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Abstract

After an acquired brain injury, responses that induce cell death are activated; 
however, neuroprotective mechanisms are also activated. The relation between 
these responses determines the destination of the damaged tissue. This relation 
presents variations throughout the day; numerous studies have shown that the 
onset of a stroke occurs preferably in the morning. In the rat, ischemia causes more 
damage when it is induced during the night. The damage caused by a traumatic 
brain injury (TBI), in the rat, varies depending on the time of day it is induced. 
Minor behavioral damage has been reported when the TBI occurs during the night, 
a period that coincides with the wakefulness of the rat. It also has been observed 
that sleep deprivation accelerates the recovery. Our group has documented that 
this is due, in part, to a difference in the degree of activation of cannabinergic, 
GABAergyc, and glutamatergic systems.

Keywords: circadian rhythm, sleep deprivation, traumatic brain injury, stroke, 
cannabinergic system, glutamatergic system, GABAergyc system

1. Introduction

Recent research on acquired brain injury, the pathophysiological processes 
involved, as well as the mechanisms of morphological and functional recovery, 
have led, among other essential aspects, to the concept of neuroprotection [1]. This 
term refers to the use of any therapeutic modality that prevents or delays cell death 
resulting from a neuronal injury. In this sense, neuroprotection could be considered 
as a cytoprotection technique similar to cardioprotection or vasoprotection [2, 3].

Also, the term neuroprotection has been used to refer to self-protective responses 
that the body displays when it undergoes an acquired brain injury and tries to 
maintain the integrity and functionality of the brain [4]. The management of the 
term neuroprotection, in this sense, is more recent and emphasizes the balance of 
the body’s responses to an event of ischemia and/or traumatic brain injury (TBI).

In a TBI, two types of lesions can be identified. The primary lesion, which 
corresponds to mechanical damage to the parenchyma or the vasculature, occurs 
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at the moment of impact and is not reversible or curable and the secondary lesion, 
which corresponds to late effects, which occur hours to days post-trauma, involves a 
series of functional, structural, cellular, and molecular changes that cause neuronal 
damage. Among the events that occur, ischemia has been described. When the flow 
of blood to the brain tissue ceases, the entry of oxygen and nutrients and the exit 
of potentially toxic metabolites are severely damaged, resulting in biochemical 
changes in the affected brain area. There is a depletion of glucose and glycogen and 
failure of Na/K ATPase and other pumps, which result in a decrease in excitation 
threshold, presence of action potentials, release of excitatory neurotransmitters 
such as glutamate, massive entry of calcium, and activation of proteases, lipases, 
and nucleases, among other enzymes [5]. However, as mentioned earlier, neuropro-
tective responses are also induced; for example, the GABAergic and cannabinergic 
systems are activated [6, 7]. The balance between both responses will determine the 
outcome of the damaged tissue [4].

Indeed, the release of glutamate and the activation of its ionotropic receptors 
are the main events that result in cell death as a consequence of a TBI or cerebral 
ischemic attack with acute hypoxia [8–10]. The increase in GABAergic synaptic 
transmission may have neuroprotective effects against cerebral ischemia, and its 
inhibition increases the alterations induced by this event, while the inhibition of 
excitatory signals or excitatory neurotransmitters results in the cytoprotection of 
ischemic brain tissue [6, 11]. GABA mimetic drugs have a protective effect. Thus, 
administration of GABAA agonists such as benzodiazepines or muscimol attenuates 
the damage produced by a TBI [12, 13], while bicuculline, a GABAA antagonist, 
increases it [12].

In vitro and in vivo data suggest that the cannabinergic system is a component of 
mammalian neuroprotective mechanisms that an organism displays after suffering 
an insult such as a TBI [7, 14–17]. Endocannabinoid anandamide and 2-arachi-
donoylglycerol (2-Ag) increase after an acquired brain injury [14, 15] and serve as 
signaling mediators in integrating inhibitory and excitatory synaptic transmission, 
as they could regulate glutamate and GABA release [17]. Besides, recently it has 
been reported that 2-Ag keeps brain homeostasis by exerting anti-inflammatory 
effects in response to harmful insults [17].

2. Neuroprotection and photoperiod

The cerebral ischemic attack, similar to the heart attack, has a marked diurnal 
rhythm. Numerous studies have shown that the time of onset of cerebral vascular 
accidents, as well as transient ischemic attacks, occurs preferably between 6:00 
and 12:00 h in the morning that is, after the subject gets up and begins to pres-
ent activity [18–20]. Numerous variables have been mentioned as responsible for 
this circadian pattern, among which are postural changes, circadian variations of 
platelet aggregation, thrombolysis, blood pressure, cardiac rhythm, and circulating 
concentrations of catecholamines, whose maximum levels occur just in this period. 
In the rat, ischemia causes more significant damage if it is induced in the hours of 
darkness compared to the hours of light [21].

Our group has analyzed the severity of a TBI concerning the photoperiod. 
Using the rat as a model, we have found that the recovery from a TBI induced by 
the technique of “closed head injury” presents diurnal variations, recovery being 
better if the trauma occurs in the hours of darkness concerning daylight hours 
[22–24]. In other words, there seems to be a greater neuroprotection response in 
the hours of darkness. The fact that the functionality of the brain is not the same 
in the hours of light as in the hours of darkness is not surprising; many pieces of 
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evidence indicate the importance of rhythms in general, and in particular of the 
circadian rhythms in physiology. The presence of circadian rhythms has been 
explained as an adaptive response of the different organisms to the environmental 
variables. All species from cyanobacteria to humans have these rhythms that serve 
to anticipate the daily variations of different variables such as temperature, light, or 
food intake. It is accepted that virtually any physiological parameter that has been 
measured for a period of 24 h in humans has fluctuations [25, 26]. Several aspects 
of brain physiology, neuronal activity, and secretion of neurotransmitters, among 
others, change throughout the day, in such a way that the cerebral functions present 
circadian variations, dependent on the time of day, although it should be noted that 
they also depend on the sleep-wake cycle [27, 28]. Circadian rhythms in mammals 
are generated by the suprachiasmatic nucleus (SCN) of the hypothalamus, and both 
GABA and glutamate are intimately related to the function of this nucleus. Indeed, 
the photic information received by the SCN comes directly from the retina through 
the hypothalamic retinal tract, which releases glutamate, and indirectly through the 
hypothalamic geniculate tract that releases GABA and neuropeptide Y [29]; besides, 
GABA is one of the main neurotransmitters present in the SCN.

The variability in neuroprotection associated with the photoperiod can be 
explained by considering that the endogenous levels of practically any endogenous 
molecule present variations during the different phases of photoperiod. Diurnal 
variations have been reported in the circulating levels of heat shock proteins (HSPs) 
[30], as well as brain-derived neurotrophic factor (BDNF) and its receptors in the 
prefrontal cortex [31], of anandamide in cerebrospinal fluid, pons, hippocampus, 
and hypothalamus [32]. Our group found diurnal variations in CB1 cannabinoid 
receptor expression in the hippocampus [33], pons [34] and cerebral cortex [23]. 

Figure 1. 
Mechanisms of neuronal damage, endogenous neuroprotection, and its relationship with photoperiod, 
sleep deprivation for short periods, and sleep rebound. BDNF: brain-derived neurotrophic factor; CB1: 
cannabinoid receptor type 1; GABA: gamma-aminobutyric acid; HSP: heat shock proteins; NMDA: 
N-methyl-d-aspartate receptor; 2-Ag: 2-arachidonoylglycerol; and SWS: slow wave sleep. Data obtained 
from Refs. [4-7, 23, 24, 31-34, 71-86, 92-95].
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Besides, we recently reported diurnal variations in the expression of the NMDA 
receptor in motor cortex [24] (see Figure 1).

On the other hand, it has been reported that the TBI causes circadian dysregula-
tions of blood pressure, heart rate, body temperature [35], hormonal cycles [36], 
and the sleep-wake cycle [37, 38]. Patients who suffered a severe TBI do not have a 
perceptible sleep/wake rhythm on the first or second day after the injury, and only 
half of them will have recovered a consolidated day/night pattern of wakefulness 
and sleep, 8 days later. The recovery of a circadian organization is a predictive 
factor of patient wellness [39]. It has been suggested that patients with lesions in 
the hypothalamus and the SCN will have poor outcomes [40]. Recent data from the 
literature indicate that even a mild TBI causes damage in hypothalamic structural 
and functional connectivity [41]. Also, it has been shown that the expression of 
clock genes such as BMAL1 and Cry1 is disrupted in the SCN and hippocampus of 
rats that are subjected to TBI [42].

3. Neuroprotection and sleep

Numerous studies have documented sleep-wake disturbances (SWD) in adults 
post-TBI, with excessive diurnal somnolence and insomnia being the biggest com-
plaints. However, other sleep disorders such as narcolepsy, restless leg syndrome, 
parasomnias, and obstructive and central sleep apnea have also been reported [39]. 
Several studies indicate that hypersomnia following TBI has a prevalence varying 
between 50 and 85% [39, 43]. If the onset of hypersomnolence is from the traumatic 
event, it is called posttraumatic hypersomnia (PH) and is a hallmark of severe 
TBI. It has been reported that PH is related to direct injury to the alerting histamin-
ergic tuberomammillary neurons, which are reduced by approximately 40% after 
severe TBI [44]. Also documented are fatigue and hypersomnia following mild TBI 
associated with the injury of the lower portion of the ascending reticular activat-
ing system between the pontine reticular formation and the intralaminar thalamic 
nucleus, using diffusion tensor tractography [45].

Botchway et al. [46] reported that even 20 years after a TBI in childhood, young 
adulthood present increased risk of SWD and that this is more common after a 
moderate TBI than after a severe one.

Haboubi et al. [47] found that up to 46% of patients reported insomnia that 
persisted beyond 6 months after mild TBI. Insomnia is reported more frequently 
with milder forms of TBI injuries [48] and has been associated with head trauma 
involving lower frontal and anterior temporal regions, including the basal forebrain 
as it affects the area involved in sleep initiation [39, 49].

Zhou [41], using advanced quantitative magnetic resonance imaging techniques, 
showed that disruption of functional and structural hypothalamic connectivity in 
patients with mild TBI was associated with fatigue and sleep problems.

Hypersomnolence has been associated with a decrease in the number of hypo-
cretin-positive cells in experimental TBI models [50–52]. Also, an increased number 
of awakenings associated with an increase in reactive microglia in thalamic regions 
have been reported [53].

On the other hand, there are few data in the literature that support the neuro-
protective role of sleep or wakefulness. Although, when a child falls and hits his/
her head, a general recommendation says: “Do not let him sleep”; there is no reliable 
data in the literature to support that this sleep deprivation will have some protec-
tive effect. More informed recommendations indicate that if the child is sleepy, he/
she is allowed to sleep, but that he must be awakened every 2 h to verify that he/she 
speaks, moves the four extremities and that is oriented [54].
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It is worth noting that there is extensive literature that supports that sleep depri-
vation for prolonged periods impairs many physiological functions and causes death 
[55–58]. Total sleep deprivation (TSD) in rats causes deterioration in health whose 
end is death in a period between 11 and 32 days [56], while selectively rapid eye 
movement sleep deprivation (REMSD) causes death between 16 and 54 days [57].

Nevertheless, recent evidence suggests that sleep deprivation for shorter periods 
may be neuroprotective. Indeed, several studies in focal and global cerebral ischemia 
[59, 61, 65–67], cardiac arrest [60] or TBI [64, 68, 69] murine models have documented 
that both TSD [59, 61, 64–66, 69] and REMSD [60, 64, 67] have neuroprotective 
effects, whether they are applied before the insult [59–61, 65, 66] or after it [64, 67, 69] 
as summarized in Table 1. However, some studies indicate that sleep deprivation for 
short periods had no effect [68] or, its effect was deleterious [62, 63] (see Table 1).

As can be seen in Table 1, in some of the cases, sleep deprivation for short periods 
of time was applied before the noxious stimulus so it could be considered as a precon-
ditioning stimulus [70], that is, a stimulus that triggers the activation of the endog-
enous neuroprotection response and prepares the organism against a harmful event 
of greater wingspan. However, in other studies indicated in Table 1, sleep depriva-
tion for short periods was applied after the noxious stimulus, so it would rather act as 
a neuroprotective factor by delaying and/or decreasing the secondary lesion. In this 
sense, several reports in the literature suggest that sleep deprivation for short periods 
increase the expression of neuroprotective molecules like HSP, growth factors, and 
plasticity-related genes [71–73]. It also has been reported that TSD for short periods 
produces neurogenesis in the hippocampus [74, 75] (see Figure 1).

Another factor that could be participating in the neuroprotective role of sleep 
deprivation for short periods is the balance between glutamatergic and GABAergic 
systems, which both sleep deprivation and TBI produce. In the literature, there are 
reports that TBI increases both glutamate [76–78] and GABA [79]. Also, the expres-
sion of GABAA receptors [80, 81] and NMDA [82] is modified; there are also several 
reports that indicate that sleep deprivation for short periods changes the release of 
both glutamate and GABA. REMSD increases the level of glutamate [83], as well 
as that of GABA but reduces the glutamate/GABA ratio [84]. These modifications 
could be significant in events such as TBI or ischemia since they would be regulating 
the excitotoxicity produced by glutamate. They could also be correlated with reports 
showing that sleep deprivation for short periods modifies the expression and/or 
replacement of NMDA receptors [85, 86]. For example, McDermott [87] shows 
that the REMSD for 72 h increases the intracellular NMDA levels, which could be 
interpreted as a down-regulation in response to the increase of glutamate; in the 
same way, several investigations show that the sleep deprivation for short periods 
can be an event that prevents the glutamate toxicity mediated by NMDA receptors 
[88]. As for GABAA receptors, there are reports that sleep deprivation for short 
periods increases their expression [89, 90], and/or modifies the expression of some 
subunits, which may explain functional changes in GABAergic transmission [91].

The cannabinergic system could also be participating in the neuroprotective 
effect of sleep deprivation for short periods. It has been reported that circulating 
2-Ag increases with sleep deprivation [92].

Also, it is worth noting that TSD induces a subsequent increase or rebound in 
slow-wave or high-amplitude electroencephalographic activity during slow wave 
sleep (SWS) while REMD induces an increase or rebound in REMS [93], so it is 
possible that the sleep rebound is the neuroprotective factor. This is in agreement 
with the findings of Brager et al. [94] who utilized remote preconditioning to prevent 
damage in a focal brain ischemia model. They found that remote preconditioning 
was associated with an increase of SWS. Also, sleep rebound appears to reduce the 
cerebral cortex level of glutamate [83] and increase that of GABA [95]. Besides, we 
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have documented that the rebound after REMSD increases the expression of the CB1 
cannabinoid receptors in the rat pons [34], which could have a neuroprotective effect.

Also, during sleep rebound, the function of the glymphatic system is favored 
and therefore the elimination of toxic brain substances [96–98].

Reference Damage 

model

Sleep deprivation (method 

and schedule)

Main findings Outcome

Hsu et al. [59] Global 
cerebral 
ischemia 
in rat

TSD for 5 days before a 
transient global cerebral 
ischemia

Attenuation of the damage of 
pyramidal cells in the hippocampal 
CA1 and glial reactions

⇑

Weil et al. [60] Cardiac 
arrest in 
mice

48 h of REMSD immediately 
before cardiac arrest

Improved ischemic outcome. Lesser 
neuronal hippocampal damage and 
increased gene expression of IL-6 
and IL-10

⇑

Moldovan  
et al. [61]

Focal 
cerebral 
ischemia 
in rat

6 h of TSD immediately 
before focal cerebral 
ischemia

Decreased loss of functions and a 
smaller infarct volume

⇑

Gao et al. [62] Focal 
cerebral 
ischemia 
in rat

TSD for 12 h, 12 h after focal 
cerebral ischemia. TSD for 
12 h, for consecutive 3 days 
12 h after ischemia

Both sleep deprivation schedules 
increased the infarct volume and the 
number of damaged cells

⇓

Zunzunegui 
et al. [63]

Focal 
cerebral 
ischemia 
in rat

TSD for 12 h, for consecutive 
3 days 12 h after ischemia

Lower recovery of forearm motor 
skills, reduction in axonal sprouting, 
and synaptophysin expression

⇓

Martinez Vargas 
et al. [64]

TBI in rat REMSD and TSD for 24 h 
immediately after a  
moderate TBI

Increase in the neurobehavioral 
recovery and reduction in the 
histological damage

⇑

Cam et al. [65] Focal 
cerebral 
ischemia 
in rat

6 h of TSD immediately 
before focal cerebral 
ischemia

Reduction in infarct volume 
associated with an increase in the 
amount of SWS and REMS.

⇑

Pace et al. [66] Focal 
cerebral 
ischemia 
in rat

6 h of TSD immediately 
before focal cerebral 
ischemia

Reduction in infarct volume associated 
with a reduction in up-regulation of 
genes involved in cell cycle regulation 
and immune response.

⇑

Cheng et al. [67] Global 
cerebral 
ischemia 
in rat

REMSD for 12 h/day for 
3 days 48 h after global 
cerebral ischemia and 
reperfusion

Improvement in cognitive function, 
increased number of BrdU- and 
BrdU/NSE-positive cells as well as 
hippocampal BDNF expression

⇑

Caron and 
Stephenson [68]

TBI in rat TSD for 48 h or chronic sleep 
restriction (6 h of sleep/
day for 10 days) following 
mild TBI

TSD or CSR did not exacerbate the 
neuronal damage induced by TBI

=

Morawska  
et al. [69]

TBI in rat Increased sleep with 
sodium oxybate or TSD 
(6 h daily/5 d) starting 
1 day after TBI

Enhanced encephalographic slow-
wave activity. Markedly reduced 
diffuse axonal damage in the cortex 
and hippocampus, and improved 
memory impairment

⇑

SWS, slow wave sleep; REMS, rapid eye movement sleep; TBI, traumatic brain injury; and CSR, Chronic sleep restriction.

Table 1. 
REMSD, rapid eye movement sleep deprivation. TSD, total sleep deprivation.
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4. Sleep deprivation in humans

The TSD or REMSD data for short periods indicated in the previous section were 
obtained in animal models, but what is known in humans?

Recent studies indicate that our society is sleeping less and less and that this 
has a negative impact on health and wellbeing. Between 7 and 8 h/night of sleep is 
recommended in adults, although this time varies from person to person. Having 
an insufficient sleep in quantity or quality for multiple nights causes a debt of sleep 
that cannot be recovered and increases the risk of stroke, obesity, diabetes Mellitus 
type 2, and cardiovascular disease [99].

However, numerous studies have reported the effectiveness of TSD for one night 
in patients with depression; the first to report this were Pflug and Tolle, in 1971 
[100]. Subsequently, Vogel et al. [101] described that the REMSD was also effec-
tive. Gillin [102], in 1983, pointed out that of a total of 852 patients who were TSD 
or REMSD for one or more nights, 493 (57.9%) were reported to have “improved”, 
but it is recognized that this improvement in mood is transient and it is currently 
recommended that the TSD or REMSD be combined with sleep phase advance 
(SPA), pharmacotherapy, and sometimes also phototherapy [103].

Several studies have tried to find the mechanism by which the TSD or REMSD 
are effective in mood improvement. In this sense, some of the effects of sleep depri-
vation or the rebound could be considered as neuroprotective; for example, Davies 
et al. observed that TSD for 24 h increases the serum levels of tryptophan, taurine, 
and serotonin, which could explain, in part, the antidepressant effect of depriva-
tion [104]. It is worth noting that taurine has been related to cell volume changes 
triggered by different neurological diseases that produce secondary damage to 
ischemia [105]. This role is associated with its participation as osmolyte, which has 
been demonstrated by characterizing the increase in its extracellular concentration 
and its decrease in the intracellular one. Taurine can regulate the edema induced by 
the glutamate released during the excitotoxic cascade after a TBI. The nonvesicular 
release of taurine is an essential protective mechanism to prevent cell lysis, since, 
upon release to the extracellular environment, there is a change in the direction of 
mobilization of ions and water [106].

Hefti et al. [107] showed an increased expression of mGluR5 glutamate recep-
tor in the cingulate cortex, insula, medial temporal lobe, parahippocampal gyrus, 
striatum, and amygdala of healthy men after 33 h of TSD. Previously, some authors 
had reported that the activation of this receptor decreases the damage, using animal 
models of cerebral focal ischemia [108] and spinal cord injury [109].

Gorgulu and Caliyurt [110] demonstrated an increase in the concentration of 
serum BDNF in patients with depression treated with three overnight TSD over a 
week; nevertheless, in healthy subjects, TSD did not affect the level of BDNF.

In the course of TSD, the concentration of cortisol increases considerably as a 
result of stimulation of the hypothalamic-pituitary-adrenal axis. The rebound after 
TSD resulted in a significant reduction of cortisol and increase of growth hormone 
(GH) secretion driven by the increase of SWS [111]. Recently, neuroprotection has 
been identified as one of the functions of GH [112, 113].

Also, the level of thyroid hormones increases during sleep deprivation. It is the 
result of the stimulation of the hypothalamic-pituitary-thyroid axis [114]. It has 
also been described that thyroid hormones play a neuroprotective role in acute 
cerebrovascular disorders [115].

However, some studies show effects of TSD that could not be considered as 
neuroprotective; for example, Trivedi et al. [116] found that glutathione, ATP, 
cysteine, and homocysteine levels in plasma were significantly reduced as a result 
of one night of TSD, while Meier-Ewert et al. [117] reported that one night of TSD 
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increased serum C reactive protein concentrations. Also, one night of TSD causes an 
increase of serum concentration of interleukin 6 (IL-6), a proinflammatory cyto-
kine in depressive patients as in healthy subjects; but in healthy individuals sleep 
rebound increased the level of interleukin-1-receptor antagonist (IL-1RA) [118], 
which inhibits the action of the proinflammatory interleukins 1alpha and 1beta.

Some deleterious effects attributed to the TSD may be influenced by the depri-
vation method; for example, Gil-Lozano et al. [119] reported that overnight TSD 
with nocturnal light exposure disrupted the melatonin and cortisol profiles and 
increased insulin resistance. These alterations were not observed in TSD partici-
pants maintained under dark conditions.

5. Limitations

Studies on the impact of acute sleep deprivation and its neuroprotective effects 
in humans against acquired brain damage are scarce. However, studies performed in 
subjects without brain injury indicate the existence of neuroprotective mechanisms, 
as long as it is a TSD for short or acute periods (24 h). In order to propose sleep 
deprivation as a neuroprotective mechanism and incorporate it as part of the treat-
ment against TBI, more studies are still needed.

6. Perspectives

The importance of the TBI as a public health problem worldwide requires us to 
understand the pathophysiological changes underlying this neurological event, as 
well as the processes that favor the activation of endogenous neuroprotection, in 
order to apply them as a possible therapeutic strategy.

The previous evidence highlights the importance of considering the time 
of the day when acquired brain injury is established. The alterations found as a 
consequence of this event are heterogeneous and complex, ranging from molecular 
changes to behavioral modifications; as pointed before, TBI causes dysregulation 
of sleep-wake cycle and homeostasis unbalance including many neuropeptide and 
hormones changes.

In many of the alterations induced by an acquired brain damage, the participa-
tion of neurotransmission systems such as GABAergic, glutamatergic, and can-
nabinergic is fundamental. These, like all endogenous molecules, have a diurnal 
variation; such variations, in the same way, affect the sleep-wake cycle. Evidence in 
animal models of the neuroprotective effect of sleep deprivation for short periods 
encourages us to continue researching this.

Knowing the relationship between neuroprotection, photoperiod, and sleep, 
as well as the participation of the neurotransmission systems involved in the TBI, 
opens a window in their study as potential biomarkers or therapeutic targets. With 
this approach, it will probably benefit a higher number of patients with acquired 
brain damage.
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