitude to guide transected axons of the corticospinal tract throughout the focus 
of injury which causes the restoration of paw movements, supraspinal control of 
breathing, bladder and improvements in climbing after transplantation into high 
cervical SC injuries [55, 60, 62, 63]. Likewise, OECs transplanted from rats, dogs, 
pigs and humans into the lesion site in the SC of the rat, promote remyelination of 
injured axons and restore impulse conduction [48].

In normal conditions, OECs do not form myelin, but when are transplanted into 
the demyelinated SC, they have the capacity to form a peripheral pattern of myelin 
reminiscent of SC’s myelin [40] There is also evidence that they reduce proteogly-
cans expression in reactive astrocytes after the injury [63]. Otherwise, microenvi-
ronment and culture conditions have an important influence on OECs behaviors 
in vitro and in vivo [41].

It has been demonstrated that OECs transplants can reduce posttraumatic cav-
ity size, increase the sprouting of neurofilaments and serotonin axons, improve 

Adhesion molecules L1, E-NCAM, Laminin, Fibronectin, Type-V collagen

Neurotrophic (diffusible) factors/

receptors

NGF/p75, BDNF/TrkB, GDNF/GFRα-1, NTN/GFRα-2, NRG-1/

ErbB

Proteases (digest CSPG and PNN) MMP2, MMP9, Serpine-1

Cytokines IL-6/IL-6R, CX3CL1/Fractalkine, TGF-β3

Inhibitory factors/receptors Nogo/NgR, Sema3A, EphrinA

Table 2. 
OECs molecules implicated in neuroregeneration.



7

Transplantation or Transference of Cultured Cells as a Treatment for Spinal Cord Injury
DOI: http://dx.doi.org/10.5772/intechopen.84645

functionality and have neuroprotective effects [42, 64]. Due to these facts, several 
studies have ranked these cells as the second most commonly used cell type after SCI.

Recent studies have investigated the effect of co-transplantation of OECs and 
SCs at the injured site 7 days after contusion, demonstrating they significantly 
reduce the number of astrocytes, microglia/macrophage infiltration, and expres-
sion of chemokines (CCL2 and CCL3) at the injured site. These results suggest that 
OECs and SC’s co-transplantation can promote the change of the macrophage phe-
notype from M1 secreting IFN-γ, to M2 secreting IL-4. The induction to M2 reduces 
ICs infiltration in the damaged site, regulates inflammatory factors and chemokine 
expression, which provide ICs environment for SCI repair [65].

2.3 Choroid plexus epithelial cells

The Choroid Plexus (CP) has a relatively simple structure. They consist of 
single layer of cuboidal to low cylindrical epithelial cells that reside on a base-
ment membrane [43]. The main function is to form the cerebrospinal fluid (CSF). 
Approximately two thirds of this CSF is produced and secreted by the CP, the 
remainder produced by other areas such as the ependymal cells (ECs) of the ven-
tricular surface and those cells lining the subarachnoid space. This fluid circulates 
in the ventricular system, subarachnoid spaces and spinal canal [44]. The CP, is not 
only implicate in CSF production also is a physical barrier to impede entrance of 
toxic metabolites to the brain [45]. Besides maintaining CNS homeostasis, CP and 
CSF have proven to be present in repairing processes after disease or damage [44].

The CP is located in the ventricular system of the brain. The ventricles consists 
of epithelial tissue which is highly vascularized by fenestrated blood vessels  
[46, 66]. Within the lateral ventricles, it propels from the choroidal fissure and 
extends from the interventricular foramen to the end of the temporal horn. It proj-
ects into the third and fourth ventricles from the ventricular roof. Grossly, the CP is 
lobulated with a single continuous layer of cells derived from the ependymal lining 
of the ventricles. Despite it, these cells possess epithelial cell characteristics and are 
often referred to as CP epithelial cells (CPECs) [66].

CPECs are the prolongation of ECs of the ventricular wall, and the underlying 
connective tissue corresponds to the pia mater covering the brain surface. CPECs 
and ECs are of ectodermal origin and develop from the neuroepithelium in the roof 
plate [49]. However, unlike ECs, CPECs are directly attached via basal laminae to 
the connective tissue, a feature characteristic of general epithelial cells pertain to a 
small group of polarized cells, where the Na-K-ATPase is expressed in the luminal 
membrane [50]. Ultrastructurally, the CPECs contain numerous mitochondria 
needed to maintain their metabolic work capability for both secretory activities 
and maintaining ionic gradients across blood-CSF barriers [54]. Underlying the 
epithelial cells and basal lamina is a dense vascular bed that provides a blood flow 
four to seven times greater than the rest of the brain [54]. Elsewhere, the cells have 
tight junctions closest to the luminal membrane to separate the ventricle lumen 
from the lateral intercellular and basal spaces. Adherence junctions are situated 
below the tight junctions, and desmosomes appear further below the adherence 
junctions [67]. The luminal surface is characterized by microvilli, both primary cilia 
and motile cilia [43]. The capillaries are large with thin fenestrated endothelial walls 
and bridging diaphragms overlying the fenestrations. An extensive array of adren-
ergic, cholinergic, peptidergic and serotoninergic nerve fibers innervate the blood 
vessels and the epithelium [67]. In addition, CP secrete many trophic factors such as 
Hepatocyte Growth Factor (HGF), Basic fibroblast growth factor (bFGF), insulin-
like growth factor-II (IGF-II), NGF, and Transforming growth factor (TGF) [68].
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CP recently have been recognized as an important immunological compartment 
in maintaining and restoring brain homeostasis. It has been reported that the CP 
is the primary gate for trafficking ICs from the vascular system to the CSF in CNS 
impairment [69]. In the healthy brain, T lymphocytes are mainly found at the CSF 
or at the “borders” of the CNS: the CP at the brain’s ventricles, and the meningeal 
membranes that cover the brain [69].

2.3.1 Choroid plexus epithelial cells in response to injury

The evidence that the CP can instantly respond to signals coming from either 
the CNS itself or circulating immunity, suggests the possibility of controlling brain 
plasticity by affecting CP function [69], and identifies the cultured cells like CPECs 
as a novel target for neuroinflammatory conditions may involve a common underly-
ing mechanism of CP immunomodulation.

CSF recirculation within the CNS happens through numerous various pathways. 
Recent revelations about a previously unappreciated meningeal lymphatic system 
of the CNS [51, 52]. Although ICs (excluding microglia) have no access to the brain 
parenchyma under homeostatic conditions, the meninges around the brain are 
populated by a lot of immune-cell types, which not only provide immune surveil-
lance but also affect brain function [53].

T lymphocytes and their cytokines not only do harm but may also display 
homeostasis-restoring functions in the CNS [70]. ICs are also found within the CP 
epithelium, and during inflammatory events their numbers increase [71, 72], giving 
rise to the hypothesis that the CP is one of the points of immune-cell entry into the 
CSF [73].

2.3.2 Choroid plexus epithelial cells transplantation in spinal cord injury

When was examined the role of the CPCEs on inflammation after acute SCI: 
IL-1β, TNF-α, and hsp70 proved that the CPCEs may serve as an important source 
of these inflammatory mediators after SCI. There was also an inverse correlation 
between IL-1β and hsp70 staining and duration of clinical signs in acute SCI, sug-
gesting that the expression increasing of these proteins by the CPECs could be of 
particular importance in the immediate-early inflammatory response after acute 
SCI [52].

Certain studies with CPECs showed that they are capable of promoting neurite 
extension as well as neuronal survival in vitro: in coculture with CPECs, neurons 
derived from the dorsal root ganglia or hippocampus presented extensions of long 
numerous neurites with elaborated branches on the surface of CPECs [74, 75].

Researcher indicating that CPCEs can promote nerve regeneration when grafted 
into SC lesions, the outcomes indicate by electron microscopy and immunofluores-
cence that CPECs labelling with green fluorescent protein (GFP) before transplan-
tation closely interacted with growing axons, serving to support the massive growth 
of regenerating axons. Also, in this study Horseradish peroxidase (HRP) injection 
at the sciatic nerve showed that many HRP-labeled regenerating fibers from the 
fasciculus gracilis (FG) elongated into the graft 7 days after grafting. Furthermore, 
these regenerating axons from the FC were preserved for at least 10 months, with 
some axons elongating rostrally into the dorsal funiculus [76]. Recently, a study on 
CPECs transplantation, in which cultured CPECs were directly injected into the SC 
lesion, engrafted CPECs were located in the astrocyte devoid areas of the SCI; these 
data suggest that in rat, during the process of cavitation, reactive astrocytes may be 
reducted. In adittion, GAP-43-positive axons were found at the border of the lesion 
2 days after transplantation [50] . Other study demonstrated that transplantation of 
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CPECs and MSC promotes axonal regeneration and enhances locomotor improve-
ments. Overall this evidence suggests that they do not survive long term after 
transplantation into the SC. These date propose that some neurotrophic factors 
are released from those transplants to accelerate axonal regeneration through the 
astrocyte-devoid area formed in the epicenter of the lesion [77].

2.4 Lymphocytes and dendritic cells

Lymphocytes and dendritic cells (DCs) are ICs that are found in many different 
tissues within the body and work together achieved immunosurveillance and host 
defense against infection and injury. DCs are professional antigen presenting cells 
(APC) that capture, process antigens to initiate immune responses and express 
lymphocyte co-stimulatory molecules not only for activating lymphocytes, but, 
tolerizing T lymphocytes to antigens [78]. Indeed, lymphocytes are the mediators 
of the adaptative response by focus release growth factors and cytokine to the target 
cell, but only an efficient host defense is achieved through coordination of complex 
signals between innate and adaptative ICs: interaction between APC such as DCs 
with antigen and T lymphocytes [79].

Lymphocytes and DCs are derived from a hematopoietic stem cell in the bone 
marrow (BM); however, after certain cytokine secretion and transcription factors 
(TFs) expression, a common myeloid progenitor and common lymphoid progenitor 
are developed [80]. The first one differentiates into monocytes and DCs phenotype 
(CD8α+) [81, 82], while the second one give rise to different lymphocytes subsets, 
and a small population of CD8α− DCs. DCs can be classified into myeloid or con-
ventional DCs and plasmacytoid DCs. On the on hand, conventional can be divided 
into nonlymphoid tissue resident and lymphoid tissue residents and are well known 
for having a superior antigen processing, presentation machinery and ability to 
prime naive T lymphocytes responses; while plasmacytoid DCs express low levels 
of major histocompatibility complex class II (MHC-II) and costimulatory molecules 
[83]. In the case of lymphocytes, the bone marrow is where B lymphocytes matura-
tion take place, while T lymphocytes development is generated in the thymus, by 
positive and negative selection to prevent potentially autoimmune reactions; only 
lymphocytes whose receptors interact weakly with self-antigens, and express a large 
repertoire of receptors capable of responding to a unlimited variety of non-self 
structures receive survival signals and are capable of migrating into peripheral 
lymphoid tissues as αβ naïve T helper (Th), thymic regulatory T (Treg), (CD4+), 
cytotoxic (CD8+) T lymphocytes [84]. Also, a distinct lineage of T lymphocytes: 
natural killer and γδ T lymphocytes, which play role in initial host response and 
exhibit limited plasticity [79, 85].

2.4.1 T lymphocytes in response to injury

When traumatic insult is carried out, an immune response is triggered in order 
to contain the damaged tissue but avoiding a negative impact in the host. That is 
why a cellular response most be properly balance by regulatory T lymphocytes [86]. 
CD8+ T lymphocytes can differentiate principally in to regulatory and cytotoxic 
subsets, like the one that takes out Tc1 through the IL-12 influence, Tc2 differentia-
tion from IL-4 and IL-6 plus TGFB can develop Tc17 with low cytotoxic activity 
[87]. CD4+ T lymphocytes can differentiate into many classified subsets accord-
ing to their cytokine pattern TFs, except for Th1 and Th2 subsets discovered by 
Mosmann and Coffman in the 1980s; who found that clonal population from Th1 
principally secret IFNy and IL-4 in the Th2 subset [88]. Since that, CD4+ T lym-
phocytes have diversified into a great number: Th9, Th17, T follicular helper (Thf) 
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lymphocytes, induced regulatory T (iTreg) lymphocytes and Th22. Each CD4+ T 
lymphocytes subset can be defined by their capacity to sense specific cytokines and 
function to control pathogens, prevent immune pathologies and contain damage in 
trauma such as SCI [89].

2.4.1.1 Lymphocytes as double-edged sword in spinal cord injury

T lymphocytes the arrival of T lymphocytes is crucial for the development of 
an autoreactive response and parenchyma destruction, due to unique anatomo-
physiology of CNS through the release of proinflammatory cytokine entailing to 
more axon and cell bodies demyelination [90–92]. During acute phase, SC expresses 
high amounts of Th1 phenotype which is mainly regulated by IL-2, IL-12 and IFNy. 
Moreover, in subacute phases IL-4, IL-13, IL-10, IL-17 and IL-23 cytokines are 
found in plasma and spleen, indicating the presence of Th2, Treg and Th17 profiles 
as an inefficient compensatory mechanism [93, 94]. Accordingly to this, for the last 
10 years experimental findings have shown that T lymphocytes are not just patho-
genic but beneficial. Schwartz and coworkers suggested that T lymphocytes play an 
important role in plasticity and in injured CNS by a still debated mechanism termed 
“protective autoimmunity” which it established that under certain physiological 
circumstances, autoimmune T lymphocytes specific to myelin basic protein (MBP), 
mostly CD4+ can exert positive effect by protecting injured neurons [95].

2.4.1.2 Lymphocyte transferring after SCI

Lymphocytes that play complex role in SCI after antigen priming; the epitopes 
from neural proteins, can be considered beneficial, and Tregs can secret growth fac-
tors, shown neurotrophic factor receptors and promote progenitor differentiation 
and remyelination in damaged CNS [36, 96], authors have proposed T lymphocytes 
against MBP transfer as a therapeutic approach after SCI [97]. However, the only 
limiting factors are that in order to have a positive response, a genetic background 
and permissive microenvironment must be needed; susceptible individuals or 
strains don’t possess control mechanism such as appropriate antigen presentation, 
ability to evoke regulatory T lymphocytes and neuroendocrine effect on ICs regula-
tion [4, 98, 99]. Yoles and cols proved that T lymphocytes evoke a neuroprotective 
response after injury when animals that received T lymphocytes against MBP from 
injured animals improves hindlimbs locomotor activity, recovery from optic nerve 
injury, and mostly evoke an anti-inflammatory cytokine profile in the SC, suggest-
ing that a physiological and beneficial response is developed after trauma [100]. 
In addition, it has been corroborated in different studies; IL-4-deficient animals 
enhance neuronal survival and increase functional after trauma when CD4+ T lym-
phocytes from wild-type mice are transferred, but not from IL-4-deficient mice.

Inclusive, adoptive transfer of producing- IL-4, IL-10 and IL-3 CNS activated 
lymphocytes balance local inflammatory microenvironment by increasing protec-
tive cell populations like CD4+/Foxp3+ and CD68+/Arg1+ cells and in situ, proving 
that an increment of Th2 subset is beneficial to CNS repair [97, 101, 102]. But, 
increasing Treg population most be taking in consideration, due to injection of 
Treg can increase suppressive functions and limit effector T lymphocytes, which is 
negative to injured tissue in an optic nerve injury model [103]. Also, other studies 
proposed that Th1 profile is necessary for neuroprotection in SCI model [104], but 
not Th2 neither Th17. Only mice with Th1-conditioned cell transfer show motor 
recovery and present axon arbors extending from the main corticoespinal tract into 
the gray matter rostral to the lesion site; however, T lymphocytes were never primed 
with an specific antigen, or isolated from immunized animals [105].
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In addition, to boost the restorative response, and reduce the risk of develop-
ing an autoimmune disease neural modified peptide (NMP) has been tasted by 
active and passive immunization. A91 is a peptide derived from an encephalito-
genic epitope, amino acids 87–99 of MBP, by replacing the lysine residue 91 with 
alanine, which has evidence neural tissue preservation and paralysis reduction 
in rat model [106–109]. Also, passive p472 (Nogo-A derived peptide) immuniza-
tion, promotes a T lymphocytes neuroprotective response, and no significant IgM 
antibody response, revealing that the design of this therapeutic cell strategies does 
not depend on humoral response and reduce the possibility of promoting clinical 
changes in CNS, like myelin oligodendrocyte glycoprotein in resistant and non-
resistant strains [107, 110, 111].

2.4.2 Pulsed dendritic cells in spinal cord injury

Other studies support the idea that T lymphocytes response can be controlled 
from APCs transplantation into the traumatized mice and in non-human primates. 
Perhaps, APC must be primed first with NMP or SC homogenate (SHC), because, 
even mature DCs can evoke antigen-specific T lymphocyte response, it is not 
efficient enough to promote motor recovery [112]. Studies support the idea that 
only pulsed DCs can influence the secretion of neurotrophic factors like BDNF and 
neurotrophin-3 (NT3) in culture supernatants and at the SC lesion site via CD4+T 
lymphocyte, motoneuron survival, NSCs proliferation and functional recovery 
[113–115]. Also, A91 has been used to pulse DCs, proving that motor recovery 
increase since the eleven days in comparison with control rats and an autoimmune 
response is not developed when Lewis strain is used but apparently a T lymphocyte 
response is involved, because when neonatally thymectomized rats are injected DCs 
treatment has no effect on recovery [116]. Furthermore, to promote regeneration, 
genetically modified fibroblasts to express BDNF have been tasted too. Cell therapy 
avoids secondary damage such as bleeding or infection that can be caused by growth 
factors or cytokine delivery in the site of injury [117].

2.4.2.1 Macrophage vs. microglia

In the early 1990s, macrophages and microglia were thought to arise from the 
same myeloid progenitor cell [118], however multiple sophisticated methods have 
discarded the bone marrow origin hypothesis, and it is proposed that microglia 
derives from primitive myeloid precursors that arise in the yolk sac early during 
embryonic development, maintaining it apart from the rest myeloid lineage [119]. 
Moreover, it was proved that Tgfb is needed for its differentiation in comparison 
with other myeloid cells [120], implicating, ontogenically, that microglia are not 
resident macrophages but, the authentic sentinels of CNS. In healthy CNS and 
during early post-natal period, microglia possess a resting phenotype with round 
and ameboid characteristics [121] however, lately, microglia develops into a rami-
fied phenotype, which is equipped to keep CNS homeostasis in the developing 
and adulthood brain by phagocytic properties, trophic factors release for develop-
ing neurons and guidance of new vasculature [122]. Also, to keep a steady state, 
microglia maintains interaction between neurons by fraktalkine (CXCL1) and 
CD200 receptors to control inflammatory response and cell death [123, 124].

In respect of macrophage participation in CNS, it seems to be from monocytes 
which migrate from different sites during embryogenesis and in the adulthood 
[125]. Nevertheless, mostly are present in normal CSF [118], which contains about 
5 × 105 ICs in blood ratio of 1:2000 for monocytes (23%) [119]. Then, macrophages 
reside in the perivascular space, meninges and within the stromal matrix of CP, but 
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not in neural parenchyma [126]. So, their principal function is the CNS immuno-
surveillance, that means, macrophages are one of the first APCs in interacting with 
antigens and T lymphocytes located in CFS, meninges and subarachnoid space, and 
thus, quickly phagocyte it or also optimize T lymphocytes reactivation and evoke a 
deleterious response such as autoimmune disease [127].

2.5 Alternative macrophage and microglia

Macrophages and microglia are both APCs that can be found in CNS under 
different functional phenotypes depending on the microenvironmental signals 
they received. In inflammation, microglia and macrophages express morphologi-
cal changes, upregulate different cell markers and transcription factors. Microglia 
acquires a shape with shorter and thicker processes, increases CD45 expression and 
molecules for antigen presentation like MHCII, CD80 and CD86; also some miRNAs 
are related [128]. However, it is well known that activated macrophages and microg-
lia can encompass two different functions. The first one is the classically activated 
M1 phenotype that is induced by IFNy or TNFa and secretes 1 l-12 and reactive 
oxygen intermediates. And the second one is an alternative subtype triggered by 
IL-4 and IL-13 cytokines and secretes TGFb and express arginase 1 [129]. To date, is 
not well stablished the appropriate cell markers to differentiate activated microglia 
from macrophages in CNS, but some populations have been proposed to differenti-
ate the alternative phenotypes in monocytes: C3XCR1lo CCR2hi LY6Chi correspond 
to an inflammatory phenotype, while CX3CR1hi CCR2lo LY6Clo is found in the 
tissue remodeling phenotype [130, 131] and it has been corroborated in SCI stud-
ies; Shechter and cols. Proved that alternative M2 macrophages (Ly6cloCX3CR1hi) 
derived from monocytes traffic through CSF to provide an inflammatory response 
in SC [132].

Due to the important role that macrophages can play, several immunomodu-
latory therapies have been developed to control CNS response to pathological 
insults [123].

2.5.1 Macrophage and microglia in response to injury

Typically, damage stimulus triggers the activation of the microglia provoking 
the secretion of several cytokines like interferon gamma-induced protein 10, 
C-C motif chemokine ligand 1 (CCL1), C-C motif chemokine ligand 2 (CCL2) 
and C-C motif chemokine ligand 5 (CCL5) which recruit peripheral cells like 
macrophages. Microglia also participates in the adaptive immune response 
through the precise chemoattraction of T lymphocytes demonstrated in studies 
where the inhibition or stimulation of the resident microglia population resulted 
in abnormal recruitment [133].

These cells are considered essential screening damage monitoring constantly the 
microenvironment. Another important cell subgroup is the perivascular microglia 
which is replaced during 3 month period from bone marrow; its function is safe-
guarding the blood-brain barrier (BBB) through the recruitment of activated cell to 
BBB and parenchyma [134, 135].

2.5.2 Macrophage and microglia trafficking in response to injury

After a SCI take place an uncontrolled immune response that depends on the 
severity, level and mechanism of injury [136]. This cascade processes are character-
ized by pro-inflammatory and antiinflammatory alternatively activated cells [135]. 
The activation of phenotype M1 provokes neurotoxicity while type M2 promotes 
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axon growth and remyelination [137]. This lead the efforts to develop immuno-
modulatory therapies to modify phenotypic and functional properties.

The activation of the glia occurs the first 24 hours after trauma [138]; while the 
peripheral monocytes migrate into the injury within the following 2 or 3 days post-
injury, then they differentiate into macrophages that become phenotypically and 
morphologically indistinguishable [139].

The proinflammatory M1 macrophages vary along early stages releasing high 
levels of ROS to increase phagocytosis and cell recruitment removing foreign 
microbes and wound debris [140]; meanwhile M2 macrophages have some tissue 
repair properties through the release of immunosuppressive cytokines like IL-10 
and C-C motif chemokines ligand 17, 18 and 22 to attract antiinflammatory leuco-
cytes that increase the phagocytic receptors and upregulate growth factors [141].

There are three important chronological stages in the inflammatory response: 
the inflammatory, proliferative and remodeling phase and each one is character-
ized by certain cytokines and events. In the first one are present both M1 and M2a 
phenotypes, M1 secrete IL-1β, IL-12, TNF- α and IL-6 and M2a express high levels 
of IL-4, arginase-1 and Ym1 [142]. Comparative analysis of lesion development 
and intraspinal inflammation in four strains of mice following spinal contusion 
injury); during the second stage, keep going secreting proinflammatory cytokines 
but transition toward the expression of IL-10 and other antiinflammatory markers 
distinguished by the M2b macrophages followed by the M2c; in the third stage, the 

Therapy Treatment outcome Reference

Adoptive transfer of M2 in rats M2 phenotype reduces inflammation by increasing 

the number of CD4+ GATA3+ Th2 cells in the 

injured SC.

[144]

Incubated autologous macrophages 

in complete SCI: Phase I study

The study provides a preliminary evidence of 

safety and electrophysiological results. Also some 

patients present beneficial effects showing the 

efficacy of cell therapy.

[145]

Autologous macrophages delivery in 

patients with SCI

The clinical trial can be implemented in patients, 

however many factors contribute to a funnel effect 

in the study.

[5]

Azithromycin

(AZM)

Increase M2 activation. Decrease M1 macrophage 

gene expression and potentiate M2 macrophage 

gene expression. Also, potentiate microglia vs. 

monocyte derived M2 macrophage activation.

AZM improved locomotor function and 

coordination of mice recovering.

[146]

Anti- IL6-receptor (MR16–1 Ab) Increased the area of spared myelin.

Promoted functional recovery by promoting 

the formation of alternatively activated M2 

macrophages.

[143]

Activated cultured microglia Reduce the size of liquefaction necrosis area.

Activated antiinflammatory mechanisms. Promote 

the hind limb motor function recovery.

[147]

Microglia/Macrophages activated 

with IL-1

Decrease of IL-1 participates in both the classical 

and alternative activation of microglia.

[148]

Recruitment of M2 macrophages CP provide a route of macrophages derived 

monocyte (Ly6cloCX3CR1hi) to entry into the 

CNS to evoke an inflammatory response.

[132]

Table 3. 
Immunomodulatory strategies for the microglia/macrophages response.
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M2c release high concentrations of IL-10, IGF1 [138]. Macrophage activation and its 
role in repair and pathology after SCI. TGF-β and a mannose receptor (CD206) with 
the decrease of arginase-1 and IL-12. At the end, the macrophages are deactivated 
and the inflammation resolves, this process can last several months. In brief, this 
sequence will provoke the axon dieback (classical macrophages) and remyelination, 
axon regeneration and the reduction of the dieback [143].

2.5.3 Macrophage and microglia in spinal cord injury

The manipulating macrophages facilitate maturation events typical of normal 
healing, for this reason it has been studied several methods to activate alternative 
macrophages and another strategy is better to improve the normal healing response 
by blocking certain pro-inflammatory mechanisms (Table 3).

3. Conclusions

The beneficial effects of cultured cells transplantation or transference in SCI 
have been demonstrated by numerous investigators and they are one of the main 
hopes for developing an effective treatment for SCI. This may be due to their 
great potential to amplify and genetically manipulate them in vitro, as well as all 
the complicated functions in axonal regeneration they possess. Furthermore, the 
development of cell transplantation derived from precursors show a higher ability 
to survive, integrate well with host tissue and support brainstem axon growth into 
and beyond the graft. However, the optimal source needs further investigation.

Recently, several clinical studies suggest their safety and feasibility, meaning 
that the transplantation of cultured cells have a significant therapeutic potential in 
persons with SCI. Nowadays, they are currently at an early stage of clinical testing 
following preclinical development.
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