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Chapter

Flavonoids and Pectins
Zhiping Zhang, Yanzhi He and Xinyue Zhang

Abstract

Pectins and flavonoids are two related groups of important secondary metabo-
lites derived from plants. The interaction between pectins and flavonoids can 
affect their shelf-life stability, functionality, bioavailability, and bioaccessibility. 
In this chapter, we will concentrate on the current opinions on the flavonoids to 
understand how to classify this group of secondary metabolites, what biological and 
pharmacological activities they possess, and how to biosynthesize them in plants. 
We will then discuss the general strategies for the derivation of these small second-
ary compounds. The strategies comprise traditional plant extraction, chemical 
synthesis, and biosynthesis. We will also discuss the advantages and disadvantages 
of these three production strategies in the derivation of flavonoids and the future 
research directions in generating health-beneficial flavonoids using the biosyn-
thetic strategy.

Keywords: flavonoids, pectins, secondary metabolites, interaction,  
pharmacological activity, biological activity, biosynthetic pathway,  
extraction, characterization, chemical synthesis, microbial cell factory,  
enzymatic synthesis, multienzyme synthetic system

1. Introduction

Peels represent a large percentage of the total weight of fruits, for example, 
50–65% of Citrus fruits (lemon, lime, orange, and grapefruit) [1]. During pro-
cessing of fruits for juice and oil extractions, the peels remain as the primary 
byproducts and become waste if not processed further, which can lead to serious 
environmental pollution [1]. Therefore, the fruit-processing industries are also 
interested in making use of these wastes.

The peels are also a good commercial source of pectins (polygalacturonic acid) 
and flavonoids [1]. The pectins are polysaccharide macromolecules contained in 
the primary cell wall of plants and involved in controlling cell wall ionic status, cell 
expansion, and separation [1]. Usually, the pectins are commercially extracted and 
isolated from Citrus peels and apple pomace. They are not only used as a gelling 
agent, dessert filling, or juice and milk stabilizer in food industry but also as a 
source of dietary fiber. Flavonoids are a large group of small secondary metabolites 
contained in the vacuoles and possess a wide range of biological activities, espe-
cially those with human health benefits [2, 3]. In the Citrus peels, flavonoids mainly 
include flavones (e.g., rhoifolin, isorhoifolin, diosmin, and neodiosmin), flava-
nones (e.g., eriocitrin, neoeriocitrin, narirutin, naringin, hesperidin, neohesperi-
din, poncirin, and neoponcirin), and flavonols (e.g., rutin) [4]. It has been reported 
that the highest concentrations of Citrus flavonoids occur in the peels [1]. Due to the 
importance of pectins and flavonoids in food, cosmetic, and medicinal industries, 
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quite a number of studies have been focused on these two groups of compounds. 
Accordingly, a variety of approaches have been developed for efficient isolation of 
pectins and flavonoids from fruit peels and pomace. For example, to make a better 
use of yellow passion fruit rind, de Souza and colleagues have developed a strategy 
for sequential extraction of flavonoids and pectin [5].

As we know, pectins are abundant in the middle lamella of the plant cell walls 
with a gradual decrease in the content toward the plasma membrane, whereas flavo-
noids are naturally located within the cells [6]. Generally, flavonoids within the cells 
do not come into contact with the cell wall materials, such as pectins, celluloses, 
and hemicelluloses, prior to food processing. When fruits are processed and eaten, 
intracellular flavonoids can be released from the cells, leading to their interaction 
with substances like metal ions and plant cell wall materials [7, 8]. For example, 
procyanidins and anthocyanins can spontaneously bind to water-, chelator-, and 
sodium carbonate-soluble pectins. It is believed that the binding of flavonoids to cell 
wall materials results from noncovalent, hydrophobic, hydrogen bonding, and ionic 
interactions [9–11]. Recently, Chirug and colleagues have presented a novel possible 
mechanism that iron ions mediate the interaction between pectins and quercetin 
[6]. Such interaction might affect their shelf-life stability and functionality, as well 
as their bioavailability and bioaccessibility [6, 12]. Therefore, it could be of high 
importance to study their interaction. Since there are several reviews on the interac-
tion [8, 13], we will not discuss it in this chapter. Instead, we will concentrate on 
understanding the current opinions on flavonoids, including the classification, bio-
logical activities, and biosynthetic pathway of these secondary compounds. We will 
then review the general strategies for derivation of these compounds, including the 
traditional plant extraction, chemical synthesis, and biosynthesis of these impor-
tant small bioactive molecules in a microbial cell factory or an in vitro multienzyme 
synthetic platform. We will also discuss the advantages and disadvantages of these 
strategies and the future research directions in the field of flavonoid biosynthesis.

2. Classification and biological activities of flavonoids

Flavonoids belong to a class of secondary metabolites and comprise a large group 
of natural products that are widespread in higher plants but also found in mosses 
and liverworts [14, 15]. Chemically, flavonoid compounds have the basic structure 
of 15-carbon atoms with two phenolic rings connected by a 3-carbon chain [16], 
forming a C6-C3-C6 carbon framework (Figure 1). Generally, these small mol-
ecules can be divided into six major subclasses on the basis of the variations on the 

Figure 1. 
Structure and atom numbering of flavonoid backbone.
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heterocyclic C-ring and the degree of oxidation: the flavanols, flavones, flavonols, 
flavanones, anthocyanidins, and isoflavones [2, 16–18]. The flavonoids can exist in 
a free aglycone form but are often glycosylated (most commonly glucose), and the 
glycosylation in turn increases their water solubility [19].

The flavonoids are involved in the formation of plant pigments [20] and protect 
plants against pathogens, herbivores, and UV radiation [21]. However, the study 
of flavonoids, like that of most natural products, has emerged from the search of 
new compounds with promising pharmacological properties. After decades of 
endeavors, scientists have found that flavonoids possess a wide variety of biological 
and pharmacological properties, which leads to numerous studies on these second-
ary metabolites. These health-beneficial properties include antiangiogenic [22], 
antibacterial [23–27], anti-cancer [24, 28], anti-inflammatory [28–33], antiglycat-
ing [34], antimalarial [35], antimicrobial [36–42], anti-oxidant [26, 36, 38, 42–51], 
anti-platelet [48], anti-proliferation [52], agonistic/antagonistic [53], ammonia-
lowering and regulation of urea cycle [54], anxiolytic [55], atheroprotective [56], 
cardioprotective and hypouricemic [57], cytotoxic [51, 58], endocrine disrupting 
[59], free radical-scavenging [31–33, 39, 40, 46, 51, 52, 58, 60–66], hepatoprotective 
[67], leishmanicidal [68], neuroprotective [69], photoprotective [43], and trypano-
cidal activities [68, 70]. In addition, the flavonoids can inhibit eukaryotic protein 
synthesis [71] and a variety of important enzymes such as aggrecanase [72], aldose 
reductase [30, 73], alpha-glucosidase [60], cholinesterase [26, 74], protein tyrosine 
phosphatase and acetylcholinesterase [75], and tyrosinase [44, 64].

3. Biosynthetic pathway of flavonoids

After several decades of efforts, the pathway for flavonoid biosynthesis has 
been largely deciphered even though quite a number of details remain unknown 
(Figure 2). The flavonoids and their derivatives are biosynthesized by a variety 
of enzymes. These enzymes belong to different families [76], mainly including 
2-oxoglutarate-dependent dioxygenase (2-ODD), cytochrome P450 hydroxylase, 
short-chain dehydrogenase/reductase (SDR), O-methyltransferase (OMT), and 
O-glycosyltransferase (GT). The 2-ODD, cytochrome P450, and SDR enzymes 
constitute the major pathway for flavonoid biosynthesis [76], and the OMT and GT 
enzymes are involved in modification of flavonoids. The involved 2-ODD enzymes 
mainly comprise flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), flavone 
synthase I (FSI), anthocyanidin synthase (ANS), and flavonol 6-hydroxylase (F6H) 
[17, 76–81]. The related cytochrome P450 enzymes contain cinnamate 4-hydroxy-
lase (C4H), isoflavone synthase (IFS), flavanone 2-hydroxylase (F2H), flavone 
synthase II (FSII), flavonol 6-hydroxylase (F6H), flavonoid 3′-hydroxylase (F3’H), 
flavonoid 3′,5′-hydroxylase (F3′5′H), isoflavone 2′-hydroxylase (I2′H), and isofla-
vone 3′-hydroxylase (I3′H) [17, 18, 76, 80, 82, 83]. The SDR enzymes participating 
in flavonoid biosynthesis include dihydroflavonol 4-reductase (DFR) and antho-
cyanidin synthase (ANR) [76]. Interestingly, the flavone synthase (FS) activity 
is specified either by a 2-ODD (FSI) or a P450 (FSII) enzyme in a plant species-
dependent manner [84, 85]. Similarly, the flavonol 6-hydroxylase (F6H) activity is 
also endowed either by a 2-ODD [81, 86] or P450 [87, 88] enzyme in different plant 
species. These findings further increase the complexity of flavonoid biosynthesis.

Basically, biosynthesis of flavonoids can be arbitrarily divided into three major 
stages. The first stage (a.k.a the phenylpropanoid pathway) includes three suc-
cessive chemical reactions catalyzed by phenylalanine ammonia-lyase (PAL), 
cinnamate 4-hydroxylase (C4H), and 4-coumaroyl:CoA ligase (4CL), respectively, 
to convert l-phenylalanine to 4-coumroyl-CoA. In addition, l-tyrosine can also 
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Figure 2. 
Schematic of the biosynthetic pathway leading to the major subclasses of flavonoids. Adapted from [10, 12, 68].  
4CL, 4-coumaroyl:CoA ligase; ACC, acetyl CoA carboxylase; ANR, anthocyanidin reductase; ANS, 
anthocyanidin synthase; AS, aureusidin synthase; C4H, cinnamate 4-hydroxylase; CE: condensing enzyme; 
CHI, chalcone isomerase; CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; DMID, 7,2′-dihydroxy-
4′-methoxyisoflavanol dehydratase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, 
flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; FSI/FSII, flavone synthase I/II; I2′H, isoflavone 
2′-hydroxylase; IFR, isoflavone reductase; IFS, isoflavone synthase; IOMT, isoflavone O-methyltransferase; 
LAR, leucoanthocyanidin reductase; LDOX, leucoanthocyanidin dioxygenase; OMT, O-methyltransferase; 
PAL, phenylalanine ammonia-lyase; PPO, polyphenol oxidase; RT, rhamnosyltransferase; TAL, tyrosine 
ammonia-lyase; UFGT, UDP flavonoid glucosyltransferase; VR, vestitone reductase.
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participate in the flavonoid biosynthesis via two successive enzymatic reactions 
catalyzed by tyrosine ammonia lyase (TAL) and 4CL, respectively. The second 
stage is crucial for the biosynthesis of flavonoids, in which the backbones of 
major subclasses of flavonoids are formed. This stage begins from the formation 
of chalcone by conversion of the 4-coumroyl-CoA from the first stage and the 
malonyl-CoA from carboxylation of acetyl-CoA. Chalcone synthase (CHS), an 
entry point enzyme into the pathway, catalyzes this chemical reaction by conversion 
of one molecule of 4-coumroyl-CoA and three molecules of malonyl-CoA to one 
molecule of chalcone (e.g., tetrahydroxychalcone). Then, the chalcone molecule is 
cyclized to form a flavanone (e.g., naringenin) by chalcone isomerase (CHI) and an 
aurone (e.g., aureusidin) by aureusidin synthase (AS). The flavanone can be further 
converted to dihydroflavonol by F3H and then flavonol by FLS. Alternatively, the 
flavanone molecule can also be converted to a flavone by FS, a flavanol by DFR, 
an isoflavone by IFS, and an anthocyanidin by a series of successive enzymatic 
reactions catalyzed by F3H, DFR, and leucoanthocyanidin dioxygenase (LDOX), 
respectively. The resulting anthocyanidin molecule can be further modified to 
form anthocyanins by a series of chemical modifications by OMT, UDP flavonoid 
glucosyltransferase (UFGT), and rhamnosyltransferase (RT). The third stage is 
mainly involved in various chemical decorations of flavonoids. Generally, natural 
flavonoids are often extensively modified by chemical reactions, including glyco-
sylation and methylation [76], acylation [89], sulfonation [90, 91], prenylation  
[92, 93], and galloylation [94], which further contribute to the structural and 
functional diversity of flavonoids.

4. Derivation of flavonoids

Due to the intrinsic health benefits possessed by flavonoids, numerous 
approaches have been developed during the past decades for the derivation of a 
wide range of flavonoids. Basically, these approaches can be divided into three 
major categories: traditional plant extraction, chemical synthesis, and biosynthesis.

4.1 Traditional plant extraction via organic solvents

Traditionally, flavonoids are extracted from various plant species, which 
currently remains the most commonly used methods. During the past decades, 
researchers have developed plenty of methods to improve the yield and purity 
of flavonoids derived from plants. Generally, the plant tissues are air-dried and 
ground into powder for extraction via organic solvents (most commonly methanol 
and ethanol), and the extracts are then subjected to successive fractionation with 
other organic solvents (most commonly petroleum ether, chloroform, ethyl acetate, 
and n-butyl alcohol), followed by repeated silica gel and Sephadex LH-20 column 
chromatographies [44, 95]. The yield of plant-derived flavonoids can be improved 
by ultrasonic wave- [96], microwave- [97], and enzyme-assisted extraction [98]; 
aqueous two-phase extraction [99]; and a combination of these modifications 
[100]. The isolated flavonoids are then subjected to polyamide thin plate chroma-
tography (TLC), high performance liquid chromatography (HPLC), electrospray 
ionization mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) 
analyses to determine their identity and purity [2, 3]. Due to the high solubility of 
most flavonoids in organic solvents, this strategy often demonstrates a high effi-
ciency in the derivation of flavonoids from plant tissues. However, the disadvantage 
of the plant extraction is obvious. Due to the very low content of most flavonoids 
in plant tissues, the extraction and isolation of flavonoids often requires multiple 
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steps and plenty of time, labor, and organic solvents, which greatly increase the 
production cost. Moreover, different plant tissues often need to develop different 
approaches for processing, which makes the extraction more complicated and 
further increase the cost for the production of flavonoids. Therefore, this approach 
is not cost-effective, and it is crucial to develop alternative strategies to reduce the 
cost for producing flavonoids.

4.2 Chemical synthesis of flavonoids

Another approach for producing flavonoids is chemical synthesis. Basically, 
there are two strategies for chemical synthesis of flavones, that is, the chalcone 
route and the Baker-Venkataraman method [101]. Even though there are a few 
successful examples, chemical synthesis of flavonoids is often very complicated and 
involved in many steps [2]. It requires toxic reagents and extreme reaction condi-
tions [3, 102]. Chiral synthesis and subsequent modifications further increase the 
difficulty of this approach in the production of flavonoids [3]. Moreover, the multi-
step chemical reactions often produce quite a number of intermediate products with 
a high similarity in structure, which further increases the difficulty in purification 
of the desired products. Therefore, chemical synthesis is not economically feasible 
for the mass production of flavonoids [3].

4.3 Biosynthesis of flavonoids

Since the biosynthetic pathway of flavonoids is largely elucidated in plants 
[20], other promising alternative strategies have been developed to produce these 
secondary compounds [2, 103–106]. One of these alternative strategies is to produce 
flavonoids in a microbial cell factory. It has been well known that Escherichia coli 
and Saccharomyces cerevisiae are the two most commonly used model organisms 
for the construction of a microbial cell factory. There are quite a few paradigms for 
the production of flavonoids using this strategy. For example, eriodictyol has been 
produced using l-tyrosine as a substrate in E. coli BL21(DE3) genetically modified 
by TAL, 4CL, CHS, CHI, F3H, and F3’H genes and the production can reach up to 
107 mg/L by further introducing three other genes acs, accBC, and dtsR1 to enhance 
the availability of malonyl-CoA [103]. Kaempferol has been produced in a microbial 
cell factory by introducing a de novo biosynthetic pathway into S. cerevisiae, and 
the biosynthesis has been further improved by introducing two more pathways 
to enhance the generation of acetyl-CoA and malonyl-CoA [107]. Obviously, this 
strategy circumvents some inherent disadvantages of traditional plant extrac-
tion and chemical synthesis. However, not all genetically modified microbes can 
produce desired products due to the well-known complexity of a microbial cell 
system, the incompatibility of artificially synthesized genetic elements in host cells, 
the growth inhibition of host cells by desired and intermediate products, and the 
instability of an engineered biosystem itself [2, 108].

Recently, we have developed an in vitro platform to produce flavonoids by 
constructing a multienzyme synthetic system to convert naringenin into kaemp-
ferol in one pot [2]. After optimizing a series of reaction parameters, including the 
components and pH value of the buffer system, reaction temperature and time, 
and total amount and ratio of the enzymes, the production yield can reach up to 
37.55 ± 1.62 mg/L within 40–50 min with a conversion rate of 55.89% ± 2.74% [2]. 
The advantages of this strategy are obvious. It is time- and labor-saving. The reac-
tion conditions are easy to control accurately. Due to the clearness in the buffer 
components and the lack of complex physiological regulation as occurred in the 
microbial cell factory, it is possible to easily make further optimization in the future. 
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It is also much easier to purify desired products from this in vitro synthetic system 
than from the cell factory because of the simplicity of the components in the system. 
In addition, the strategy is highly cost-effective because of the cheap chemicals and 
recombinant proteins used in this system. More importantly, the system is easy to 
scale up and therefore possesses a huge industrialization potential. It also provides a 
guide for other secondary metabolites to produce economically. However, problems 
still exist in this production strategy. For example, due to the lack of P450-reductase 
function, prokaryotically expressed cytochrome P450 enzymes lose their enzymatic 
activities [109]. To achieve a functional expression, Leonard and colleagues fused a 
plant P450 enzyme gene F3′5′H with its redox partner cytochrome P450 reductase 
gene cpr from Catharanthus roseus and successfully produced a hydroxylated flavonol 
quercetin from p-coumaric acid in E. coli by simultaneous coexpression of the fusion 
protein with 4CL, CHS, CHI, F3H, and FLS [110], which provides a guide to solve 
this kind of problem. To further improve the efficiency of the biosynthetic system, 
future research should be focused on screening key enzymes with high activities 
from various plants, mutation of genes encoding key enzymes to enhance their 
activities, and immobilization of the highly active enzymes to inert carriers.

5. Conclusions

Pectins and flavonoids are two distinctive classes of bioactive secondary metabo-
lites presented in the fruit peels and used in food industry. The flavonoids can be 
divided into six major subclasses, including the flavanols, flavones, flavonols, flava-
nones, anthocyanidins, and isoflavones, and their flavonoid biosynthetic pathway 
has been largely elucidated. These natural small compounds possess a wide range of 
health-beneficial properties and can be derived by traditional plant extraction via 
organic solvents, chemical synthesis, and biosynthesis by constructing a microbial 
cell factory or an in vitro multienzyme synthetic system.
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