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Chapter

Consequences of Artificial Light 
at Night: The Linkage between 
Chasing Darkness Away and 
Epigenetic Modifications
Abraham Haim, Sinam Boynao and Abed Elsalam Zubidat

Abstract

Epigenetics is an important tool for understanding the relation between envi-
ronmental exposures and cellular functions, including metabolic and proliferative 
responses. At our research center, we have devolved a mouse model for characterizing 
the relation between exposure to artificial light at night (ALAN) and both global DNA 
methylation (GDM) and breast cancer. Generally, the model describes a close associa-
tion between ALAN and cancer responses. Cancer responses are eminent at all light 
spectra, with the prevalent manifestation at the shorter end of the visible spectrum. 
ALAN-induced pineal melatonin suppression is the principal candidate mechanism 
mediating the environmental exposure at the molecular level by eliciting aberrant 
GDM modifications. The carcinogenic potential of ALAN can be ameliorated in 
mice by exogenous melatonin treatment. In contrast to BALB/c mice, humans are 
diurnal species, and thus, it is of great interest to evaluate the ALAN-melatonin-GDM 
nexus also in a diurnal mouse model. The fat sand rat (Psammomys obesus) provides 
an appropriate model as its responses to photoperiod are comparable to humans. 
Interestingly, melatonin and thyroxin have opposite effects on GDM levels in P. obesus.  
Melatonin, GDM levels, and even thyroxin may be utilized as novel biomarkers for 
detection, staging, therapy, and prevention of breast cancer progression.

Keywords: melatonin, thyroxin, light-at-night, global DNA methylation, diurnal species, 
breast cancer, biomarkers

1. Introduction

Since the invention of electrical light in 1879 by Thomas Alva Edison, artificial 
light at night (ALAN) has become a definitive feature of human development with 
accelerated increase concurrent with urbanization and industrialization. The light 
emitted from the original bulb of Edison known as incandescent bulb was weak, 
with a dominant long wavelength emission above 560 nm. Most of the incandescent 
electrical energy is dissipated as heat energy, thus making this type of illumination 
energetically inefficient. Therefore, new illumination technologies were developed, in 
order to discover efficient bulbs that transfer most of the electrical energy into light. 
White fluorescent and light-emitting diodes (LED) are examples of energy efficient 
bulbs developed to decrease carbon dioxide production from electric power plants, 
thus lessening the greenhouse effect. One of the adverse outcomes of using efficient 
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illumination at night time is the emission of shorter wavelengths (SWLs) that further 
exacerbate the health and ecological problems associated with a new source of envi-
ronmental pollution currently known as ALAN [1–3]. Light pollution is increasing 
rapidly, resulting in a more illuminated world, where outdoor and indoor illumination 
sources are increasing ALAN in developed and developing countries [4, 5].

From an anthropological perspective, electric light has brought pronounced 
benefits including advancing urbanization and industrialization by increasing 
productivity, but we are also increasingly being aware of serious public health 
and ecological negative impacts emerging from disrupting the adaptive temporal 
organization of biological responses [6–8]. Certainly, multiple studies have shown 
the effects of light pollution on social, behavioral, physiological, and molecular 
responses in many different taxa, including insects [9], fishes [10], amphibians 
[11], reptiles [12], birds [13], and mammals [14], as well as plants [15]. Some of the 
most disturbing effects of ALAN on health are metabolic dysfunction and cancer 
progression [2, 16]. In mice and humans, several lines of evidence suggest a close 
association between ALAN levels and both obesity and breast cancer progression 
[17–19]. Here, we focus on ALAN as a novel environmental polluter that disrupts 
biological timing (temporal organization) and consequently may provoke severe 
health risk, particularly breast cancer development through epigenetic modifica-
tions. First, the mammalian photoperiodic system is reviewed in relation to light 
perception and downstream endocrine responses for timing biological rhythms. 
Thereafter, we discuss the sensitivity of the photoperiodic system to the spectral 
composition of ALAN, particularly SWL illuminations. We further discuss the 
ALAN signal transduction pathway involved in melatonin suppression and aberrant 
epigenetic modifications in breast cancer progression. Therefore, melatonin and 
epigenetics are suggested as new biomarkers for breast cancer prevention. Finally, 
melatonin and thyroxin treatments in the diurnal fat sand rat (Psammomys obesus) 
are discussed in relation to their potential role in mediating the environmental 
exposures at the molecular level via epigenetic modifications, particularly global 
DNA methylation (GDM).

2. The mammalian photoperiodic system

In an early study, it has been demonstrated that the blind mole rat (Spalax 
ehrenbergi) responded differently to short and long photoperiod manipulations in 
regard to its capability to cope with low ambient temperature exposure [20]. Results 
of a more recent study on S. ehrenbergi manifested robust and differential responses 
in metabolism, stress, and melatonin levels to ALAN of different spectral com-
positions and acclimation duration [21]. These results suggested that the vestigial 
retina of this species still expresses photoreceptors that are involved mainly in 
nonvisual response. Currently, the mammalian eye is described as a dual-function 
organ, expressing photoreceptors for both visual and nonvisual responses [22]. The 
visual response is mediated by two distinct photoreceptor types, rods and cones, 
which control scotopic vision and photopic vision, respectively [23]. The nonvisual 
responses are mainly mediated by intrinsically photosensitive retinal ganglion cells 
(ipRGCs) that express the photopigment melanopsin. Even though the ipRGCs are 
connected with rods and cones by bipolar cells, they mediate nonvisual responses 
including photo-entrainment of biological rhythms [24].

First, photoperiodic signals are perceived by ipRGCs that express the photo-
pigment melanopsin [25]. The detected environmental light signal by the ipRGCs 
synchronizes the master circadian clock located in the mammalian hypothalamic 
suprachiasmatic nucleus (SCN) by the retinohypothalamic tract (RHT). The 
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SCN regulates the synthesis and release of the hormone melatonin by the pineal 
gland through multiunit sympathetic nerves from the superior cervical ganglion 
(SCG). The SCG presynaptic sympathetic terminals release noradrenalin that 
interacts with postsynaptic α- and β-adrenergic receptors to regulate synthesis and 
release of pineal melatonin [26]. In mammals, the activity of the adrenergic SCG 
terminals that innervate the pineal gland is stimulated by darkness and inhibited 
by light [27]. Under dark conditions, stimulation of the pineal adrenergic recep-
tors increases cellular cAMP levels leading to the activation of aryl-alkyl-amine-
N-acetyltransferase (AA-NAT), a key enzyme in melatonin synthesis [28]. The 
nocturnal increase in the enzymatic activity of AA-NAT is strongly inhibited by 
light exposure, consequently leading to a rapid decrease in nocturnal melatonin 
levels [29]. The pinealocytes are the primary neuroendocrine cells that synthesis 
melatonin by sequential hydroxylation and decarboxylation of its precursor 
tryptophan to serotonin. Thereafter, serotonin is acetylated by the rate-limiting 
enzyme AA-NAT and methylated by the enzyme hydroxyindole-O-methyltrans-
ferase (HIOMT) to the final product of melatonin [28, 30]. Finally, the activity of 
both AA-NAT and HIOMT is under photoperiodic control at the transcriptional 
level showing distinct diurnal rhythms with peak levels during night and nadir 
levels during the day [31].

3. Melatonin suppression as an indicator of SWL pollution

In most mammals, no level of light exposure is powerless regarding melatonin 
suppression and even low intensity and short-term exposures can reduce its pro-
duction and lead to decreased circulating levels [32, 33]. Nonetheless, melatonin 
suppression is strongly wavelength- and irradiance-dependent, with faster and 
more robust response at the SWL end of the visible spectrum below 500 nm [19, 
34, 35]. A large-scale study comparing the effect of different light technologies 
on melatonin production in humans demonstrated that the strongest suppression 
occurred in response to 4000 and 5000 K LED lights compared with incandescent, 
halogen, and fluorescent counterpart lightening systems [36]. Narrow bandwidth 
blue LED exposure (λ = 469 nm, ½ peak bandwidth = 26 nm) decreased melatonin 
levels in an irradiance dose-dependent manner, and this light was more effective in 
decreasing the hormone levels compared with that of 4000 K of white fluorescent 
at twice the energy of the latter [37]. In horses, 1 h exposure of 3 lux SWL blue light 
(468 nm) administered only to one eye was sufficient to decrease melatonin levels 
compared with control animals [38].

Furthermore, blue LED pulses (2-s pulse every 1 min for 1 h, λ = 450 nm) 
administrated through closed human eyelids markedly suppressed nocturnal 
melatonin levels and delayed the melatonin onset phase [39–41]. While the eyelids 
can weaken irradiance and wavelength ([42], light signals can still penetrate them, 
be detected by the retinal photoreceptors, and affect circadian regulation [43]. In 
humans, blue LED exposure (40 lux, 470 nm) emitted from display screens (tablets 
and computers), suppressed nocturnal melatonin in a duration-dependent man-
ner [44, 45] and melatonin suppression showed higher sensitivity to wavelength 
compared with intensity manipulations [46].

Together, it is clear that the adverse effects of light pollution are strongly mani-
fested by the SWL portion of the spectrum. As the LED illumination is becoming 
ubiquitous in every aspect of our modern life, the expected increase in light pollu-
tion may exacerbate the problem since higher irradiance and shorter wavelengths 
would be emitted by the energy efficient technology [47, 48]. Accordingly, the 
American Medical Association [49] passed a resolution in 2016 calling upon 
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communities in the USA to avoid using LED lighting in public domains as it is 
enriched with SWL [49]. In summary, SWL-ALAN is a source of pollution and 
should be removed from public spaces through legislation.

4.  ALAN as an environmental change and a model for studying 
epigenetic modifications

The flexibility and the sensitivity of the endocrine system play an adaptive 
role in determining the success and survival of organisms under contentiously 
changing environmental conditions in their habitat [50]. As the endocrine system 
regulates several functions, it is expected to be the first system to respond to 
environmental changes such as ALAN by coordinating body functions to maintain 
homeostasis during the exposure. The core stimulus-response of the endocrine 
system to ALAN relies on four main components, including the pineal gland, 
the hypothalamic-pituitary-gonadal (HPG) axis, the hypothalamic-pituitary-
thyroid axis (HPT), and the hypothalamic-pituitary-adrenal (HPA) axis [51]. 
The elaborated hormonal responses generated by these axes to ALAN exposure 
might be mediated by transcriptional regulation of gene expression via epigenetic 
modifications [52]. Therefore, epigenetic-elicited alteration in gene expression is 
a potential transduction pathway by which hormonal responses (e.g., melatonin) 
may mediate environmental exposures (e.g., ALAN). Conversely, the ALAN-
induced alteration in melatonin rhythms may also exert endocrine responses via 
epigenetic modifications [53].

The incidences of breast and prostate cancers show close association with light 
pollution particularly in urbanized and industrialized regions [2, 54]. Several 
epidemiological studies have found direct association between light pollution and 
incidence of breast cancer in women as well as prostate cancer in men [18, 55, 56]. 
Furthermore, the strong association between light pollution and cancer incidences 
displays divergent spatial disruption with higher incidences in urban compared 
with rural regions [57, 58]. Evidence for direct association between ALAN and 
cancer development comes also from animal studies.

In rats, ALAN exposure accelerated the growth rates of induced-tumors, includ-
ing mammary cancer [59–62]. Studies under control conditions demonstrated that 
30-min ALAN per midnight emitted from either white fluorescent or blue LED 
illuminations can accelerate tumor growth and lung metastatic activity in female 
BALB/c mice inoculated with 4T1 mammary carcinoma [63, 64]. Indeed, the effects 
of ALAN on tumor growth have been demonstrated at different spectral composi-
tions with markedly higher cancer burden in response to lighting exposure lower 
than 500 nm [19].

These studies have related the increased cancer burden to aberrant epigenetic 
modifications, particularly advanced global DNA hypo-methylation. Promoter 
hyper-methylation of cancer suppresser genes and global DNA hypo-methylation 
are characterizing epigenetic patterns in breast cancer cells [65, 66]. These aber-
rant epigenetic modifications may contribute to increase cancer burden by elicit-
ing genomic instability and activation of both oncogenes and metastatic related 
genes, as well as silencing tumor suppressor genes. Generally, prominent decreased 
methylation in repetitive DAN elements is a common trait in most cancer cells 
[67]. Demethylation of pro-metastatic genes is normally suppressed by DNA 
methylation and might advance gene overexpression leading to genetic instability 
that increases the risk of developing cancer [68, 69]. DNA hypomethylation can 
be detected at an early stage of breast cancer and is correlated with the degree of 
tumor differentiation [70, 71]. Altogether, the close association between aberrant 
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DAN hypomethylation and tumorigenesis, particularly of breast cancer, is well-
established, but the underlying mechanism remains poorly understood, especially 
how the adverse ALAN effects are mediated.

5.  Melatonin as a mediating signal linking ALAN and epigenetic-induced 
cancer

Since the melatonin hypothesis was first proposed during the late twentieth cen-
tury by Stevens [72], multiple studies in human and nonhuman animals have provided 
direct and indirect evidence that melatonin suppression by ALAN could impose health 
risks, including metabolic disorders and cancer progression [2, 54]. The importance 
of melatonin in the regulation of several biological functions depends heavily on its 
lipophilic and hydrophilic traits that make it omnipresent in all cell compartments, 
principally in the nucleus [73]. Indeed, low levels of 6-sulfatoxymelatonin (6-SMT), 
the major metabolites of the hormone in urine [74], have been demonstrated to 
correlate with increased risk of breast cancer in postmenopausal women [75–77]. 
Furthermore, women with blindness or long sleep duration (elevated melatonin levels) 
present reduced breast cancer risk relative to normal women [78, 79].

Physiological blood concentration of melatonin blocked human leiomyosarcoma 
(soft tissue sarcoma) proliferation by inhibiting tumor metabolic and genetic 
pathways presumable by suppression of cellular cAMP levels via melatonin receptor 
[80]. In hepatocellular carcinoma-induced mice, melatonin treatment suppressed 
tumor cell proliferation through arresting the cell cycle [81]. The metastatic activ-
ity of oral squamous cell carcinoma was notably reduced by melatonin-mediated 
inhibition of tumor-associated neutrophils [82], inflammatory cells involved in 
promoting several solid tumors [83]. Similarly, the anti-oncogenic property of 
melatonin has been demonstrated also in other cancer types, including lung [84], 
gastric [85], ovarian [86], and colon [87], as well as breast cancers [88].

Melatonin could mediate its effects of cancer development via epigenetic 
modifications, particularly GDM [89]. Melatonin treatment to MCF-7 cell lines 
significantly increased DNA methylation that was associated with increased tran-
scriptional levels of the tumor metastasis suppressor gene glypican-3 and decreased 
expression levels of the oncogenes EGR3 and POU4F2/Brn-3b [90]. In estrogen-
receptor-related breast cancer, melatonin may decrease transcriptional levels of 
the aromatase gene (involved in the regulation of estrogen synthesis) by either 
methylation of the gene or deacetylation of the promoter gene [91]. Additionally, 
nocturnal melatonin treatment can rectify the induced DNA demethylation, tumor 
growth, and metastatic activity by both blue LED and fluorescent ALAN in 4T1 
mammary cancer cell-inoculated female BALB/c mice [63, 64]. In a more recent 
study that evaluated the effects of ALAN and melatonin treatment at different 
spectral compositions in 4T1-inoculated BALB/c mice, a tissue-specific response in 
GDM was detected [19]. In this study, the tumor tissue manifested the most promi-
nent changes in GDM showing an inverse wavelength-dependent correlation that 
was reversed by melatonin. Conversely, other tissues (e.g., lung, liver, and spleen) 
showed mixed results of positive, negative, or indifferent correlation between 
methylation levels and both wavelength and melatonin treatments [19]. Largely, 
melatonin may regulate epigenetic modifications in a number of tumor-related 
genes mainly by DNA methylation, but other modifications are also possible.

The strong association between ALAN, DNA hypo-methylation, and melato-
nin suppression may be of significant clinical importance. DNA methylation and 
melatonin can be utilized as biomarkers for detecting and preventing breast cancer 
development. The traditional diagnosis method for breast cancer is scanning by 
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mammography, which is a useful technique to identify the growth of cancer. The 
mammography cannot predict risk for breast cancer as it indicates its existence, 
but trends in melatonin suppression and DNA methylation can provide a simple, 
noninvasive, and reliable tool for predicting cancer risk, particularly among a group 
of high-risk individuals for developing the disease such as night shift workers. 
Bearing in mind that epigenetic modifications are reversible [92], early treatment 
by melatonin or any other analogs [93] for individuals at high risk can be very 
effective in preventing breast cancer. We are aware today, that genetics factors such 
as breast cancer genes are not the major causes of the malignancy and other external 
factors are heavily involved. Therefore, much more attention should be given to 
environmental changes that link endocrinology with epigenetic modifications.

Collectively, in diurnal humans, circadian disruption enforced by activity 
impinging on the inactive period during the nighttime is recurrently associated 
with a number of health problems. However, a direct link between ALAN-induced 
circadian disruption and health risks is still difficult to clearly establish as most data 
are derived from epidemiological and nocturnal animal studies [94]. Therefore, 
integrating diurnal animal models of chronodisruption with epidemiological and 
nocturnal model studies would add a significant value in defining potential direct 
signal transduction pathways mediating the environmental exposure impacts on 
physiology and health. Consequently, we conducted a preliminary study to investi-
gate the effects of hormonal manipulations in diurnal species on physiological and 
epigenetic regulations. This preliminary study is a first step in a large-scale study 
using diurnal mouse model to elucidate the association between ALAN-induced 
circadian disruption and the development of health problems at the behavioral, 
physiological, and molecular levels.

6.  Physiological and epigenetic responses to melatonin and thyroxin in 
diurnal species

Bearing in mind that humans are diurnal, understanding the physiological 
and epigenetic response to ALAN in human disease can benefit significantly from 
using a diurnal species such as the fat sand rat (Psammomys obesus). This species 
is a good model because it is a photoperiodic species that responds to photoperiod 
with robust daily rhythms in a number of physiological functions, including body 
temperature, melatonin levels, and AA-NAT activity [95, 96]. Furthermore, P. 
obesus is a useful model for studying human health and diseases such as meta-
bolic disorders, obesity, diabetes, inflammation, and cardiovascular impairment 
[97–100]. Since most previous studies on photoperiodic responses were conducted 
on nocturnal species, in our research center at the University of Haifa, we use P. 
obesus as a model for studying photoperiodic and hormonal manipulations. In P. 
obesus, melatonin and body temperature rhythms were diminished in response 
to constant dim blue light exposure, while melatonin treatment restored the 
disrupted rhythms [63]. Although the previous studies have clearly indicated that 
as a diurnal species, P. obesus can respond to photoperiod and light manipulations, 
the underling mechanism mediating the effect of the environmental changes 
remains unknown. An unanswered question is how melatonin and thyroxin inter-
act to mediated environmental-induced epigenetic modifications. To answer this 
question, male P. obesus were acclimated to a long photoperiod cycle of 16L:8D at 
an ambient temperature of 24 ± 1°C and humidity of 45 ± 2%. Lights during the 
day were emitted from cool fluorescent lamps at 470 lux and 470 nm. Rats were 
caged individually and provided with ad libitum tap water and low energy diet. 
At the end of 3-week acclimation period, rats were either untreated, i.p. injected 
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with melatonin, thyroxin, or melatonin and thyroxin in combination 3 h after the 
dark period onset (01:00 h). Hormones were daily administered for 3 weeks at a 
dose of 50 μg/kg for melatonin and 2 mg/kg for thyroxin. During the experimen-
tal period, body mass (Wb) was monitored every other day and urine samples 
were collected by a noninvasive method [19] at 4 h intervals over a 28 h period. 
Urine samples were used to measure the major metabolite of melatonin in urine, 
6-SMT [101]. The urinary metabolite concentrations were assayed by enzyme-
linked immunosorbent assay utilizing a commercial IBL kit (RE54031) following 
the manufacture’s protocol. Finally, digit tips were collected from rats at the end 
of urine collection for DNA isolation (High pure PCR Template Preparation Kit, 
Roche) and subsequently for GDM analysis (MethylFlash™ Methylated DNA 
Quantification Kit, Epigentek). All experimental procedures were performed 
with the approval from the Ethics and Animal Care Committee of the University 
of Haifa.

The results showed that melatonin alone significantly increased Wb from day 1 
compared with controls, but with a decreasing magnitude with time (Figure 1A). 
Mass gain on day 1 was approximately 1.5-fold higher compared with that at the last. 
T4 also increased Wb from day 1 to day 5 compared with controls, but with signifi-
cantly lesser effect compared with melatonin. Thereafter, mass was decreased show-
ing a moderate mass loss from day 13 to day 21 compared with controls. Thyroxin 
and melatonin in combination markedly decreased Wb with time compared with all 
other groups. Mass gain decreased from 0.46 ± 0.88% at day 1 to −20.21 ± 2.56% at 
day 21. Thyroxin can regulate Wb by increasing heat production through nonshiver-
ing thermogenesis by changing membrane permeability to sodium, increasing the 
pump activity to maintain cell homeostasis in brown adipose tissue, resulting in 
higher body temperature values and loss in Wb [102].

Melatonin may operate through increasing the amount of brown adipose tissue, 
thus increasing heat production by increasing energy expenditure. Melatonin and 
thyroxin in combination provoked considerably more mass loss than melatonin 
alone, suggesting that melatonin may act synergistically with thyroxin to evoke 
mass loss in rats, due to the combined effect of increasing energy expenditure.

Body temperature rhythms were notably altered only in response to T4 treat-
ment, while melatonin alone and in combination with thyroxin had no effect on 
body temperature compared with controls (Figure 1B). Furthermore, the signifi-
cant decrease in body temperature following treatments with thyroxin and melato-
nin in combination, compared with T4 alone, suggests that melatonin and thyroxin 
exert a significant antagonistic effect on body temperature.

Thyroxin treatment had no effect on mean 6-SMT levels but altered the daily 
rhythms with higher amplitude and delayed acrophase by approximately 2 h 
(Figure 2A). Finally, melatonin treatment elicited hypomethylation while thyroxin 
alone or thyroxin and melatonin in combination exerted comparable effects on 
GDM levels showing marked hypermethylation compared with control levels 
(Figure 2B). Similar to Wb, thyroxin and melatonin may have exerted synergistic 
effects on promoting DNA hypermethylation, but this effect did not reach statisti-
cal significance.

These results suggest that melatonin and thyroxin have a role in the regulation of 
body temperature and apparently metabolism, in which the former may attenuate 
metabolism and the latter may accelerate it. Both hormones exerted inverse effects 
on global DNA levels, suggesting that different transduction pathways are involved 
in the circadian regulation of body temperature in P. obesus. The results suggest 
also that change in body temperature is more sensitive to thyroxin treatment than 
melatonin, as the effect of the latter was masked in the combined treatment with 
the other hormone.
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However, in humans, melatonin may interact with the HPT axis to modulate 
the circadian rhythm of body temperature [104]. In mammals, the HPT axis plays 
a major role in several adaptive functions such as growth, development, metabolic 
rate, thermogenesis, heart rate, immune, and reproductive responses [105]. The 
HPT releasing and stimulating hormones as well as the thyroid hormones (T4 
and T3) are under photoperiodic control presumably by the pars tuberalis of the 
adenohypophysis [106, 107]. In rats, T3 and T4 concentrations exhibit significant 
circadian rhythms with elevated levels during the dark period compared with the 
counterpart light period [108]. The nocturnal increase in the thyroid hormones was 
reported also in the rat pineal gland following an increase in type I 5′-iodothyronine 
deiodinase activity, which catalyzes the conversion of T4 to T3 [109]. Furthermore, 
the thyroid hormones are crucial photoperiodic regulators of several physiological 

Figure 1. 
Percentage change in body mass (A) and body temperature (B) in long-day acclimated P. obesus under four 
conditions: control no treatments, thyroxin (T4) treatment, melatonin (MLT) treatment, and combined treatment 
with T4 + MLT. Data are presented as mean ± standard error of nine animals. Different letters represent 
statistically significant difference among groups (Bonferroni, P < 0.01). # vs. day 21 (Bonferroni, P < 0.02).
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processes including energy metabolism and reproduction [110, 111]. While the 
relation between the HPT axis and the photoperiodic system are well-characterized, 
there are limited studies on the effect of ALAN on the HPT axis. However, due 
to the link with the photoperiodic system, environmental perturbation of the 
circadian clock by ALAN is expected to alter the activity of the HPT axis, includ-
ing the thyroid hormones. In hamsters under short-day photoperiod, low levels of 
ALAN elevated the levels of thyroid-stimulating-hormone (TSH) receptors causing 
advanced Wb and gonadal growth [112]. Continuous exposure to ALAN decreased 

Figure 2. 
Daily rhythms of urinary 6-sulfatoxymelatonin (A) and global DNA methylation (B) levels in long-day 
acclimated P. obesus under four conditions: control no treatments, thyroxin (T4) treatment, melatonin (MLT) 
treatment, and combined treatment with T4 + MLT. In panel A, the best-fitted cosine curve (black and gray 
lines) and Cosinor estimates (period, P-value, and percentage of the rhythm [PR]) are depicted [103]. The gray 
area in each plot represents the length of the dark period. Data are presented as mean ± standard error of seven to 
nine animals. Different letters represent statistically significant difference among groups (Bonferroni, P < 0.01).
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TSH, but increased both T3 and T4 in mice [113]. In birds, long-term exposure 
to ALAN increased both the blood levels of the thyroid hormones and Wb [114]. 
Overall, ALAN may induce aberrant epigenetic modifications by disrupting endo-
crine axes such as HPT axis that interacts with melatonin to manifest the adverse 
effects of the environmental exposure. However, the exact mechanism of action by 
which HPT axis may directly, or via melatonin, mediate the disruption effects of 
ALAN on the circadian system and promote downstream health risk is still unclear, 
and further efforts are warranted for elucidating it.

7. Conclusions

Currently, it is clear that electric light not only has remarkable anthropological 
advantages, but also severe adverse ecological and public health concerns. One of the 
most alerting impacts of ALAN on public health is the potential association between 
SWL exposure and cancer development, particularly in urbanized regions worldwide. 
ALAN effects are suggested to be mediated at the cellular level by inducing epigenetic 
modifications via nocturnal melatonin suppression. A schematic of ALAN-induced 
adverse effects is presented in Figure 3. Accordingly, light signals including ALAN 
are detected by ipRGCs and conveyed to the SCN by RHT. During a normal light dark 
cycle, melatonin is synthesized and secreted to the blood during the night, where it 
entrains central and peripheral oscillators to regulate normal physiological responses. 
Conversely, ALAN suppresses melatonin levels causing chronodisruption and mis-
alignment in central and peripheral oscillators resulting in impaired physiological 
responses. The central and peripheral oscillators can be regulated directly by the mela-
tonin signal or indirectly by modifying the body temperature rhythms [115]. In mice, 
daily variations in body temperature rhythms have been demonstrated to synchronize 
circadian gene expressions [116] and these central-controlled variations can be utilized 
to regulate variant peripheral circadian clocks in mammals [117]. Consequently, in 
diurnal species, thyroxin as an endocrine pathway is presumably involved in center cir-
cadian regulation of peripheral clocks by modifying body temperature daily rhythms.

These effects are presumably mediated by aberrant epigenetic modifications. 
Therefore, DNA methylations, which are a reversible modification in genes, trig-
gered by melatonin, are a promising mechanism linking between environmental 
exposures like ALAN and hormonal/cellular pathway mediating carcinogenic activi-
ties like metastasis activity, tumor cell proliferation, and estrogen-related responses 
[89]. Melatonin may affect DNA methylation by modulating the activity of DNA 
methyltransferases involved in the regulation of gene expression by changing DNA 
methylation patterns. The well-established fact that different tissues present specific 
patterns of epigenetic modifications [118] may account for the observed tissue-spe-
cific effects of ALAN and melatonin on DNA methyl-transferase activity and GDM 
levels. Tissue differential effects on the activity of DNA methyl-transferases and 
GDM levels in response to ALAN exposure may present tissue-specific responses 
to genes that are involved in circadian regulation of several transduction pathways 
including cancer cell proliferation and metastatic activity. Since humans are diurnal 
species and most studies have been conducted on nocturnal animals, a diurnal 
experimental model should be of a great clinical interest. P. obesus may be very 
useful as a diurnal animal model for understanding the physiological and molecular 
effects of light pollution on public health. Melatonin suppression, GDM, and even 
thyroxin levels may present a significant clinical importance as a biomarker for 
early detection of cancer, particularly in individuals who are at increased risk of 
developing cancer by circadian disruption induced by excessive ALAN exposures. 
As epigenetic modifications are revisable, these biomarkers retain therapeutic value 
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for ALAN-induced cancer by gene demethylation. Finally, the accumulating data 
regarding the adverse effects of light pollution on ecology and heath compel us to 
take drastic and rapid measures to reduce light pollution by extreme regulation or at 
least reducing SWL emission by developing safe lightning technology.

Figure 3. 
Schematic representation of the mechanism of ALAN in eliciting adverse health effects. Light signal, including 
short wavelength ALAN (SWL-ALAN), is detected by intrinsically photosensitive retinal ganglion cells 
(ipRGCs) that propagate it to the SCN via the retinohypothalamic tract (RHT). Thereafter, the signal is 
transmitted to the pineal gland (PG) via superior cervical ganglion (SCG). Finally, melatonin is synthesized 
and secreted to circulation by the PG during the night, where it synchronizes peripheral clocks with the ambient 
photoperiod. Generally, ALAN suppresses nocturnal melatonin, in which adverse health impacts are generated 
by inducing aberrant epigenetic modifications.
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