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Chapter

Eco-Friendly and Facile Synthesis 
of Substituted Imidazoles via 
Nano Zirconia Catalyzed One-Pot 
Multicomponent Reaction of Isatin 
Derivatives with Ammonium 
Acetate and Substituted Aromatic 
Aldehydes under Solvent Free 
Conditions
Sundaram Singh and Shivam Bajpai

Abstract

An eco-friendly and highly efficient approach for the synthesis of substituted 
imidazoles via nano zirconia catalyzed multicomponent reaction of isatin deriva-
tives with ammonium acetate and aromatic aldehydes under solvent-free conditions 
has been developed. This approach can be mostly applied to medicinal chemistry 
due of the simple and readily available starting materials, effortless methodology, 
and biologically active nature of imidazoles. An additional gain of the suggested 
technique is the reusability of the nano ZrO2 catalyst.

Keywords: nano ZrO2 catalyst, multicomponent reaction, imidazole,  
solvent-free, Isatin

1. Introduction

Imidazole is a “1, 3-diazole” and is classified as an alkaloid. Imidazole (1) refers 
to the parent compound, whereas imidazoles are a class of heterocycles with similar 
ring structure, but varying substituents. This ring system is present in important 
biological building blocks, such as histidine (2), and the related hormone histamine 
(3). Imidazole can serve as a base and as a weak acid. Many drugs contain an 
imidazole ring, such as antifungal drugs and Nitroimidazole (4) [1–5].
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Imidazole derivatives are mostly used as organic resources [6, 7] and it also plays 
important roles in various types of biological activities [8, 9]. This multitalented 
applicability of Imidazole draws attention towards the importance of access to effi-
cient synthetic routes to well-designed and highly substituted imidazole derivatives.

Due to their impressive significance, various synthetic routes have been 
designed. Substituted imidazoles are generally prepared by microwave irradiated 
one pot three-component cyclocondensation of a 1, 2-diketone, α-hydroxy ketone 
or α-ketomonoxime with an aldehyde and ammonium acetate [10–13], ionic liquids 
[14, 15], refluxing in acetic acid [16], silica sulfuric acid [17, 18], Yb(OTf)3 [19], 
Yb(OPf)3 [20], iodine [21], Zr(acac)4 [22], InCl3·3H2O [23], heteropolyacid [24], 
sodium bisulfate [25], potassium aluminum sulfate (alum) [26], ceric ammonium 
nitrate (CAN) [27], (NH4)6 Mo7O24·4H2O [28], zeolite HY/silica gel [29], ZrCl4 
[30], polymer-supported ZnCl2 [31] and L-proline [32]. Moreover, they have 
also been prepared by the addition of substituted amino alcohol to a thioamide 
and subsequent oxidation with PDC or by the reaction of aryl nitriles and α,α-
dilithioarylnitromethanes or by multistep syntheses. p-TSA catalyzed synthesis of 
2,4,5-trisubstituted imidazoles from 1,2-diketone or α-hydroxyketone, aldehyde 
and ammonium heptamolybdate tetrahydrate in tetrabutylammonium iodide was 
given by Khodaei and co-workers [33].

Due to their potential utility, majority of these synthetic routes experience one 
or more severe disadvantages, such as difficult and intricate work-up and purifica-
tion, huge amounts of waste materials, strongly acidic conditions, occurrence of 
side reactions, low yields, high temperature, long reaction time and the use of 
expensive reagents. Hence, there is a great demand of a highly efficient protocol 
with mild reaction conditions to synthesize substituted imidazoles.

In recent times, metal nanoparticles are used as heterogeneous catalysts in organic 
synthesis mainly because they achieve the objectives of green and sustainable chem-
istry. Recently Scientists have done a lot of work to synthesize precise metal nanopar-
ticles. The new path is the coherent design and synthesis of very active and selective 
nanocatalysts by controlling the structure and composition of the active nanoparticles 
among all of them. The easiness of separation, recovery, and reuse of these NPs 
further enhance their attractiveness as green and sustainable catalysts [3, 34–45].

Recently, nano zirconia (ZrO2) has attracted considerable attention due to their 
wide applicability as a heterogeneous catalyst [46–51]. The catalytic activities and 
selectivities of nano zirconia are highly affected by their crystal phase (monoclinic 
and tetragonal) [52–54]. ZrO2 nanoparticle catalyst is a cheap, moisture stable, 
safe, reusable, and commercially available white powder is of big curiosity to 
many researchers. It has been revealed from the literature that numerous parallel 
applications of nano zirconia, as an effective catalyst in green/sustainable synthetic 
chemistry, have already been reported [55–67].

In view of the above and as a part of our research group to synthesize the biologi-
cally active compounds [68–72], it was thought worthwhile to synthesize some novel 
imidazoles fused with indole nucleus of biocidal interest because the combination 
of two or more different heterocyclic compounds in a single molecule frequently 
increases the biocidal profile amazingly. With the aim of getting targeted products, 
i.e., substituted imidazole a greener “NOSE” (nanoparticles-catalyzed organic 
synthesis enhancement) approach has been designed under solvent-free conditions.

2. Results and discussion

Imidazole derivatives 4a–s was synthesized by one pot multicomponent reaction 
of isatin derivatives 1a–g with ammonium acetate 2 and substituted benzaldehydes 
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3a–f in the presence of catalytic amount of ZrO2 NPs under solvent-free conditions 
at 110°C, in good to excellent yields (Scheme 1).

To optimize the reaction conditions, several parameters were tested. The cata-
lytic efficiency of the ZrO2 NPs was highly influenced by their amount (mol%). 
Therefore, a model reaction of isatin with ammonium acetate and benzaldehyde 
using different amounts of ZrO2 NPs was carried out (Table 1). It has been observed 
that there is a notable impact of the catalyst on the yield of product and in the 
absence of catalyst only poor yield was obtained after 120 min (Entry 1, Table 1). 
It was found that product yield is increased with increasing catalyst concentration. 
Only 5 mol% of catalyst was required to provide 60% yield in 60 min (Entry 2, 
Table 1). The best yield of 88% was obtained with 15 mol% of ZrO2 NPs (Entry 
5, Table 1). However, the reaction rate and product yield were not improved by 
further increase of catalyst concentration (>15 mol%) (Entry 6, Table 1).

To optimize the molar proportion of the reactant, the model reaction was 
carried out using different molar proportions of reactants (Table 2). A scrutiny of 
the table clearly shows that the best result was obtained using isatin, ammonium 
acetate, benzaldehyde in the molar proportion 1.0:5.0:1.0 at 110°C under solvent 
free conditions (Entry 5, Table 2).

To see the effect of temperature, the model reaction was examined under differ-
ent temperatures. Obviously, reaction rate and product yield both were increased 
with enhancing temperature from 50 to 110°C. This study shows that the 110°C was 
favorable temperature for the multicomponent reaction of isatin with ammonium 
acetate and benzaldehyde (Table 3).

Screening of solvent showed that solvent had a remarkable impact on the yield of 
product. It was observed that polar solvent provided better yield than nonpolar sol-
vent, but excellent yield was obtained without solvent in smaller time. This may be due 
to the competitive adsorption of the solvent with the substrate molecule on the catalyst 
surface; hence reaction under solvent-free conditions gives excellent yield in short 
reaction time (Entry 5, Table 4). Another reason is that the eutectic mixture having 
uniform distribution of the reactants brings the reacting species in close proximity to 
react in solvent free condition than in the presence of solvent (Entry 1–4, Table 4).

Under the optimized set of reaction conditions, the effect of type of ZrO2 (nano 
or bulk) was also examined using model reaction(Table 5). This important param-
eter was studied by using four concentrations 5, 10, 12 and 15 mol% of ZrO2. These 
data proved that particle size and surface area would be an important factor for the 
catalytic efficiency of the ZrO2 NPs.

The efficiency of the catalytic activity of the ZrO2 NPs with several other catalysts 
was compared and is summarized in Table 6. The result indicates that ZrO2 NPs was 
the best catalyst in terms of mol%, reaction time and percentage yield (Table 6).

Under the optimized reaction condition, the scope of this methodology was 
extended to the reaction of different isatin with a wide range of aromatic aldehydes. 
The findings reveal that the proposed methodology is equally applicable for the 
presence of both electron donating as well as electron withdrawing groups at the 
5-position of isatin moiety (Table 7).

Scheme 1. 
Nano ZrO2 catalyzed synthesis of imidazole derivatives.
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The model reaction was carried out to examine the reusability of the catalyst, 
After each reaction, catalyst was recovered by filtration, washed, air-dried and 
reused directly for the next time up to run no. 10.The results showed that there is no 
obvious loss in product yield in subsequent reuse which proves the reusability and 
recyclability of ZrO2 NPs (Table 8).

Entry Temp. °C Time % Yield

1 rt - No reaction

2 50 10 h Trace amount

3 60 6 h 65

4 70 4 h 70

5 80 1.5 h 78

6 90 55 min 84

7 100 45 min 86

8 110 30 min 88

9 120 30 min 88

Note: Bold values represent optimized reaction condition.

Table 3. 
Effect of temperature on the yield of the product 4a.

Entry Molar ratio of reactants %Yield

Isatin:ammoniumacetate:benzaldehyde

1 1.0:1.0:1.0 Trace amount

2 1.0:2.0:1.0 35

3 1.0:3.0:1.0 52

4 1.0:4.0:1.0 78

5 1.0:5.0:1.0 88

6 1.0:6.0:1.0 87

7 1.0:5.0:1.2 87

8 1.2:5.0:1.0 86

Note: Bold values represent optimized reaction condition.

Table 2. 
Effect of molar ratio of substrates on the yield of the product 4a.

Entry ZrO2 mol% Time (min.) %Yield

1 0 120 23

2 5 60 60

3 10 45 75

4 12 35 82

5 15 30 88

6 20 30 88

Note: Bold values represent optimized reaction condition.

Table 1. 
Effect of catalyst amount (mol%) on yield of the product 4a.
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The following mechanism was proposed for the formation of substituted 
imidazoles catalyzed by the ZrO2 NPs is given in Scheme 2. The reaction proceeds 
via the diamine intermediate [X]. Condensation of diamine with isatin derivatives 
followed by dehydration, and then rearrangement through the imino intermediate 
[Y] yielded the desired product.

Entry Solvents Time %Yield

1 Ethanol 10 h 68

2 Acetonitrile 10 h 59

3 Xylene 13 h 55

4 Tolune 18 h 52

5 Solvent free 30 min 88

Note: Bold values represent optimized reaction condition.

Table 4. 
Effect of solvents on the yield of the product 4a.

Type of ZrO2 Mol% % Yield

ZrO2 (Bulk) 5 42

Surface area: 6.95m2/g 10 51

Average particle size: 2 μm 12 56

15 66

ZrO2 (Nano) 5 59

Surface area: 44.70 m2/g 10 72

Average particle size: 20 nm 12 84

15 88

aReaction condition: Isatin, ammonium acetate & benzaldehyde (1.0, 5.0, 1.0) were stirred at 110°C to produce solid 
product.

Table 5. 
Effect of type of ZrO2 (bulk & nano) on the yield of the product 4a.

Type of catalyst Mol% Time (min.) % Yield

Bentonite clay 20 60 55

K-10 clay 20 60 58

PTSA 40 75 45

NH4Cl 30 75 44

EDTA 40 75 40

Iodine 30 60 53

Yb(OTf)3 25 60 51

TiO2 (Nano) 20 30 80

ZrO2 (Nano) 15 30 88

Note: Bold values represent optimized reaction condition.

Table 6. 
Effect of different catalysts on the yield of the product 4a.
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ZrO2 NPs were prepared and characterized by FTIR, XRD, SEM and TEM 
analysis. The BET surface area analyzer was used to calculate the specific surface 
area of synthesized ZrO2 NPs.

The molecular nature of the synthesized material was identified by the FT-IR 
spectrum of the ZrO2 sample. The FT-IR spectrum of ZrO2 NPs depends on the 
nature of the material, preparative procedures used, solid-state structure, and 
so forth. In FT-IR, a strong absorption peak at about 500 cm−1 region is due to 
the Zr–O vibration, which confirm the formation of ZrO2 structure while the 
peak at 751 cm−1 is due to stretching vibrations of Zr–O–Zr, prominent peak 
at 1340 cm−1 represents O–H bonding, peak at 1622 cm−1 perhaps owing to the 
adsorbed moisture and peaks at about 2855–2922 cm−1 region is due to stretching 
of O–H groups.

Table 7. 
Synthesis of substituted imidazoles (4a–s).
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The broad peaks with high intensity in XRD pattern of ZrO2 NPs indicates 
that the sample was highly crystalline. The peaks observed at 2θ = 24.2 (011), 28.2 
(−111), 31.4 (111), 35.0 (020), 40.5 (−112), 45.0 (211), and 55.4 (−311) are charac-
teristics peaks of monoclinic zirconia (JCPDS card no. 37–1484) while diffraction 
peak observed at 2θ = 30.3 (101), 50.3 (212) and 60.2 (211) are due to tetragonal 

Entry Number of cycle %Yield

1 - 88

2 1 88b

3 2 87b

4 3 86b

5 4 83b

6 5 80b

7 6 80b, c

8 7 80b

9 8 78b

10 9 75b

11 10 76b, c

aReaction condition: Isatin, ammonium acetate, benzaldehydes (1.0:5.0:1.0) and ZrO2 NPs (15 mol%) were stirred 
at 110°C to produce solid product.
bThe catalyst was washed and dried at 80–90°C for 12 h.
cZrO2 NPs were calcinated at 600°C for 3 h.

Table 8. 
Reusability and recyclability of ZrO2 NPs catalysta.

Scheme 2. 
Proposed mechanism for the formation of substituted imidazoles 4a–s.
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zirconia (JCPDS card no. 79-1769). The broadening of peaks shows the smaller 
particle size of ZrO2 NPs (Figure 1).

Morphological studies were done with the help of SEM and TEM analysis of 
600°C calcinated ZrO2 NPs sample that are shown in Figures 2 and 3, respectively. 
SEM analysis shows that NPs are non-homogenous and agglomerated and it also 
indicates the spherical nature and nano size (nm regime) of the ZrO2 nanoparticles 

Figure 1. 
XRD spectra of ZrO2 NPs.

Figure 2. 
SEM image of ZrO2 NPs.

Figure 3. 
TEM image of ZrO2 NPs.
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but size could be finely decided from TEM. For the purpose, TEM of sample has 
been shown in Figure 3.

As it is clear from TEM micrograph of sample, some agglomeration of the 
NPs, has been seen due to presence of different m- and t-phases in the sample. It 
was also observed that the sizes of the particles are of the order 20 nm along with 
agglomeration.

BET surface area analyzer was used to calculate the surface area of synthesized 
ZrO2 NPs by nitrogen absorption which was found to be 44. 70 m2/g.

3. Experimental

3.1  Typical procedure for the synthesis of ZrO2 NPs

0.075 M solution of ZrOCl2.8H2O was prepared and then precipitated with 
NH4OH (25%) with continuous stirring on a magnetic stirrer till the PH raises in 
the range of 10–10.5.This resulted in the formation of precipitate of zirconium 
hydroxide. The precipitate was filtered and washed with double distilled water 
until traces of chloride ion were completely removed from the filtrate. Complete 
removal of chloride ion from filtrate was checked by titrating it with AgNO3 solu-
tion using potassium chromate as indicator. Now, the precipitate was dried in oven 
at 80–90°C for 24 h and calcinated at 600°C for 3 h in order to formation of white 
nano zirconia powder.

3.2 General procedure for the synthesis of substituted imidazoles 4a-s

To a mixture of isatin derivatives 1a–g (1 mmol), ammonium acetate 2 
(5 mmol), substituted aromatic aldehydes 3a–f (1 mmol), 15 mol% of ZrO2 NPs 
was added (Scheme 1). The mixture was heated and stirred at 110°C for 30 min. 
The progress of the reaction was monitored by thin layered chromatography 
(n-hexane:ethyl acetate, 1:1). After completion, 20 ml acetone was added to the 
reaction mixture; the catalyst was removed by filtration and washed with xylene 
and acetone. Then, 50 ml of double distilled water is added to the liquid portion. 
This resulted in the formation of precipitate of products 4a–s. The precipitate was 
filtered, dried and recrystallized with ethanol.

3.2.1 2-Phenyl-3,4-dihydroimidazo[4,5-b]indole (4a)

Brownsolid, IR (KBr) υ: 3400, 3209, 3019, 2964, 1660, 1614, 1567, 1484, 1316, 
1210, 1171, 1010, 877, 742, 653, 580 cm−1. 1H NMR (300 MHz, DMSO) δ: 7.80–8.86 
(m, 9H, aromatic protons), 9.15 (s, 1H, NH), 9.66 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, DMSO) δ: 124.0, 126.7, 127.5, 130.2, 130.7, 132.0, 133.7, 135.5, 139.1, 
148.2, 160.9 ppm. Anal. Calcd for C15H11N3: C, 77.24; H, 4.74; N, 18.01 Found C, 
77.20; H, 4.76; N, 18.03.

3.2.2 7-Chloro-2-phenyl-3,4-dihydroimidazo[4,5-b]indole (4b)

Brownsolid, IR (KBr) υ: 3364, 3190, 2981, 2964, 1648, 1609, 1559, 1447, 1311, 
1199, 1143, 1019, 872, 744, 651, 566 cm−1. 1H NMR (300 MHz, CDCl3) δ: 7.51–8.59 
(m, 8H, aromatic protons), 9.14 (s, 1H, NH), 9.45 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, CDCl3) δ: 123.9, 125.7, 128.5, 128.6, 130.3, 130.8, 132.7, 135.0, 137.5, 
149.2, 159.4 ppm. Anal. Calcd for C15H10ClN3: C, 67.28; H, 3.78; N, 15.72. Found C, 
67.32; H, 3.76; N, 15.70.
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3.2.3 2-(2-Nitrophenyl)-3,4-dihydroimidazo[4,5-b]indole (4c)

Brownsolid, IR (KBr) υ: 3332, 3201, 2995, 2917, 1658, 1623, 1549, 1485, 1348, 
1280, 1176, 1068, 864, 708, 667, 544 cm−1. 1H NMR (300 MHz, DMSO) δ: 7.61–
8.69 (m, 8H, aromatic protons), 9.67 (s, 1H, NH), 9.94 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, DMSO) δ: 123.8, 126.7, 128.8, 129.8, 130.1, 131.8, 135.4, 135.8, 135.9, 
148.3, 160.7 ppm. Anal. Calcd for C15H10N4O2: C, 64.74; H, 3.62; N, 20.13 Found C, 
64.69; H, 3.65; N, 20.14.

3.2.4 7-Chloro-2-(2-nitrophenyl)-3,4-dihydroimidazo[4,5-b]indole (4d)

Brownsolid, IR (KBr) υ: 3399, 3229, 2916, 2885, 1645, 1600, 1539, 1457, 1329, 
1253, 1162, 1027, 885, 703, 647, 553 cm−1. 1H NMR (300 MHz, CDCl3) δ: 7.66–8.36 
(m, 7H, aromatic protons), 8.96 (s, 1H, NH), 9.50 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, CDCl3) δ: 123.4, 123.8, 124.8, 127.1, 128.0, 128.6, 129.4, 133.9, 134.1, 
134.4, 139.7, 148.7, 150.4, 160.6 ppm. Anal. Calcd for C15H9ClN4O2: C, 57.60; H, 2.91; 
N, 17.91 Found C, 57.51; H, 3.0; N, 17.94.

3.2.5 2-(3-Nitrophenyl)-3,4-dihydroimidazo[4,5-b]indole (4e)

Brownsolid, IR (KBr) υ: 3315, 3194, 3066, 2978, 1662, 1623, 1572, 1482, 1353, 
1286, 1135, 1025, 832, 797, 661, 542 cm−1. 1H NMR (300 MHz, DMSO) δ: 7.58–8.55 
(m, 8H, aromatic protons), 8.97 (s, 1H, NH), 9.67 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, DMSO) δ: 122.3, 123.6, 125.2, 127.9, 128.4, 129.7, 130.4, 134.4, 134.5, 
135.2, 139.0, 147.6, 161.7 ppm. Anal. Calcd for C15H10N4O2: C, 64.70; H, 3.63; N, 
20.16 Found C, 64.51; H, 3.72; N, 20.23.

3.2.6 7-Chloro-2-(3-nitrophenyl)-3,4-dihydroimidazo[4,5-b]indole (4f)

Brownsolid, IR (KBr) υ: 3385, 3211, 3003, 2959, 1646, 1603, 1538, 1458, 1367, 
1248, 1122, 1022, 831, 741, 635, 564 cm−1. 1H NMR (300 MHz, DMSO) δ: 7.77–8.83 
(m, 7H, aromatic protons), 9.13 (s, 1H, NH), 9.62 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, DMSO) δ: 124.0, 126.6, 127.5, 127.6, 130.2, 130.7, 132.0, 133.6, 135.4, 
139.1, 148.2, 160.8, 160.9 ppm. Anal. Calcd for C15H9ClN4O2: C, 57.61; H, 2.90; N, 
17.92 Found C, 57.67; H, 2.90; N, 17.90.

3.2.7 2-(3-Chlorophenyl)-3,4-dihydroimidazo[4,5-b]indole (4g)

Brownsolid, IR (KBr) υ: 3405, 3217, 2948, 2909, 1671, 1617, 1568, 1454, 
1371, 1283, 1134, 1018, 892, 754, 641, 577 cm−1. 1H NMR (300 MHz, DMSO) 
δ: 7.60–8.56 (m, 9H, aromatic protons and 1H, NH), 9.69 (s, 1H, NH) ppm. 13C 
NMR (75.45 MHz, DMSO) δ: 123.8, 126.6, 128.8, 128.7, 130.1, 131.0, 131.6, 135.2, 
137.0, 148.4, 160.6 ppm. Anal. Calcd for C15H10ClN3: C, 67.30; H, 3.77; N, 15.70 
Found C, 67.29; H, 3.75; N, 15.70.

3.2.8 7-Chloro-2-(3-chlorophenyl)-3,4-dihydroimidazo[4,5-b]indole (4h)

Brownsolid, IR (KBr) υ: 3398, 3227, 2977, 2893, 1664, 1605, 1551, 1477, 1358, 
1242, 1163, 1011, 844, 743, 650, 567 cm−1. 1H NMR (300 MHz, CDCl3) δ: 
7.62–8.31 (m, 7H, aromatic protons), 8.90 (s, 1H, NH), 9.42 (s, 1H, NH) ppm. 13C 
NMR (75.45 MHz, CDCl3) δ: 124.1, 125.8, 126.6, 128.6, 129.8, 130.3, 130.7, 133.2, 
134.8, 135.2, 139.3, 149.0, 160.5 ppm. Anal. Calcd for C15H9Cl2N3: C, 59.62; H, 3.00; 
N, 13.91 Found C, 59.52; H, 3.05; N, 13.89.
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3.2.9 2-(4-Chlorophenyl)-3,4-dihydroimidazo[4,5-b]indole (4i)

Brownsolid, IR (KBr) υ: 3362, 3255, 3015, 2882, 1669, 1620, 1565, 1482, 1375, 
1235, 1140, 1026, 890, 777, 663, 526 cm−1. 1H NMR (300 MHz, CDCl3) δ: 
7.48–8.58 (m, 8H, aromatic protons), 9.45 (s, 1H, NH), 10.16 (s, 1H, NH) ppm. 13C 
NMR (75.45 MHz, CDCl3) δ: 123.3, 127.8, 127.9, 128.7, 129.7, 134.9, 135.6, 136.2, 
149.7, 161.3 ppm. Anal. Calcd for C15H10ClN3: C, 67.30; H, 3.77; N, 15.70 Found C, 
67.31; H, 3.75; N, 15.73.

3.2.10 7-Chloro-2-(4-chlorophenyl)-3,4-dihydroimidazo[4,5-b]indole (4j)

Brownsolid, IR (KBr) υ: 3386, 3233, 3047, 2960, 1657, 1612, 1558, 1435, 1348, 
1282, 1153, 1019, 871, 742, 654, 552 cm−1. 1H NMR (300 MHz, CDCl3) δ: 7.46–8.54 
(m, 7H, aromatic protons), 8.99 (s, 1H, NH), 9.35 (s, 1H, NH) ppm. 13C NMR 
(75.45 MHz, CDCl3) δ: 123.9, 125.8, 128.8, 129.8, 130.3, 133.0, 135.2, 136.0, 137.1, 
149.1, 159.5 ppm. Anal. Calcd for C15H9Cl2N3: C, 59.62; H, 3.00; N, 13.91 Found C, 
59.55; H, 3.10; N, 13.90.

3.2.11 2-(4-Methoxyphenyl)-3,4-dihydroimidazo[4,5-b]indole (4k)

Brownsolid, IR (KBr) υ: 3351, 3138, 3001, 2944, 2881, 1667, 1619, 1575, 1450, 
1371, 1284, 1157, 1021, 863, 743, 654, 534 cm−1. 1H NMR (300 MHz, DMSO) δ: 
4.00 (s, 3H, CH3), 7.26–8.69 (m, 9H, aromatic protons and 1H, NH), 9.72  
(s, 1H, NH) ppm. 13C NMR (75.45 MHz, DMSO) δ: 56.9, 122.2, 123.2, 125.9, 
127.7, 127.4, 127.9, 128.7, 129.0, 129.6, 130.7, 131.2, 131.4, 131.5, 138.5, 139.7, 140.1, 
143.9, 145.8, 154.6 ppm. Anal. Calcd for C16H13N3O: C, 72.99; H, 4.98; N, 15.96 
Found C, 72.91; H, 5.04; N, 15.95.

3.2.12 7-Chloro-2-(4-methoxyphenyl)-3,4-dihydroimidazo[4,5-b]indole (4l)

Brownsolid, IR (KBr) υ: 3370, 3259, 2991, 2911, 1675, 1614, 1558, 1480, 1436 
1377, 1291, 1186, 1049, 869, 745, 651, 522 cm−1. 1H NMR (300 MHz, CDCl3) δ: 
3.61 (s, 3H, CH3), 7.44–8.47 (m, 8H, aromatic protons), 8.58 (s, 1H, NH), 9.36 (s, 
1H, NH) ppm. 13C NMR (75.45 MHz, CDCl3) δ: 61.8, 122.16, 122.29, 124.0, 125.3, 
126.6, 130.1, 130.4, 132.3, 133.9, 135.5, 138.5, 148.1, 148.2, 157.8 ppm. Anal. Calcd for 
C16H12ClN3O: C, 64.54; H, 4.06; N, 14.11 Found C, 64.70; H, 4.00; N, 14.10.

3.2.13 1-(2-(3-Nitrophenyl)imidazo[4,5-b]indol-4(3H)-yl)ethanone (4m)

Brownsolid, IR (KBr) υ: 3389, 3266, 2978, 2935, 1694, 1645, 1616, 1571, 1467, 
1346, 1224, 1133, 1021, 823, 744, 641, 572 cm−1. 1H NMR (300 MHz, CDCl3) δ: 
1.91 (s, 3H, CH3), 7.22–8.51 (m, 8H, aromatic protons), 9.40 (s, 1H, NH) ppm. 13C 
NMR (75.45 MHz, CDCl3) δ: 23.7, 122.1, 122.4, 123.2, 123.5, 124.8, 127.2, 127.4,  
127.6, 128.2, 129.7, 130.1, 130.9, 133.0, 134.1, 134.4, 135.6, 138.0, 141.0, 148.7, 
150.4, 160.3, 172.2 ppm. Anal. Calcd for C17H12N4O3: C, 63.75; H, 3.78; N, 17.49 
Found C, 63.68; H, 3.88; N, 17.52.

3.2.14 1-(2-(3-Chlorophenyl)imidazo[4,5-b]indol-4(3H)-yl)ethanone (4n)

Brownsolid, IR (KBr) υ: 3367, 3215, 2947, 2923, 1692, 1662 1607, 1580, 1477, 
1359, 1272, 1144, 1042, 807, 735, 653, 546 cm−1. 1H NMR (300 MHz, CDCl3) δ: 
1.25 (s, 3H, CH3), 7.34–8.11 (m, 8H, aromatic protons), 9.36 (s, 1H, NH) ppm. 13C 
NMR (75.45 MHz, CDCl3) δ: 23.6, 122.5, 124.1, 125.3, 126.6, 130.1, 130.4, 130.7, 
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132.3, 133.9, 134.6, 135.5, 138.5, 148.1, 148.2, 157.8, 160.9, 166.2 ppm. Anal. Calcd for 
C17H12ClN3O: C, 65.92; H, 3.90; N, 13.57 Found C, 66.01; H, 3.95; N, 13.47.

3.2.15 1-(2-(4-Chlorophenyl)imidazo[4,5-b]indol-4(3H)-yl)ethanone (4o)

Brownsolid, IR (KBr) υ: 3350, 3285, 3011, 2935, 1685, 1654 1611, 1572, 1485, 
1455, 1343, 1284, 1132, 1062, 899, 783, 659, 531 cm−1. 1H NMR (300 MHz, CDCl3) 
δ: 1.66 (s, 3H, CH3), 7.35–8.12 (m, 8H, aromatic protons), 9.37 (s, 1H, NH) ppm. 
13C NMR (75.45 MHz, CDCl3) δ: 23.5, 123.3, 125.6, 127.2, 128.1, 128.4, 128.7, 
129.0, 129.2, 129.5, 133.1, 134.3, 134.6, 134.7, 136.4, 137.0, 142.0, 150.5, 160.2, 
160.9 ppm. Anal. Calcd for C17H12ClN3O: C, 65.92; H, 3.90; N, 13.57 Found C, 65.99; 
H, 3.93; N, 13.54.

3.2.16 4-Ethyl-2-(2-nitrophenyl)-3,4-dihydroimidazo[4,5-b]indole (4p)

Brownsolid, IR (KBr) υ: 3416, 3199, 3012, 2999, 2942, 2872, 1654, 1607, 1561, 
1441, 1453 1351, 1283, 1192, 1021, 861, 741, 657, 526 cm−1. 1H NMR (300 MHz, 
DMSO) δ: 1.41–1.45 (t, J = 6.6, 3H, CH3), 4.38–4.45 (q, J = 6.9, 2H, CH2), 7.53–8.63 
(m, 8H, aromatic protons), 9.63 (s, 1H, NH) ppm. 13C NMR (75.45 MHz, DMSO) 
δ: 12.5, 24.9, 122.1, 122.8, 123.1, 124.6, 127.5, 127.8, 130.2, 130.4, 130.7, 133.5, 134.4, 
137.7, 135.4, 136.4, 137.5, 140.7, 148.3, 149.7, 159.9 ppm. Anal. Calcd for C17H14N4O2: 
C, 66.66; H, 4.61; N, 18.29 Found C, 66.74; H, 4.65; N, 18.20.

3.2.17 2-(3-Nitrophenyl)-4-propyl-3,4-dihydroimidazo[4,5-b]indole (4q)

Brownsolid, IR (KBr) υ: 3400, 3301, 3221, 3135, 3009, 2951, 2912, 2865, 1664, 
1616, 1571, 1478, 1422, 1371, 1271, 1181, 1037, 873, 739, 649, 536 cm−1. 1H NMR 
(300 MHz, CDCl3) δ: 1.05–1.10 (t, J = 6.9, 3H, CH3), 1.70–1.82 (m, 2H, CH2), 
3.19–3.24 (t, J = 6.6, 2H, CH2), 7.47–8.41 (m, 8H, aromatic protons), 8.94  
(s, 1H, NH) ppm. 13C NMR (75.45 MHz, CDCl3) δ: 10.1, 21.3, 44.0, 121.5, 
124.2, 125.2, 125.5, 125.6, 129.3, 136.1, 136.7, 140.5, 150.9, 159.3 ppm. Anal. Calcd 
for C18H16N4O2 C, 67.49; H, 5.03; N, 17.49 Found C, 67.44; H, 5.10; N, 17.52.

3.2.18 Ethyl 2-(2-(2-nitrophenyl)imidazo[4,5-b]indol-4(3H)-yl)acetate (4r)

Brownsolid, IR (KBr) υ: 3389, 3255, 3129, 3116, 3027, 2969, 2913, 2847, 1735, 
1657, 1618, 1569, 1435, 1353, 1264, 1158, 1049, 854, 751, 651, 546 cm−1. 1H NMR 
(300 MHz, DMSO) δ: 1.22–1.27 (t, J = 7.2, 3H, CH3), 4.19–4.26 (q, J = 6.9, 2H, 
CH2), 5.32 (s, 2H, CH2), 7.37–8.28 (m, 8H, aromatic protons), 9.63 (s, 1H, NH) ppm. 
13C NMR (75.45 MHz, DMSO) δ: 15.0, 52.6, 65.1, 122.3, 123.6, 125.2, 127.9, 128.4, 
130.5, 134.0, 135.2, 139.0, 148.3, 149.6, 161.7, 171.0 ppm. Anal. Calcd for C19H16N4O4: 
C, 62.63; H, 4.43; N, 15.38 Found C, 62.71; H, 4.51; N, 15.30.

3.2.19 7-Methyl-2-phenyl-3,4-dihydroimidazo[4,5-b]indole (4 s)

Brownish whitesolid, IR (KBr) υ: 3398, 3242, 2963, 2931, 1648, 1607, 1559, 
1451, 1311, 1232, 1142, 1027, 813, 741, 655, 534 cm−1. 1H NMR (300 MHz, 
DMSO) δ: 2.22 (s, 3H, CH3), 7.55–8.57 (m, 8H, aromatic protons), 9.69  
(s, 1H, NH), 10.10 (s, 1H, NH) ppm. 13C NMR (75.45 MHz, DMSO) δ: 23.9, 
122.9, 123.1, 127.7, 128.5, 129.6, 130.2, 130.7, 131.3, 133.3, 136.8, 146.3, 154.1, 
161.2 ppm. Anal. Calcd for C16H13N3: C, 77.71; H, 5.30; N, 16.99 Found C, 77.64; 
H, 5.34; N, 17.02.
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4. Conclusion

ZrO2 nanoparticles have been synthesized and a novel synthetic route has been 
developed for the multicomponent reaction of isatin derivatives with ammonium 
acetate and substituted aromatic aldehydes using ZrO2 nanoparticles under solvent-
free conditions. The yields of the products obtained were up to 93% at 110°C. The 
advantage of the proposed method is its facile reaction conditions; the product can be 
isolated very easily without the use of column chromatography and the catalyst can be 
recycled. The simplicity of the presented protocol makes it an interesting alternative to 
other approaches. The obtained catalyst is expected to contribute to the development 
of environmentally benign methods and forms a part of nanomaterial chemistry.

A. Appendix

NMR spectra of compound 4a
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