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Chapter

Comparison and Analysis of
Diffusion Models for the Fe2B
Layers Formed on the AISI 12L14
Steel by Using Powder-Pack
Technique
Martín Ortiz Domínguez

Abstract

Boriding is a thermochemical surface treatment, a diffusion process similar to
carburizing and nitriding in that boron is diffused into a metal base. An indispens-
able tool to choose the suitable process parameters for obtaining boride layer of an
adequate thickness is the modeling of the boriding kinetics. Moreover, the simula-
tion of the growth kinetics of boride layers has gained great interest in the recent
years. In this chapter, the AISI 12L14 steel was pack-borided in the temperature
range of 1123–1273 K for treatment times between 2 and 8 h. A parabolic law for the
kinetics of growth of Fe2B layers formed on the surface of AISI 12L14 steel was
deducted. Two diffusion models were proposed for estimating the boron diffusion
coefficients through the Fe2B layers. The measurements of the thickness (Fe2B), for
different temperature of boriding, were used for calculations. As a result, the boron
activation energy for the AISI 12L14 steel was estimated as 165.0 kJ/mol. In addi-
tion, to extend the validity of the present models, two additional boriding condi-
tions were done. The Fe2B layers grown on AISI 12L14 steel were characterized by
use of the following experimental techniques: X-ray diffraction, scanning electron
microscopy and energy dispersive X-ray spectroscopy.

Keywords: diffusion model, activation energy, parabolic growth law,
diffusion coefficient, growth kinetics

1. Introduction

Surface hardening of steel can be achieved, mainly through two procedures:
modifying the chemical composition of the surface by diffusion of some chemical
element (carbon, nitrogen, boron, sulfur, etc.) in which case it is known as ther-
mochemical treatment (Table 1) or modifying only the microstructure of the sur-
face by thermal treatment, then known as surface treatment. The current
technological demands highlight the need to have metallic materials with high
performance under critical service conditions, consequently, the increase in the
wear resistance, preserving its ductility and the toughness of the core.
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According to Table 1, there are three methods of surface hardening:

• Diffusion process that modifies the chemical composition where a component
in a solid mixture can diffuse through another at a speed is measurable, if there
is a suitable concentration gradient and the temperature is high enough. The
effects of diffusion in solids are very important in metallurgy (increase surface
hardness) as well: The continuous flux of carbon, nitrogen, boron, and so on,
can form a hard coating, where the mass transfer is described by Fick’s laws.

• Applied energy process, the interesting about these processes is that it is not
necessary to incorporate any element to the substrate. For example, tempering
is a heat treatment in which steel is heated up to austenization temperatures
and subsequently it is cooled rapidly, with in order to obtain a transformation
that provides a structure martensitic hard and resistant. Surface tempering is
generally used to components that need a hard surface and a substrate with a
high value of fracture toughness.

• Coating and surface hardness, the coating covers the surface of the substrate,
obtained after the deposition process, substrates considerably increase the
physical characteristics of hardness and corrosion resistance, maintaining the
original morphological characteristics (roughness and brilliance) unchanged,
making the functional and decorative coating at the same time.

The current technological requirements highlight the need to have metallic
materials with specific characteristics, for increasingly critical service conditions.
For example, the metal dies used in the metallurgical processes of cold working and
hot metals need a high toughness and surface hardness, especially at high tempera-
ture. Surface hardening of steel can be achieved, basically, by two processes: mod-
ifying the chemical composition of the surface by diffusion of some chemical
elements (carbon, nitrogen, sulfur, boron, aluminum, zinc, chromium, and so on).
Only boriding process for surface hardening is briefly reviewed in this chapter,
boriding is a thermochemical treatment in which boron atoms are diffused into the
surface of a workpiece and form borides with the base metal. Apart from construc-
tional materials, which meet these high demands, processes have been developed
which have a positive effect on the tribological applications including abrasive,
adhesive, fatigue and corrosion wear of the component surface [1–3]. Boride layers
are of particular benefit when the components have to withstand abrasive wear. The
fundamental advantage of the borided layers (FeB and Fe2B) is that they can reach
high hardness near the surface (1800 HV0.1 and 2000 HV0.1), maintained at high
temperatures [4–8]. In this chapter, the growth kinetics of single phase layer (Fe2B)

Diffusion methods Applied energy methods Coating and surface modification

Carburizing

Nitriding

Carbonitriding

Boriding

Thermal diffusion process

Flame hardening

Induction hardening

Laser beam hardening

Electron beam hardening

Hard chromium planting

Electroless nickel plating

Thermal spraying

Weld hardfacing

Chemical vapor deposition

Physical vapor deposition

Ion implantation

Laser surface processing

Table 1.
Engineering methods for surface hardening of steels.
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on the ferrous substrate was studied during the iron powder-pack boriding (steady
state and non-steady state). The parabolic growth law for the borided layers was
mathematically estimated. Likewise, a mass balance equation was proposed at the
Fe2B/substrate (AISI 12L14) interface. Moreover, the boron diffusion coefficients
(DFe2B) in the Fe2B layers were determined considering two mathematical models
for mass transfer. The Fe2B layers formed on the alloy surface is controlled by the
diffusion of boron atoms, and the presence of the Fe2B layers was checked by the
XRD technique. Finally, the distribution of the alloy elements in AISI 12L14 borided
steel was verified by chemical microanalysis technique (EDS) used in conjunction
with SEM.

1.1 The diffusion models

One of the most important parameters that characterizes the Fe2B layers is the
thickness, since the properties of the coating depend on it, such as: resistance to
wear, fatigue, hardness, and dynamic loads, as well as to a large extent determining
the grip with the substrate. Having an expression that allow estimating the layer
thickness during the boriding process, facilitates the appropriate selection of the
technological parameters, in order to guarantee the desired properties. The layer
thickness exhibits a time dependence such that:

layer thickness v ≈ t1=2, (1)

1.1.1 Derivation of the parabolic growth law

In diffusion processes, parabolic kinetics occurs when the mass gain on a sample
is proportional to the square root of time. In general, parabolic kinetics indicates
that diffusion of reactants (such as boron) through a growing layer is rate-
determining. If the diffusion of B atoms is rate-determining, the layer rate is pro-
portional to the flux through the substrate:

dx

dt
≈ JFe2B x; tð Þ: (2)

El flux, JFe2B x; tð Þ, can be written as

JFe2B x; tð Þ ¼ CFe2B x; tð Þ dx=dtð Þ, (3)

where CFe2B x; tð Þ is the boron concentration profile in mol/m3 and is the velocity
dx=dt of Fe2B layer in m/s, JFe2B x; tð Þ giving units of mol/m2 s. The velocity of a
particle is proportional to the force, F, on the particle:

dx=dt ¼ BFe2BF, (4)

where BFe2B is the mobility of the boron. Writing the chemical potential as μFe2B,
this force is written as

F ¼ �∂μFe2B=∂x, (5)

for a Fe2B layer with thickness x. Combining Eq. (4) and (5) yields

JFe2B x; tð Þ ¼ �CFe2B x; tð ÞBFe2B∂μFe2B=∂x, (6)
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from the relationship

μFe2B ¼ μ
o
Fe2B

þ kBT ln aFe2B, (7)

where kB is the Boltzmann’s constant, we can write

∂μFe2B

∂x
¼

∂ μ
o
Fe2B

þ kBT ln aFe2B
� �

∂x
¼ kBT

∂ ln aFe2B
∂x

: (8)

In an ideal system, the concentration, CFe2B x; tð Þ, is equivalent to activity,
aFe2B x; tð Þ. Substituting the Eq. (8) into Eq. (6), we get

JFe2B x; tð Þ ¼ �CFe2B x; tð ÞBFe2BkBT
∂ lnCFe2B x; tð Þ

∂x
¼ �BFe2BkBT

∂CFe2B x; tð Þ
∂x

: (9)

As shown in Eq. (2),

dx

dt
¼ constantð ÞJFe2B x; tð Þ, (10)

so that a combination of Eqs. (2) and (9) gives

dx

dt
¼ � constantð ÞBFe2BkBT

∂CFe2B x; tð Þ
∂x

: (11)

If we assume that the potential is fixed at each boundary of the Fe2B layer, we
can replace ∂CFe2B x; tð Þ=∂x in Eq. (11) with the slope (¼ ΔCFe2B=x). We then intro-
duce the parabolic growth constant kFe2B, and set:

kFe2B ¼ � constantð ÞBFe2BkBTΔCFe2B: (12)

Combining Eqs. (11) and (12) then gives

dx

dt
¼ kFe2B

x
: (13)

Eq. (13) can be rewritten as

xdx ¼ kFe2Bdt: (14)

Upon integration of Eq. (14),

ð

x¼v

x¼0

xdx ¼ kFe2B

ð

t¼t

t¼0

dt: (15)

We arrive at the parabolic growth law:

v2 ¼ 2kFe2Bt: (16)

1.1.2 Steady state diffusion model

Steady state means that there will not be any change in the composition profile
with time. A linear boron concentration profile is considered along the depth of the
Fe2B layer as depicted in Figure 1. The f(x) represents to the boron distribution in

the substrate before the nucleation of iron boride layers on AISI 12L14 steel. tFe2B0 is
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the boride incubation time indispensable to form the Fe2B phase. Moreover, CFe2B
up

represents the boron concentration on the surface in Fe2B layer

(¼ 60� 103
molm

‐3), CFe2B
low represents the boron concentration at the Fe2B/sub-

strate interface (¼ 59:8� 103
molm

‐3) and x t ¼ tð Þ ¼ v is the layer thickness of the
boride layer (m) [9, 10].

The term CB
ads is the effective adsorbed boron concentration during the boriding

process [11]. From Figure 1, a1 ¼ CFe2B
up � CFe2B

low defines the homogeneity range of

the Fe2B layer, a2 ¼ CFe2B
low � C0 represents the range of miscibility and C0 is the

boron concentration in the substrate (AISI 12L14) assumed as null [10, 12, 13].
During the establishment of the steady-state diffusion model, a linear
concentration-profile of boron along the Fe2B layer is considered. Likewise, the
assumptions proposed by Campos-Silva et al. [8], are taken account.

v0 is the first boride layer formed on the surface of the substrate (ASI 12 L14)
during the boride incubation time [14], its thickness is very small in magnitude
compared to the thickness of the boride layer (v). Moreover, regarded the mass
balance equation at the growth interface (Fe2B/substrate), which is described as
follows [15–18]:

CFe2B
up þ CFe2B

low � 2C0

2

 !

dx tð Þ
dt

�

�

�

�

x tð Þ¼v

¼ � DFe2B
∂CFe2B x t ¼ tð Þ; t ¼ t½ �

∂x

�

�

�

�

x tð Þ¼v

: (17)

Figure 1.
A schematic linear concentration profile of boron through the Fe2B layer is used to describe the steady state
diffusion model.
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When the concentration field is independent of time and DFe2B is independent of
CFe2B x; tð Þ, Fick’s second law is reduced to Laplace’s equation,

∇
2CFe2B x tð Þ½ � ¼ d2CFe2B x tð Þ½ �

dx2
¼ 0: (18)

By solving Eq. (18), and applying the boundary conditions proposed in Figure 1,
the distribution of boron concentration in Fe2B is expressed as:

CFe2B x tð Þ½ � ¼
CFe2B
low � CFe2B

up

v
xþ CFe2B

up : (19)

By substituting the derivative of Eq. (19) with respect of the distance x(t) into
Eq. (17), we have

CFe2B
up þ CFe2B

low � 2C0

2

 !

dv

dt
¼ DFe2B

CFe2B
up � CFe2B

low

v
, (20)

for 0≤ x≤ v.
By substituting Eq. (16) into Eq. (20)

DFe2B ¼ 1

2

CFe2B
up þ CFe2B

low � 2C0

CFe2B
up � CFe2B

low

 !

kFe2B (21)

1.1.3 Non-steady state diffusion model in one dimension

The general diffusion equation for one-dimensional analysis under non-steady
state condition is defined by Fick’s second law. The growth of single phase
layer (Fe2B) with one diffusing element (boron) is observed as illustrated in Figure 2.

The f x; tð Þ function represents the boron distribution in the ferritic matrix
before the nucleation of Fe2B phase as a function of time. Likewise, for analysis, the
kinetic model is imposing the same restrictions as in the previous model, except the
last one, it is replaced by:

• The concentration-profile of boron is the solution of the Fick’s second law and
depends on initial and boundary conditions through the Fe2B zone.

The mass balance equation at the (Fe2B/substrate) interface can be formulated
by Eq. (22) as follows:

CFe2B
up þ CFe2B

low � 2C0

2

 !

dx tð Þ
dt

�

�

�

�

x tð Þ¼v

¼ � DFe2B
∂CFe2B x t ¼ tð Þ; t ¼ t½ �

∂x

�

�

�

�

x tð Þ¼v

: (22)

Fick’s second law, isotropic one-dimensional diffusion, DFe2B independent of
concentration:

∂CFe2B x tð Þ; t½ �
∂t

¼ DFe2B
∂
2CFe2B x tð Þ; t½ �

∂x2
: (23)

By solving Eq. (23), and applying the boundary conditions proposed in Figure 2,
the boron concentration profile in Fe2B is expressed by Eq. (24), if the boron
diffusion coefficient (DFe2B) in Fe2B is constant for a particular temperature:

6

Heat and Mass Transfer - Advances in Science and Technology Applications



CFe2B x tð Þ; t½ � ¼ CFe2B
up þ

CFe2B
low � CFe2B

up

erf v
2
ffiffiffiffiffiffiffiffiffi

DFe2B
t

p
� � erf

x

2
ffiffiffiffiffiffiffiffiffiffiffiffi

DFe2Bt
p

 !

: (24)

By substituting Eq. (24) into Eq. (22), Eq. (25) is obtained:

CFe2B
up þ CFe2B

low � 2C0

2

 !

dv

dt
¼

ffiffiffiffiffiffiffiffiffiffiffi

DFe2B

πt

r

CFe2B
up � CFe2B

low

erf v
2
ffiffiffiffiffiffiffiffiffi

DFe2B
t

p
� � exp � v2

4DFe2Bt

� �

, (25)

for 0≤ x≤ v.
Substituting the expression of the parabolic growth law obtained from Eq. (16)

(v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kFe2Bt
p

) into Eq. (25), we have

CFe2B
up þ CFe2B

low � 2C0

4

 !

2kFe2Bð Þ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

DFe2B

π

r

CFe2B
up � CFe2B

low

erf
ffiffiffiffiffiffiffiffiffiffi

kFe2B
2DFe2B

q� � exp � kFe2B
2DFe2B

� �

:

(26)

Figure 2.
A schematic non-linear concentration profile of boron through the Fe2B layer is used to describe the non-steady
state diffusion model in on dimension.
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The diffusion coefficient (DFe2B) can be estimated numerically by the Newton–

Raphson method. It is assumed that expressions CFe2B
up , CFe2B

low , and C0, do not depend

significantly on temperature (in the considered temperature range) [10].

1.2 Materials and methods

1.2.1 Powder pack boriding process

AISI 12L14 steel was used for investigation. It had a nominal chemical composi-
tion of 0.10–0.15% C, 0.040–0.090% P, 0.15–0.35% Pb, 0.80–1.20% Mn, 0.25–
0.35% S, 0.10% Si. The typical applications are: brake hose ends, pulleys, disc brake
pistons, wheel nuts and inserts, control linkages, gear box components (case hard-
ened), domestic garbage bin axles, concrete anchors, padlock shackles, hydraulic
fittings, vice jaws (case hardened). The samples were sectioned into cubes with
dimensions of 10 mm� 10 mm� 10 mm. Prior to the boriding process, the samples
were polished with SiC sandpaper up 2500 grade, ultrasonically cleaned in an
alcohol solution and deionized water for 15 min at room temperature, and dried and
stored under clean-room conditions. The mean hardness was 237 HV. The samples
were embedded in a closed cylindrical case (AISI 316L) as shown in Figure 3, using
Ekabor 2 as a boron-rich agent.

The powder-pack boriding process was performed in a conventional furnace
under a pure argon atmosphere. It is important to note that oxygen-bearing com-
pounds adversely affect the boriding process [1]. The thermochemical treatment

Figure 3.
Schematic view of the stainless steel AISI 304L container for the pack-powder boriding treatment (1: lid; 2:
powder boriding medium (B4C + KBF4 + SiC); 3: sample; 4: container) (millimeter scale).
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was performed at temperatures of 1123, 1173, 1223, and 1273 K with 2, 4, 6 and 8 h
of exposure time. When the boriding process was concluded, the steel container was
removed from the heating furnace and placed in a room temperature.

1.2.2 Characterization of boride layers

The borided samples were prepared metallographically for their characterization
using GX51 Olympus equipment. As a result of preliminary experiments it was

estimated that boriding started at approximately tFe2B0 ¼ 29:55 min after transfer-
ring the sample to the furnace; after that, the so-called boride incubation time sets
in. The borided and etched samples were cross-sectioned, for microstructural
investigations, to be observed by scanning electron microscope. The equipment
used was the Quanta 3D FEG-FEI JSM7800-JOEL. Figure 4 shows the cross-
sections of boride layers formed on the surfaces of AISI 12L14 steel at different
exposure times (2, 4, 6 and 8 h) and for 1173 K of boriding temperature.

The resultant microstructure of Fe2B layers appears to be very dense and
homogenous, exhibiting a sawtooth morphology where the boride needles with
different lengths penetrate into the substrate [19, 20]. These elements tend to
concentrate in the tips of boride layers, reducing the boron flux in this zone. The
Fe2B crystals preferably grow along the crystallographic direction [0 0 1], because it
is the easiest path for the diffusion of boron in the body-centered tetragonal lattice
of the Fe2B phase [19].

It is seen that the thickness of Fe2B layer increased with an increase of the
boriding temperature (Figure 4) since the boriding kinetics is influenced by the

Figure 4.
SEM micrographs of the cross-sections of AISI 12L14 steel samples borided at 1173 K during different exposure
times: (a) 2, (b) 4, (c) 6, and (d) 8 h.
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treatment time. To estimate the boride layer thickness, 50 measurements were
made from the surface to the long boride teeth in different sections, as shown in
Figure 5; the boride layer thickness was measured using specialized software
[20–22].

The identification of phases was carried out on the top surface of borided sample
by an X-ray diffraction (XRD) equipment (Equinox 2000) using CoKα radiation of
0.179 nm wavelength. In addition, the elemental distribution of the transition ele-
ments within the cross-section of boride layer was determined by electron disper-
sive spectroscopy (EDS) equipment (Quanta 3D FEG-FEI JSM7800-JOEL) from the
surface.

1.3 Results and discussions

1.3.1 SEM observations and EDS analysis

The metallography of coating/substrate formed in AISI 12L14 borided steel
at different exposure times (2, 4, 6 and 8 h) and for 1173 K of boriding
temperature are shown in Figure 4. The EDS analysis obtained by SEM is shown in
Figure 6(a) and (b).

The results show in Figure 6(a) that the sulfur can be dissolve in the Fe2B phase,
in fact, the atomic radiuses of S (= 0.088 nm) is smaller than that of Fe
(= 0.156 nm), and it can then be expected that S dissolved on the Fe sublattice of the
borides. In Figure 6(b), the resulting EDS analyses spectrums revealed that the
manganese, carbon and silicon do not dissolve significantly over the Fe2B phase and
they do not diffuse through the boride layer, being displaced to the diffusion zone,
and forms together with boron, solid solutions [10, 23, 24]. On boriding carbon is
driven ahead of the boride layer and, together with boron, it forms borocementite,
Fe3(B, C) as a separate layer between Fe2B and the matrix with about 4 mass% B
corresponding to Fe3(B0.67C0.33) [10]. Thus, part of the boron supplied is used for
the formation of borocementite. Likewise, silicon forming together with boron,
solid solutions like silicoborides (FeSi0.4B0.6 and Fe5SiB2) [24].

1.3.2 X-ray diffraction analysis

Figure 7 shows the XRD pattern recorded on the surface of borided AISI 12L14
steel at a temperatures of: 1123 K for a treatment time of 2 h, and 1273 K for a
treatment time of 8 h. The patterns of X-ray diffraction (see Figure 7) show the

Figure 5.
Schematic diagram illustrating the procedure for estimation of boride layer thickness in AISI 12L14 steel.
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Figure 6.
A SEM micrographs of the cross-sections of the borided AISI 12L14 steel micrograph image of microstructure of
the AISI 12L14 boride layer obtained at 1173 K with exposure time of 8 h, (a) and (b) EDS spectrum of
borided sample.

Figure 7.
XRD patterns obtained at the surface of borided AISI 12L14 steels for two boriding conditions: (a) 1123 K for
2 h and (b) 1273 K for 8 h.
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presence of Fe2B phase which is well compacted. Likewise, the patters show that
there is a preferential orientation in the crystallographic plane (0 0 2) whose
strength increases as the depth of the analysis increases. In a study by Martini et al.
[18], the growth of the iron borides (Fe2B) near at the Fe2B/substrate interface only
shows the diffraction peak of Fe2B in the crystallographic plane (002).

1.3.3 Estimation of boron activation energy with steady state model

The growth kinetics of Fe2B layers formed on the AISI 12L14 steel was used to
estimate the boron diffusion coefficient through the Fe2B layers by applying the
suggested steady state diffusion model. In Figure 8 is plotted the time dependence
of the squared value of Fe2B layer thickness for different temperatures.

In Figure 8, the square of boride layer thicknesses were plotted vs. the treatment
time, the slopes of each of the straight lines provide the values of the parabolic
growth constants ¼ 2kFe2Bð Þ. In addition, to determinate the boride incubation time,
was necessary extrapolating the straight lines to a null boride layer thickness (see
Figure 8). Table 2 provides the estimated value of growth constants in Fe2B at each
temperature. The results, which are summarized in Table 2, reflect a diffusion-
controlled growth of the boride layers.

In Table 2, the boron diffusion coefficient in the Fe2B layers (DFe2B) was esti-
mated for each boriding temperature. So, an Arrhenius equation relating the boron
diffusion coefficient to the boriding temperature can be adopted.

As a consequence, the boron activation energy (QFe2B) and pre-exponential
factor (D0) can be calculated from the slopes and intercepts of the straight line
shown in coordinate system: lnDFe2B as a function of reciprocal boriding tempera-
ture, it is presented in Figure 9. The boron diffusion coefficient through Fe2B layers
was deducted by steady state diffusion model as:

DFe2B ¼ 2:444� 10�3 exp �165:0329 kJmol�1=RT
� 	

m2s�1

 �

: (27)

where: R ¼ 8:3144621 Jmol�1K�1

 �

and T absolute temperature [K]. From the

Eq. (27), the pre-exponential factor D0 ¼ 2:444� 10�3 m2=s
� 	

and the activation

Figure 8.
Averaged squares of the Fe2B layers (v2) vs. boriding time (t) at different temperature.
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energy QFe2B ¼ 165:0329 kJmol�1� 	

values are affected by the contact surface

between the boriding medium and the substrate, as well as the chemical composi-
tion of the substrate [9, 10, 23–28].

1.3.4 Estimation of boron activation energy with non-steady state diffusion model

In Table 2 provides the growth constants (2kFe2B) at each temperature, and in
Table 3 provides the boron diffusion coefficients (DFe2B), they were estimated
numerically by the Newton-Raphson method from the Eq. (26).

The boron activation energy QFe2B ¼ 164:999 kJmol�1� 	

and pre-exponential

factor D0 ¼ 2:072� 10�3 m2=s
� 	

can be calculated from the slopes and intercepts of
the straight line shown in coordinate system: lnDFe2B as a function of reciprocal
boriding temperature, it is presented in Figure 10, in the same way as above.

The boron diffusion coefficient through Fe2B layers was deducted by non-steady
state diffusion model as:

DFe2B ¼ 2:072� 10�3 exp �164:999 kJmol�1=RT
� 	

m2s�1

 �

: (28)

Temperature

(K)

Type of

layer

Growth constants 2kFe2B
(m2 s�1)

DFe2B ¼ 1
2

C
Fe2B
up þC

Fe2B

low
� 2C0

C
Fe2B
up �C

Fe2B

low

� �

kFe2B

Eq. (21) (m2 s�1)

1123 Fe2B 2.91 � 10�13 5.13 � 10�11

1173 6.12 � 10�13 1.08 � 10�10

1223 1.291 � 10�12 2.27 � 10�10

1273 2.29 � 10�12 4.04 � 10�10

Table 2.
The growth constants and boron diffusion coefficients as a function of boriding temperature.

Figure 9.
Arrhenius relationship for boron diffusion coefficient (DFe2B) through the Fe2B layer obtained with the steady
state diffusion model.
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1.3.5 The two diffusion models

In this section we want to illustrate the differences between the two diffusion
models have been used to describe the growth kinetics of boride layers. It is noticed

that the estimated values of boron activation energy QFe2B ¼ 165:0 kJmol�1� 	

for

AISI 12L14 steel by steady state (see Eq. (27)) and non-steady state (see Eq. (28)), is
exactly the same value for both diffusion models. Likewise, the estimated values of

pre-exponential factor by steady state D0 ¼ 2:444� 10�3 m2=s
� 	

and non-steady

state D0 ¼ 2:072� 10�3 m2=s
� 	

, there is a small variation. To find out how this
similarity is possible in the diffusion coefficients obtained by two different models,

we first focus our attention on Eq. (23). The error function erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p� 	

is a

monotonically increasing odd function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p

. Its Maclaurin series (for

small
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p

) is given by [29]:

erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p

� �

¼ 2
ffiffiffi

π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p� 	3

3 � 1! þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p� 	5

5 � 2!
�⋯

 !

:

(29)

Temperature

(K)

Type of

layer
C

Fe2B
up þC

Fe2B

low
� 2C0

4

� �

2kFe2Bð Þ1=2 ¼
ffiffiffiffiffiffiffiffiffi

DFe2B

π

q

C
Fe2B
up �C

Fe2B

low

erf

ffiffiffiffiffiffiffiffiffi

kFe2B
2DFe2B

q� � exp � kFe2B
2DFe2B

� �

Eq. (26) (m2 s�1)

1123 Fe2B 4.362 � 10�11

1173 9.174 � 10�11

1223 1.933 � 10�10

1273 3.433 � 10�10

Table 3.
The boron diffusion coefficients (DFe2B) as a function of boriding temperature.

Figure 10.
Arrhenius relationship for boron diffusion coefficient (DFe2B) through the Fe2B layer obtained with the non-
steady state diffusion model in on dimension.
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According to the numerical value of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p

, Eq. (29) can be
rewritten as:

erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2B

p

� �

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B=2DFe2Bπ

p

: (30)

Similarly for the real exponential function exp �kFe2B=2DFe2Bð Þ : R! R can be
characterized in a variety of equivalent ways. Most commonly, it is defined by the
following power series [30]:

exp �kFe2B=2DFe2Bð Þ ¼ 1� kFe2B=2DFe2B þ �kFe2B=2DFe2Bð Þ2=2! þ �kFe2B=2DFe2Bð Þ3=3! þ⋯:

(31)

Thus, Eq. (31) can be written as:

exp �kFe2B=2DFe2Bð Þ ¼ 1: (32)

By substituting the Eqs. (30) and (32) into Eq. (26), we have

CFe2B
up þ CFe2B

low � 2C0

4

 !

2kFe2Bð Þ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

DFe2B

π

r

CFe2B
up � CFe2B

low

2
ffiffiffiffiffiffiffiffiffiffiffiffi

kFe2B
2DFe2B

π

q 1ð Þ, (33)

DFe2B ¼ 1

2

CFe2B
up þ CFe2B

low � 2C0

CFe2B
up � CFe2B

low

 !

kFe2B: (34)

The result obtained by Eq. (34) is the same as that obtained in Eq. (21) estimated
by steady state diffusion model. The result from the Eq. (21) would appear to imply
that the non-steady state diffusion model is superior to the steady state diffusion
model and so should always be used. However, in many interesting cases the models
are equivalent.

1.4 Fe2B layer’s thicknesses

The estimation of the Fe2B layers’ thicknesses can be determined through the
Eqs. (35) and (36).

• Steady state diffusion model

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:33� 10�3
� 	

2:444� 10�3
� 	

exp � 165:0329 kJ mol�1

RT

 !

t

v

u

u

t m½ �, (35)

• Non-steady state diffusion model

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:33� 10�3
� 	

2:072� 10�3
� 	

exp � 164:999 kJ mol�1

RT

 !

t

v

u

u

t m½ �, (36)

Hence, Eqs. (35) and (36) can be used to estimate the optimum boride layer
thicknesses for different borided ferrous materials.
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2. Conclusions

The following conclusions can be drawn from the present study:

• Two simple kinetic models were proposed for estimating the boron diffusion
coefficient in Fe2B (steady state and non-steady state).

• A value of activation energy for AISI 12L14 steel was estimated as
165.0 kJ mol�1.

• Two useful equations were derived for predicting the Fe2B layer thickness as a
function of boriding parameters (time and temperature).

Finally, these diffusion models are in general not identical, but are equivalent
models, and this fact can be used as a tool to optimize the boriding parameters to
produce boride layers with sufficient thicknesses that meet the requirements during
service life.
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Nomenclature

v boride layer thickness (m).
v0 is a thin layer with a thickness of ≈ 5 nm that formed during the

nucleation stage.
kFe2B rate constant in the Fe2B phase (m2/s).
tv effective growth time of the Fe2B layer (s).
t treatment time (s).

tFe2B0
boride incubation time (s).

CFe2B
up

upper limit of boron content in Fe2B (= 60 � 103 mol/m3).

CFe2B
low

lower limit of boron content in Fe2B (= 59.8 � 103 mol/m3).

C0 terminal solubility of the interstitial solute (≈ 0 mol/m3).
CFe2B x tð Þ; t½ � boron concentration profile (≈0 mol/m3).
DFe2B boron diffusion coefficient (m2/s).
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