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Chapter

Endothelial Cells in Asthma
Andrew Reichard and Kewal Asosingh

Abstract

The occurrence of new blood vessel formation in the airway wall of asthma 
patients was reported more than a century ago. It was long thought that angiogen-
esis in asthma was an epiphenomenon of airway inflammation. Therefore, little 
research has been performed on the role of endothelial cells in this disease. We are 
moving away from this misconception as an increasing number of clinical stud-
ies and findings in murine models of asthma demonstrate a causal link between 
angiogenesis in the airway and genesis of allergic asthma. In this chapter, we review 
the evidence supporting key roles for the endothelium and other angiogenic cells in 
the pathogenesis of asthma.

Keywords: endothelium, angiogenesis, VEGF, inflammation, PACs, Th2

1. Introduction

Allergic asthma is a chronic inflammatory disease of the conducting airways. 
The incidence of asthma is steadily increasing, and it has become a major health 
problem worldwide. The disease presents with airway inflammation, bronchocon-
striction, and remodeling of the airway wall including mucus or goblet cell meta-
plasia, airway fibrosis, increased microvascular permeability, and angiogenesis [1].

Generally, blood vessels exhibit a two-part response upon tissue inflammation. 
In the first phase, which lasts about 24 hours, functional changes occur in existing 
blood vessels as endothelial cells are activated and vessel permeability increases. 
Following this initial phase, vessel remodeling and angiogenesis occur, ensuring 
adequate blood and nutrient delivery to tissues for survival [2–4]. When inflamma-
tion becomes chronic, immune and inflammatory cells continually infiltrate tissues, 
causing simultaneous damage and repair and allowing the angiogenic response to 
become permanent [2, 5, 6].

Chronic inflammation and the associated angiogenic response play a role in 
several inflammatory diseases. For example, in inflammatory bowel disease (IBD), 
continuous ulceration and regeneration in the bowel rely on immune-driven 
angiogenesis which leads to the enhanced microvessel density associated with IBD 
[7, 8]. Psoriatic arthritis presents with torturous, elongated blood vessels along with 
an increase in the number of blood vessels of the synovial membrane, contribut-
ing to the joint inflammation which is a hallmark of the disease [9]. Rheumatoid 
arthritis also presents with increased vascularity and inflammation of the synovial 
membrane due to angiogenesis, but blood vessels exhibit normal branching and 
structure [10]. In cancer, tumors require angiogenesis in order to continue growth 
and are not hindered by the disorganized, leaky, torturous vessels that result from 
the associated inflammation [11].
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Over a century ago, researchers first observed the presence of excess small blood 
vessels crowded closely together in the asthmatic airway. These early studies aimed 
to determine the pathology of asthma and involved examining ejected sputum from 
asthmatic patients and extracted lungs from patients post mortem following sudden 
asphyxic asthma death (SAAD), or death by asthma attack. In addition to finding 
excess small blood vessels, these early studies also showed thickening and scarring 
of the bronchial wall, accumulation of leukocytes and eosinophils in the asthmatic 
airway, and the formation of dense, mucus-filled plugs or blockages in the lumen 
of the airway [12]. A subsequent study identified a dense exudate located in the 
bronchial lumen, likely similar to those masses observed a half century earlier, con-
taining accumulations of eosinophils which were recruited to the airway [13]. This 
study also uncovered other features now firmly associated with angiogenesis and 
asthma, including dilated capillary blood vessels and swollen, activated endothelial 
cells. Around the same time, allergic inflammation in the asthmatic airway was also 
found to contribute to the formation of the dense exudate along with vessel engorge-
ment, dilation, and permeability [14, 15]. Since these seminal studies, it has become 
well established that along with these symptoms, asthma presents with angiogenic 
remodeling of the vascular bed throughout the bronchial wall [1, 16]. Another study 
reported that angiogenesis is initiated in the early phases of adult asthma, suggesting 
that this process may play a role in the genesis of the disease [17].

Like in any other inflammatory diseases, the airway endothelium plays a clas-
sical role in asthmatic airway inflammation by recruiting inflammatory cells. 
Angiogenesis exacerbates this inflammatory response by facilitating the influx of 
inflammatory cells to the lungs through the newly formed blood vessels, and the 
permeability of these new vessels contributes to airway edema due to vessel leak 
[18–21]. Inflammatory cells arriving in the lungs migrate through the endothelial 
layer into the airway walls and induce tissue damage via the release of various 
mediators [22]. When specific endothelial cell adhesion molecules are lacking, 
inflammatory cell influx into the lungs decreases, resulting in reduced transendo-
thelial migration and a reduction of airway hyperresponsiveness [23]. Thus, the 
surface receptors of endothelial cells in the lungs are a potential target for prevent-
ing airway inflammation and bronchoconstriction. This review is focused on 
angiogenic mechanisms in asthma, beyond their classical roles in the recruitment of 
immune cells.

2. Angiogenesis and its mechanism relevant to asthma

Neovascularization is the formation of new blood vessels, including vasculo-
genesis, arteriogenesis, and angiogenesis [1, 24, 25]. Angiogenesis is the formation 
of new blood vessels as an extension of pre-existing vessels. Under conditions of 
homeostasis, a balance exists between angiogenic activators and inhibitors, and a 
state of vascular quiescence is maintained in which there is no net change in vascu-
larization [1].

Patients with asthma are no longer maintaining vascular quiescence in the 
bronchial wall and thus have reached a pro-angiogenic state. This pathological 
angiogenesis occurs due to overproduction of angiogenic factors, underproduction 
of inhibitors, or a combination of each of these issues, leading to increased vascu-
larization [1]. Increased numbers of blood vessels in the bronchial wall is strongly 
correlated to the severity of asthma [19–21]. Increased vascularity in the airway and 
the increased vessel permeability which occurs concurrently contribute to the thick-
ening of the inner airway wall and the development of airway edema [18, 19]. These 
symptoms lead to narrowing of the airway lumen which reduces airflow and leads to 
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the obstructive symptoms of asthma [18–21, 26]. In healthy patients, airway smooth 
muscles contract, causing the luminal boundary to buckle. The luminal wall conforms 
to a distinct folding pattern which allows normal lung function. When the airway wall 
thickens as a result of asthma, fewer luminal folds are able to form upon contraction 
and buckling, leading to the airway obstruction observed in asthmatic patients [27].

The most studied angiogenic factor associated with increased airway vascular-
ity in asthma is vascular endothelial growth factor (VEGF) [28]. Angiogenesis is 
dependent upon VEGF and its tyrosine kinase receptors (VEGFR) [29]. The VEGF 
family consists of VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth 
factor (PlGF) [30]. The members of the VEGF family bind to one or multiple types 
of VEGFR, which are denoted as VEGFR-1, VEGFR-2, and VEGFR-3 [30]. Each 
VEGFR is predominantly expressed on specific cell types: VEGFR-1 on mono-
cytes and macrophages, VEGFR-2 on vascular endothelial cells, and VEGFR-3 
on lymphatic endothelial cells and endothelial cells of sprouting blood vessels 
[31]. However, each receptor type plays multiple roles in angiogenesis and other 
processes through lower level expression on other cell types and through binding 
multiple ligands of the VEGF family. VEGFR-1, the only receptor which binds PlGF 
and VEGF-B, plays a role in controlling angiogenesis through functions associated 
with both endothelial and non-endothelial cells [32]. VEGFR-1 and VEGFR-2 
both bind to VEGF-A, which is the prototypical member of the VEGF family and 
is often denoted as simply VEGF [32]. VEGFR-2 has been shown to be the primary 
mitogenic receptor for VEGF in the angiogenesis pathway, binding VEGF which 
has been released by nearby tissues in a paracrine fashion [33, 34]. VEGFR-2 and 
VEGFR-3 each bind to VEGF-C and VEGF-D, inducing angiogenic and lymphan-
giogenic activity [32]. It is important to note that VEGF-C, while commonly viewed 
as controlling lymphangiogenesis specifically, can also induce blood vessel angio-
genesis by stimulating endothelial cell migration and proliferation when binding to 
VEGFR-3 on blood vessel endothelial cells [35–38]. Blocking VEGFR-3 through spe-
cific antagonistic antibodies has been shown to decrease the number of proliferating 
endothelial cells, directly linking this receptor to angiogenesis [39]. VEGF is also 
responsible for activating the extracellular signal-regulated kinase (ERK) pathway 
[40]. The ERK pathway helps to control migration, proliferation, and apoptosis of 
endothelial cells and therefore plays a significant role in angiogenesis [41].

Two cell types directly involved in angiogenesis are pro-angiogenic hematopoi-
etic progenitor cells and endothelial colony-forming cells. Pro-angiogenic hemato-
poietic progenitor cells (PACs) are a heterogeneous population of cells serving in a 
paracrine function to promote angiogenic activity. This heterogeneous population 
of pro-angiogenic cells is made up of subsets of hematopoietic progenitor cells but 
can also include mature blood cells such as monocytes [42–45]. The hematopoi-
etic stem or progenitor cells are typically committed to the myeloid lineage and 
stimulate local angiogenic responses through a paracrine release of growth factors 
[46–50]. PACs are known to play a significant role in asthma due to their pro-
angiogenic activity [49, 51–55]. Endothelial colony-forming cells (ECFCs), some-
times referred to as late outgrowth endothelial cells (OECs), are true endothelial 
cell precursors which proliferate to form new blood vessels as part of the angiogenic 
process [42–45, 56]. ECFCs are rare in circulation but incorporate into existing 
microvessels, functioning as the building blocks of new vasculature by dividing and 
proliferating quickly [1, 46–48, 57]. ECFCs and PACs participate synergistically 
in the process of neovascularization, and both cell types are required in an angio-
genic response [58]. These two cell types were originally collectively referred to as 
endothelial progenitor cells (EPCs) [59]. However, it became apparent that a variety 
of blood and endothelial cells were being grouped together under this umbrella 
term [60, 61]. The lineage relationships among EPCs that led to their suggested 
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reclassification and the removal of this umbrella term have been reviewed [42]. 
PACs and ECFCs do in fact share a common embryonic origin, the hemangioblast, 
which is capable of developing into both hematopoietic and endothelial precursor 
cells [62]. Hemangioblasts have been shown to play a significant role in embryologic 
development as bipotent stem cells and have recently been found to remain active 
during adult development, most notably in the bone marrow [62]. It has been 
proposed that the synergy and dependence between PACs and ECFCs observed in 
angiogenesis are a result of the common developmental origin of the vascular and 
hematopoietic system, centered on the hemangioblast [26]. PACs and ECFCs also 
share similar functions, cell markers, and in vitro phenotypes, again most likely 
stemming from their common origin [26]. However, more recent analysis has 
revealed that PACs are in fact hematopoietic cells derived from the bone marrow 
which differ from the ECFCs studied in angiogenesis [42, 49, 56, 63, 64]. This leads 
us to the current classification used to distinguish the two cooperating but distinct 
cell types involved in asthma-related angiogenesis.

Recruitment of PACs into the lungs is an early step in initiating airway wall 
angiogenesis in asthma. C-X-C motif chemokine receptor 2 (CXCR2) and C-X-C 
motif chemokine receptor 4 (CXCR4) are important receptors in inflammatory and 
angiogenic pathways [55, 65, 66]. CXCR2 and CXCR4 are expressed by PACs and 
vascular endothelial cells and are activated by one of eight known ligands  
[54, 56]. These ligands are released within hours of lung allergen exposure and act 
as chemoattractants to promote the activation and lung-homing of PACs [54, 55]. 
The accumulation of PACs in the lungs and perivascular tissue promotes inflamma-
tion and accumulates VEGF, leading to increased angiogenesis [67–69]. Blocking 
CXCR2 receptors has been shown to reduce the accumulation of PACs in the lungs 
and the occurrence of airway angiogenesis, proving the essential nature of recruit-
ing PACs in the angiogenic pathway [70].

Another receptor that has been shown to play a pivotal role in pathological angio-
genesis is C-C motif chemokine receptor 3 (CCR3). CCR3 is expressed by angiogenic 
endothelial cells and eosinophils and acts as a receptor for eotaxin [53, 71–73]. Eotaxin 
is a chemokine expressed by endothelial cells, epithelial cells, and PACs, among 
others, and presents at particularly high levels in the lung endothelium in asthmatic 
patients and allergen-exposed mice [53]. Eotaxins have traditionally been known 
to act as the major chemoattractant of eosinophils, which contribute to the airway 
inflammation in allergic asthma. Asthmatic patients are therefore known to express 
higher levels of eotaxins [52]. However, eotaxins have also been shown to induce 
migration and angiogenic tube formation by CCR3-expressing lung endothelial cells 
[72]. This confirms the role of eotaxins as major angiogenic factors, alongside VEGF, 
contributing to airway remodeling in allergic asthma.

3. Animal models

Murine models are utilized to study the underlying mechanisms of asthma and 
to conduct preclinical testing of novel therapeutic strategies. Allergen exposure in 
murine models allows the induction of an allergic response in a controlled set-
ting that is meant to resemble the symptoms of asthma seen in patients. This is 
an insightful alternative to observing established asthma in clinical studies. Two 
common murine models of allergic asthma used in research are the house dust mite 
extract (HDME) model and the ovalbumin (OVA) model [52, 74–76].

Experiments in the OVA model showed that chronic allergen exposure induces 
mobilization and lung-homing of PACs, increasing vascularity of the airway wall 
through angiogenesis, endothelial activation, and airway resistance within hours 
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of allergen exposure [51–55, 77]. Blocking CXCR4 resulted in reduced lung-homing 
of PACs along with reduced airway inflammation and airway hyperresponsiveness, 
blunting the effects of OVA challenge [55]. Type 2 helper (Th2) cells are immune 
cells which contribute to the Th2-mediated inflammatory response in asthma 
following allergen challenge by promoting eosinophilia and stimulating the produc-
tion of specific cytokines involved in asthma pathogenesis [78–80]. These Th2 cells 
cooperate with type 1 helper (Th1) cells to contribute to the asthmatic phenotype 
[16, 81–83]. OVA challenge induces angiogenesis, promoting the Th2 inflammatory 
response, also known as the type 2 immune response, through the production of pro-
Th2 cytokines. Interleukin-25 (IL-25), also known as IL-17E, is an upstream master 
regulator of Th2-mediated inflammation [84–88]. IL-25 is expressed by various cell 
types, including epithelial and endothelial cells, mast cells, T cells, and eosinophils 
[84, 88–93]. It was recently shown that endothelial cells facilitate the type 2 immune 
response in asthma by producing IL-25. Th2 activation complements the release 
of thymic stromal lymphopoietin (TSLP) by lung-recruited PACs [51]. TSLP is a 
pro-Th2 cytokine expressed in endothelial cells, epithelial cells, neutrophils, macro-
phages, and mast cells which plays a role in the maturation of T cells and eosinophils 
[94, 95]. The combined effects of IL-25 and TSLP contribute to angiogenesis and 
eosinophilia by inducing the expression of eotaxins by PACs and other cell types [53].

More recent studies have utilized the HDME model, which is clinically relevant 
as house dust mite allergens are a potent inducer of asthma worldwide [96]. HDME-
exposed mice present with increased accumulation of PACs, increased vascularity 
of the airway, airway inflammation, and airway hyperresponsiveness [77, 97]. 
VEGFR-3 and its ligand VEGF-C are critical in new vessel sprouting in asthmatic 
angiogenesis [97]. VEGFR-3 is expressed exclusively in blood vessels actively 
undergoing angiogenesis, and this VEGFR-3 expression is known to increase when 
cells are exposed to HDME [97]. HDME exposure promotes differentiation and 
proliferation of PACs, induces secretion of VEGF-C, and upregulates protease-acti-
vated receptor 2 (PAR-2) [97–102]. PAR-2 is a key house dust mite allergen-sensing 
receptor mainly expressed on airway epithelial cells, endothelial cells, and dendritic 
cells [103–109]. PAR-2 initiates the Th2 inflammatory responses to HDME and is 
also an important regulator of angiogenesis [98, 99, 110]. House dust mite proteases 
penetrate deep into the airway mucosa, activating endothelial cells via PAR-2 and 
triggering the onset of angiogenesis in the airway [97]. This endothelial activation 
of PAR-2 induces the production of pro-Th2 cytokines including interleukin-1α 
(IL-1α) and granulocyte-macrophage colony-stimulating factor (GM-CSF)  
[109, 111–113]. IL-1α activates dendritic cells and controls the Th2 inflammatory 
response by inducing release of GM-CSF and TSLP by other cells [113]. GM-CSF 
activates dendritic cells which stimulate Th2 cells [113–118]. Together, these results 
show that house dust mite proteases induce angiogenesis, airway inflammation, and 
airway hyperresponsiveness through the activation of endothelial cells, mobiliza-
tion of PACs, and upregulation of VEGFR-3 and VEGF-C.

The timeline of the progression and development of angiogenesis has also been 
studied in murine asthma models. PACs are recruited to the lungs within a few 
hours of allergen challenge, creating a pro-angiogenic environment in the lungs 
within 48 hours. However, the influx of inflammatory cells, namely, eosinophils, 
observed in the asthmatic airway following allergen challenge does not reach its 
peak until 4–6 days after allergen challenge [16]. This indicates that angiogenesis 
starts in the lungs before bulk inflammation occurs, suggesting that endothelial cell 
activation in asthma occurs independently of inflammation and reinforcing the 
importance of researching the angiogenic mechanisms in asthma. Other reports 
confirmed that PAC recruitment and neovascularization occur prior to airway 
inflammation [1, 119].
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Recent research has focused on developing strategies to inhibit angiogenesis in 
the lungs as a novel therapeutic approach in asthma. Targeting PACs has proven 
to be an effective method of controlling angiogenesis in the asthmatic airway in 
a murine model. AMD3100, a chemokine receptor antagonist, was administered 
to mice during OVA allergen challenge. Accumulation of PACs in the airway was 
attenuated, as was eosinophilic inflammation, airway hyperresponsiveness, and 
airway vascularity due to the mitigation of angiogenesis [55]. Mice with estab-
lished asthma symptoms that were treated with AMD3100 exhibited only partially 
reversed airway hyperresponsiveness despite the reduction of PAC and eosinophil 
accumulation and angiogenesis. This suggests that early detection and treatment of 
asthmatic angiogenesis may be crucial for clinical benefit. Drugs that prevent tran-
sendothelial migration of inflammatory cells, limiting inflammation that typically 
occurs in the asthmatic airway as the disease progresses, have also been explored 
[22]. Theophylline is an anti-inflammatory natural small molecule commonly used 
in asthma treatment to prevent inflammation and transendothelial migration [120]. 
Montelukast is a drug which serves as a leukotriene receptor antagonist, preventing 
the inflammatory response in the airway as well [121]. VUF-K-8788 is a histamine 
H1 antagonist that is able to reduce eosinophil adherence to endothelial cells in vitro 
while also reducing eosinophil accumulation and adherence in the airway of a 
guinea pig asthma model, preventing airway inflammation associated with the 
disease [122]. Discovering new inhibitors to target PACs and endothelial cells in 
the asthmatic airway will be crucial in future animal studies to explore potential 
therapeutic interventions for pathological angiogenesis.

4. Clinical studies

Clinical studies of patients with allergic asthma have played a key role in devel-
oping the current knowledge of neovascularization in this disease. Endobronchial 
biopsies are commonly performed to quantify airway inflammation and airway 
remodeling. A biopsy punch is used to extract tissues from the airway wall which 
are then studied to assess the current state of a patient’s airway. For example, 
endobronchial biopsies have been used to compare VEGF mRNA levels in asthmatic 
and healthy control patients [123]. Increased VEGF mRNA indicates increased 
angiogenesis in asthmatic patients, as VEGF controls vascular remodeling of the 
airway through angiogenesis, as previously discussed. Increased VEGF mRNA 
levels in the airway wall may explain the elevated levels of VEGF in sputum and 
serum from asthmatic patients which correlate to the severity of the disease 
[124–129]. In another study, asthmatics presenting with airway inflammation and 
hyperresponsiveness underwent allergen inhalation prior to endobronchial biopsy. 
The endobronchial biopsy tissues showed increased presence of PACs in addition to 
elevated vessel numbers and size, indicative of angiogenesis [54]. Bronchoalveolar 
lavage (BAL) is another clinical technique used to quantify the presence of various 
cell types by flushing the bronchial and alveolar spaces with fluid in order to collect 
cells. For example, one BAL study compared the presence of PACs and total vessel 
density in asthmatic and healthy patients. Total vessel number was shown to be 
increased in the airway walls of asthma patients, as was the accumulation of PACs 
[17]. Increased vascularity observed in medium-sized airways in the lungs may 
contribute to airflow limitation, as an enhanced vascular network in the airway 
develops in early phases of chronic adult asthma [17].

Clinical studies of nitric oxide (NO) have also contributed to explaining endo-
thelial cell activation in asthma. NO in circulation originates from the endothelium, 
while exhaled NO originates in the epithelium. When patients underwent allergen 
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challenge by inhalation, a significant increase in serum NO levels was observed 
after 4 hours, while exhaled NO did not increase [53]. This indicates that endothe-
lial cells in the airway are activated prior to epithelial cells in the airway during a 
controlled asthma attack induced by inhaled allergens [53]. Thus, activation of the 
airway endothelium is one of the earliest responses to an induced asthma attack, 
triggering the vascular endothelium to release NO and mobilizing PACs to initiate 
angiogenesis.

5. Conclusion

Despite historical studies reporting angiogenesis in asthma more than a century 
ago, understanding of the endothelial contribution to asthma is still in its infancy. 
Clinical studies show a strong correlation between neovascularization and asthma 
severity. Whole-lung allergen studies suggest that airway inflammation and broncho-
constriction are preceded by rapid activation of the endothelium and accompanied 
by mobilization and recruitment of bone marrow-derived pro-angiogenic cells into 
the airway, resulting in angiogenesis. Murine model studies recapitulate the clinical 
findings and further indicate that endothelial cells are capable of sensing allergens 
just as the airway epithelium and dendritic cells do. Overall, a pro-Th2 angiogenic 
response may have a causal role in the genesis of allergic asthma (Figure 1).

Inhaled allergen proteases breach the airway epithelial barrier allowing them 
to penetrate into the airway mucosa. PAR-2 expressing bone marrow-derived 
PACs and lung-resident endothelial cells sense the mucosal presence of house dust 
mite allergens and respond by releasing angiogenic factors (eotaxin, VEGF-A, 
VEGF-C) and Th2-promoting cytokines (TSLP, IL-1α, GM-CSF). Additional PACs 

Figure 1. 
Angiogenic mechanisms in asthma.
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