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Chapter

Deterministic Approaches to
Transient Trajectory Generation

Matthew A. Cooper

Abstract

This chapter studies a deterministic approach to transient trajectory generation
and control as applied to the forced Van der Pol oscillatory system. This type of
system tends towards a strongly nonlinear system, which can be considered chaotic.
A classical tuning method, targeted exponential weighting, and isolated trajectory
fractionalization trajectory generation methods are examined. Illustrating the given
deterministic approach via the Van der Pol system highlights the potentially itera-
tive nature of deterministic methods, and that traditional optimal linear time-
invariant control techniques are unable to perform as desired whereas even an
idealized nonlinear feedforward control significantly outperforms at the steady-
state. It will be shown that utilizing a-priori knowledge of the system dynamics will
enable the isolated trajectory fractionalization method to minimize the nonlinear
transient effects due to miss-modeled or unmodeled plant dynamics, and that this
benefit can be coupled with the targeted exponential weighting approach for greatly
decreased trajectory tracking error on the order of a 92% reduction of the objective
cost function in the presented case study based on the forced Van der Pol system.

Keywords: Van der Pol, trajectory generation, path planning, nonlinear transients,
control systems, nonlinear dynamic system, aerospace engineering, non-stochastic,
deterministic, autonomy, intelligent systems, feedforward, dynamic inversion,
disturbance modeling, phase portrait tuning

1. Introduction

Transient trajectory generation research is an interesting area, and often finds
itself in a highly nonlinear environment. Similar to trajectory optimization prob-
lems [1-9], the goal of designing transient trajectories is to reach the desired steady-
state trajectory more quickly while simultaneously minimizing and unwanted
micro-transients along the way. Micro-transients can be considered as a
subcategory of transient trajectories. Transient trajectories are smaller trajectories
that connect two steady-state trajectories and can be quite volatile and full of non-
linear micro transients that may push the system towards instability. Section 1 will
introduce the reader to basic control theory, and the Van der Pol oscillator which
will be used to illustrate transient trajectory generation approaches. Section 2 will
describe a classical tuning method, targeted exponential weighting, and isolated
trajectory fractionalization trajectory generation methods and present the
corresponding results of each method. Section 3 will finish off the chapter by
summarizing the results in table format.

1 IntechOpen
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1.1 Basic control theory

An introduction to control theory will be conducted to set the understanding
baseline in common controls. This refresher will start with state-space nomencla-
ture and then quickly step through the most common feedback control,
feedforward control, observers, and adaptive designs. This will be the ground work
that is used to later illustrate to the trajectory generation techniques and the inher-
ent complexity in nonlinear dynamical systems such as the Van der Pol oscillator.
Any dynamical system can be represented in state-space matrix form [10] to
provide a solution formed as shown in Eq. (1):

{X=Ax+Bu Q)

y = Cx + Du

where A is a matrix representing the system states (also referred to as the plant).
B is an input matrix, C is the output matrix, and D is the feedback/feedforward
control input matrix. A symbolic representation of a feedback control loop is illus-
trated in Figure 1.

The input to Figure 1 is nominally a desired position (output) from a user which
may be converted to a usable command in the generate trajectory block. For the
initial output the input will be fed directly to the plant for a resulting position. If this
is not the desired position, then the feedback controller will calculate that error
between the desired and resulting position and produced an appropriately weighted
control signal to adjust the input. This will happen cyclically until the error
approaches zero, and is typically referred to as a zero-seeking negative-feedback
approach [10]. A common way to represent the interaction between the input and
output of a system is as a transfer function [11], and is usually presented in the
Laplacian domain as shown as H in Eq. (2). Also known as the S-domain, this can be
an easier format to mathematically manipulate the system variables primarily due
to the fact that the system blocks interact in a convolutional way in the time-domain
whereas in the S-domain one can just perform multiplication and achieve equivalent
results [11].

_ A
1+ D(s)A(s)

H(s) (2)

A very common way to implement a feedback controller is through the use of a
proportional-integral-derivative (PID) controller [11] as shown in Figure 2.

The PID controller is the staple of many feedback control systems [11], and can
be formulated such that it is a zero-seeking architecture by calculating the differ-
ence between the measured output of the system and the desired output as shown in
Figure 2 and Eq. (4). The error signal is then fed into the proportional, integral, and
derivative blocks, and summed together to provide an additional control input to
the plant. The proportional block assigns a constant gain (K,,) to the error signal, the

Control input -_ position
> —

input

Figure 1.
Generic feedback control schematic.
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measured error Control input

desired

Figure 2.
Generalized PID feedback controller.

integral block calculates the integral of the error signal and applies a different gain
(K;). There are many different ways and variations of implementing a PID control-
ler such as sometimes only utilizing one or two components as shown in Eq. (3) asa
typical PI controller example.

K;
u= (G- 0K, + ) 8

3

where q is the desired position and q is the measured position and the error is
defined as:

~

e=§d—gqg (4)

The third and final component of the PID feedback controller is the derivative
block which calculated the derivative of the error signal and assigns a corresponding
gain (Ky) to it. If all three components are summed together as shown in Figure 2, it
will result in Eq. (5) for the time-domain solution, and Eq. 6 for the S-domain.

Egs. (5) and (6) illustrate both the time-domain equation and the S-domain
equation for ease of comparison.

u(t) = Kel(t) + K f AR o (‘;(f) (5)
u(S)=e (sz + % + KdS)) (6)

Another common feedback control method extends into the realm of optimal
control [1, 2] which is focused primarily at looking at control as a cost minimization
problem. A linear quadratic regulator (LQR) is one way to treat a feedback control
system as an optimal control problem [1]. One variation based in the continuous
time-domain treats the problem with a focus on the infinite steady-state, the
infinite-horizon continuous-time LQR. The cost function of this type of solution is
identified in Eq. (7).

= / (2" Qz + u" Ru + 22" Nu) dt (7)
0

b

where Q is the state cost matrix, R is the input cost matrix, and N is the final
state cost matrix with a feedback control law of:

u = —Kx (8)
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where:
K =R YBTP+N7") (9)
and P is found by solving the continuous time Riccati equation [11]:
ATP+ PA— (PB+N)RY(BTP+NT)+Q =0 (10)

For a linear system, with a linear response, an appropriately chosen cost func-
tion, J, can achieve optimal feedback control parameters and find the feedback
control parameters that minimize the control cost J.

When full-state feedback is not present in a system, i.e. the outputs cannot be
fully known, the control system will either need to be designed without the need for
the missing information or those states will need to be estimated based on the
sensed outputs as seen in Figure 3. In this case an estimator is also referred to as a
state observer. A state observer’s role is to estimate the internal states of a given
system based on the current inputs and outputs. For a more thorough discussion the
reader is referred to [10].

An example of taking the general formulation above and applying it to a specific
system is illustrated in Figure 4 for a spacecraft, more specifically a satellite. Here
the system dynamics will also include control moment gyros, and other physical
restraints/limitations of a real-world plant [12-20]. Additionally, the control vari-
ables here are in angle, angular rate, and angular acceleration in order to apply the
correct torque on the motors to affect the desired outcome.

The key takeaway here is that the high-level depiction of the system identified in
Figure 4 is not very different from the general case, only that the details within the
blocks encompass many more physical variables.

1.2 The Van der Pol oscillator

Balthasar van der Pol (1889-1959) was a Dutch physicist who became interested
in the differential equations of coupled electrical systems, which formed into

position

Figure 3.
Generic nonlinear feedforward/feedback control schematic.
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Figure 4.

Nonlinear feedforward/feedback spacecraft control schematic.
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Figure 5.
RLC schematic for VDP derivation.

relaxation oscillators, what later became a description of what we now call limit
cycles [22]. His initial investigation began with describing the human heartbeat, and
later when turning towards the issues of radio communication [23-25] at the time
(the result of deterministic chaos) and is illustrated with the resistor-inductor-
capacitor (RLC) circuit shown in Figure 5.

The circuit in Figure 5 represents a schematic for an RLC circuit comprised of a
nonlinear resistor (R), an inductor (L), and a capacitor (C). This common circuit
can be described by the differential equation [21] in Eq. (11):

o o1
— (y — — V= 11
1% C(a VAV + LC’V 0, (11)

where:

r=+/3y/aV and #=+VL/Ca gnqg L/Rx uvVLC (12)

and where M is the damping coefficient, and can be rearranged to get in the
form of the differential equation that describes the Van der Pol equation for limit
cycle oscillations in Eq. (13).

d? d
. (1_$2)d_5:+33:0, (13)

By using the simplification assumption in Eq. (15), one can simulate the VPD as
a plant to a controls simulation in MATLAB/Simulink structured around the model
presented previously in Figure 3. The natural periodic oscillations in the phase
portrait can be seen in Figure 6, which are shown to converge to the same limit
cycle from any initial condition nearby (local). This model will be discussed in
greater detail in Section 2.

Phase portraits are ways to represent the performance of a system, and to also
analyze the expected stability within some local bounds usually determined by the
anticipated operational bounds [10, 11, 23]. These portraits display the state of
interest with respect to the derivative of that state. Ideally, the goal is such that the
state is controllable enough so that the state can be forced to zero within a given
time-constant. Sometimes, in a nonlinear system, just being able to prevent the state
from growing unbounded (blowing up) and towards an arbitrary asymptotic limit
is acceptable [11].

Taking the unforced VPD equation and adding a sinusoidal forcing function to
Eq. (13) gives Eq. (14):
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d’x 9\ dT
e e o o . C — 14
12 (1 i )dt +x Asm(wt) =), (14)

Using the forced VDP equation, and simplifying it by using the outlined
assumptions in Eq. (15) to achieve a perfectly circular limit cycle:

p=1 w=1, A=1 (15)
to get Eq. (16):
&— (1— 2%+ — sin(t) = %4 — (1 — z3)Ea + x4, (16)

In order to implement the forcing function onto the VDP system, it is needed to
invert the dynamics such that the VDP equation is used as the feedforward control
signal, which will feed into the plant. The steady-state results can be seen in
Figure 7, with a severe amount to transient phenomenon before reaching the
perfectly circular limit-cycle steady-state response.

1.3 What are transient trajectories?

What are transient trajectories? This is a good question, and one with issues and
difficulties that the reader may understand without explicitly realizing it. Transient
trajectories are those trajectories that transition between the intended steady-state
trajectories, and are often short lived [1, 10, 11, 26-28]. The most common types of
transient trajectories are of the variety if initial start-up of a system [11]. For
example; let us say we have a satellite pointing at some location (x1, y1) on Earth,
and now it is needed to point a different location (x2, y2). The desired control and
corresponding control trajectory (if a solely feedback control loop is not
implemented) will comprise the transient trajectory. It starts at (x1, y1), ends at
(x2, y2), and incorporates every point in the resulting path between those two

xd(t)

Figure 6.
Phase portrait illustration of unforced VDP system.
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points that the platform takes to include the multiple controllable states of the
system.

Figure 8 shows an example of a desired transient trajectory. In this example a
satellite with an electro-optical telescope is being steered by directing the pointing
vector of the staring sensor it employs. The sensor starts at a (0°, 0°, 0°) in the
standard (roll, pitch, yaw) coordinate system, and then the user desires the sensor
to move to (0°, 0°, 30°). The user inputs a command of 30° yaw to the system, and
can be interpreted in many ways. The red, yellow, and blue lines represent different
variations of the interpretation across the desired angle, angular rate, and angular
acceleration. The trajectory in red represents a sinusoidal-based step function that
takes on discontinuities in the angular rate and acceleration terms, whereas the
trajectories in yellow and blue are entirely continuous.

The effects of transient trajectories can be illustrated via phase portraits like
those presented in Figures 6 and 7, with the main concern in affecting the stability
of a system of interest. If the transients couple with the potential variations in initial
conditions to produce deleterious effects on the stability, it will be illustrated very
clearly in a phase portrait as it will likely grow unbounded. Another method on
evaluating the performance of a system when evaluating the effects of transients is
through the use of an object cost function [10]. A common approach is by using the
root-mean-square (RMS) value between the desired trajectory and the measured
trajectory to gain an RMS error value as shown in Eq. (17).

= Ji
T—o0

T
RMS.rror = lim %[ [q(t) — (j(t)]2 dt (17)
0

’

where (j is the measured trajectory, and ( is the desired trajectory.

xd(t)

Figure 7.
Phase portrait illustration of forced VDP system.
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Desired Angle, Rate, Acceleration Trajectories
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Figure 8.
Desired transient trajectory for a 30° yaw Maneuver of an optical pointing satellite vector.

2. Transient trajectory generation case study

At this point it is relevant to apply the basic components introduced in the
previous section to the common nonlinear, and slightly chaotic VDP system to
illustrate the benefits and highlight potential areas for further discussion.

Taking the Van der Pol oscillatory system as described by Eq. (16), and model-
ing it as the system plant we get the MATLAB/Simulink model in Figure 9. This
model receives a control signal, and generates a new position. Inverting the
dynamics result in a similarly defined model for a feedforward controller identified
in Figure 10. Here, the model receives a defined trajectory vector comprised of the
position, velocity, and acceleration (T, and & respectively). Propagating those
trajectories through the model creates an “ideal” control signal for the plant
dynamics.

The plant dynamics and the feedforward controller form the heart of the simu-
lation as the rest of the system parameters will change relative to the different
approaches. Both of these models are incorporated in the high-level system diagram
illustrated in Figure 11. The high-level diagram also shows the user input starting
from the right-hand-side, which is fed in multiple trajectory generation functions.

Scopes
u(t)
xddot(t)
xdot(t)
x(t)

YYyYyvYyy

x" X X
= 1
Coer( )< 3 [+ |1 >
Control Signal " , Position
Integrate x Integrator x
-
- 61 Qq 1
mu(x”r2-1)

mu

Figure 9.
Van der Pol plant dynamics.
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Inverted Van der Pol system for feedforward controller.
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Figure 11.
High level system simulation in MATLAB/Simulink.

The output of the desired trajectory function is then fed into both the feedback and
the feedforward controllers. Here, the output of the controllers can be turned on or
off as desired to evaluate the performance of the controllers. For deterministic
control algorithms it is necessary to assume either full-state feedback, or non-
stochastic signals on the output.

2.1 Classical tuning method

One can apply classical tuning methods to the feedback controllers such as PID,
and LQR to treat this nonlinear system as a linear system. The PID controller in
Figure 2 can serve as a foundation for multiple variants of a linear feedback con-
troller by modifying the gain coefficients K;, K4, and K. Due to the ineffectiveness
of linear control algorithms on the highly nonlinear VDP plant, the LQR feedback
controller will be the only approach illustrated. Calculating the LQR coefficients are
somewhat trivial in MATLAB/Simulink if the system description is in a compatible
form and the MATLAB function call can be used: [K, S,e] = LQR (A,B,Q,R,N) [29],
which gives the relevant Ky, and Kp values. In this instance, the system is described
in state-space as shown in Eq. (18):

1 -1 -1
A=[1 0], B=[O],C=[O 1], D=[0] (18)
to get a resulting control law of:

&z
dt?

—u(l—z2)2—j+$: —K4(Zq— ) — K, (x4 — ), (19)



Deterministic Artificial Intelligence

or Eq. (22) when coupling the ideal forced VDP feedforward controller with
LQR:

.’L‘—(1—I2)$+$:$d—(1—$2)Id+$d—Kd($d—$)—Kp(iL‘d—fL'),
(20)

The resulting phase portrait with only incorporating the LQR gains implemented
in Eq. (19) are displayed in the left side of Figure 12. It can be seen that the stability
is affected such that the system steadily grows unbounded and not to an asymptotic
limit which is desired for illustrating stability. Investigating the nearby initial con-
ditions does not identify any condition that produces a stable system.

The right side of Figure 12 illustrates similar results from coupling the ideal
nonlinear feedforward controller with the LQR feedback gains. Again, it can be seen
that the system grows unbounded with no identified initial conditions providing
stability. It can also be seen that the trends in the trajectories are influenced by both
the LQR feedback only system and the ideal feedforward controller, although the
teedforward controller in not robust enough to bring the system back to an asymp-
totic limit cycle.

2.2 Isolated trajectory fractionalization

With the results identified in Section 2.1 using linear feedback methods to
compensate for trajectory tracking error of the nonlinear VDP system, it is neces-
sary to try something different. One way is to incorporate isolated trajectory frac-
tionalization (ITF). This train of thought assumes the ability of the transient
trajectory to be fractured into sub components which can be elegantly stitched
together to form the desired transient trajectory. There are many ways to stitch
trajectories utilizing the mathematical principles of spline interpolation, Chebyshev
polynomials, Lagrange polynomials, and the Runge Kutta methods [30] for exam-
ple. Here we will illustrate the micro-transient generation to get a better performing
transient trajectory via the 8-term Fourier Series fitting method. Under the theory
that any periodic signal can be broken up to an infinite series of orthogonal basis
functions based on a combination of sines and cosines [30] as defined by Eq. (21):

n
T, =ag+ E a;cos(iwt) + b;sin(iwt) (21)
?/:1 b
Phase Portrait: Only LQR Feedback Control Phase Portrait: Feedforward Control with LQR Feedback

xd(t)
xd(t)

x(t) x(t)

Figure 12.
Applying the optimal linear-quadratic-regulator feedback approach to the forced Van der Pol oscillator.
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where T, is the resulting sum of the functions used to replicate the originally
desired trajectory. ag is a steady state offset, while a; and b; are the corresponding
constant coefficients for each orthogonal basis set.

In the case of the sinusoidally forced VDP system illustrated in Figure 7, the
unwanted transient response is primarily within the first few cycles of oscillations
then after the sharp initial transients the tracking error slowly reduces over time
until the trajectory is a perfect match to the desired trajectory. One way to split this
desired trajectory is to heuristically describe the sinusoid function that will
smoothly and quickly travel between the initial conditions and the desired steady
state response. Taking advantage of the a-priori knowledge of how sinusoidal func-
tion performs with the VDP system a simple sine function with a phase shift is
chosen as described by Eq. (22):

Xo1 = Ay sin (t . g) (22)

where A; is a scaling coefficient proportional to the desired oscillatory radius in
the phase plane. And the resulting derivative is:

X01 = A, cos (t — g), (23)

resulting in a new scaling coefficient A,. Using Egs. (22) and (23) as the starting
points, the steady state trajectory is then described by Eqgs. (24) and (25) in order to
match the initial conditions.

X3 = w sin (t — g) + g + 0.4, (24)
X3 = (iz) cos <t — g) (25)

Next, by using the Fourier decomposition described in Eq. (21), the resulting
trajectory can be planned as illustrated in Figure 13. This initial attempt is fairly
close but still allows for large residual error. Figure 13 displays the desired total
trajectories for z4 and &4 with a Fourier fit line plotted for comparison. The Fourier
fit line of the resulting trajectory using this transient trajectory fractionalization

iy f | \\ ]
Al WA

/
\\/
\

Figure 13.
Trajectory fractionalization via Fourier fitting.

magnitude
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Path Planning for X and Xdot over Discontinuities
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Figure 14.
Isolated trajectory fractionalization via Fourier fitting.

method. One way to mitigate this residual error is by given the fitting algorithm
more “flexibility” to merge the trajectories.

To allow the fitting algorithm more flexibility, a large section isolated between
the desired trajectories is introduced. The missing data is strategically placed such
that the points where the 2nd derivative is zero. This allows for an extremely
smooth function across the 1st derivative. Any sharp discontinuities can introduce
large unwanted transients. The next iteration in the isolated trajectory fractionali-
zation routine is illustrated in Figure 14.

The Fourier fit in Figure 14 was built with the following parameters:

or = 0.001, 29 = 0,21 = 2500, £, = 4000, t3 = 12000 (26)

where 6, is the time step, t; is the initial time, #; is the end time of the first
trajectory fraction, ¢, is the start of the 2nd trajectory fraction, and ¢ is the final
time. The resulting parameters allow the fitting algorithm 1500 (1.5 second) time
steps to find a smOoth fit. The resulting trajectories form the desired phase plane
trajectory being fed into the feedforward controller is illustrated on the left in
Figure 15. The right side of Figure 15 illustrates the actual results on the output of
the VDP system.

Phase Portrait

Commanded Phase Plane

Xdot

Figure 15.
Phase plane error in forced VDP system using isolated trajectory fractionalization via Fourier fitting.

12
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The corresponding ', 1, and 7 tracking error is illustrated in Figure 16. It’s
interesting to note that the large disturbance in the trajectories seen if Figure 15
occur during the transition to the steady-state trajectory and that a spike in the 7
error happens about 1 second later. The results shown here highlight the need to
ensure that multiple derivative states are smooth when implementing the fitting
algorithms, due to unforeseen perturbations. Even though the desired phase plane
in Figure 15 is perfectly smooth, the unidentified perturbations in the second
derivative are affecting the results.

Utilizing the tracking error values along the entire transient trajectory an objec-
tive cost function can be defined and evaluated. In the case of the VDP system, the
goal is to match the actual trajectory with the desired trajectory with respect to the
phase plane. Therefore the parameters of interest are I, ¢, and ;» along the entire
trajectory resulting in the objective cost function, J, in Eq. (27).

J =\/RMSe2 + RMS€% + RMSe3 27)

b

where RMSe is the RMS value of the error along the entire trajectory on each
component. This provides a single metric to evaluate how well the actual trajectory
fits to the desired trajectory. Once evaluated, a value of ] = 1.0604 is achieved using
the isolated trajectory fractionalization technique, whereas the objective cost func-
tion for the sinusoidal forced VDP system is ] = 4.9603. This shows a 78% reduction
in trajectory tracking error via this technique.
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Figure 16.
Trajectory tracking error using ITF.
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Figure 17.
Cyclical process of deterministic parameter tuning.

2.3 Targeted exponential weighting
2.3.1 1-term targeted exponential weighting

The targeted exponential weighting method is another technique to deterministi-
cally modify transient trajectories, and is ideally applied to the extrema in the tran-
sients via a-priori knowledge of the system characteristics. By taking advantage of the
mathematical approach of exponential decay (or growth), one can modify an existing
control trajectory via the cyclical parameter tuning process shown in Figure 17.

The parameter tuning process outlined in Figure 17 starts with a-priori infor-
mation of the system’s characteristic behavior, this is then used to tailor a trajectory
for the system. The trajectory is fed through the feedforward controller/plant. The
output is then evaluated along the trajectory and compared to the desired. If the
error is greater than a given tolerance value then the new information gained from
the input parameters are compared to what was previously known and a new set of
parameters are generated for the next evaluation. This is repeated until the error is
within the given tolerance or until a pseudo-global minimum is found.

Considering the forced Van der Pol system, again it is now known that the initial
conditions give rise to the largest perturbations to the ideal trajectory of a perfect circle
in the phase plane. With this in mind the targeted exponential weighting technique
will be targeted for those initial transient behaviors in order to minimize their impact.

For the forced VDP system under investigation, the initial configuration will
take the original forcing function, x4 = Asin(t), as the ideal trajectory for the
position. This will give the desired steady state response. Next, the derivative will be
evaluated to get i,, and here we need to look at the trajectory error from the
baseline forced VDP case to decide the next course of action. The tracking error can
be found in Figure 18.

dx .

Exd (28)

x4 = Asin(t), xg = A(1—e %) cos (t), %, =
It can be seen in Figure 18 that the most severe trajectory transients are in the

initial states of ', and 7;, in addition to the transients on - beyond t = 1 second.
The first focus area will be on - because there is no desire to reduce & as that will
help preserve the final desired trajectory. Additionally, the large transients are
periodic in nature and therefore if the initial spike can be minimized then the
following periodic spikes should be greatly reduced. In order to minimize the initial
transients in ;> an increasing exponential will be used to force the derivative to zero
at time = 0. The desired trajectory response will grow exponentially to the final state
and the exponential rate will be tuned deterministically to get the resulting trajec-
tory equations in Eq. (28). Taking the derivative of the tuned exponentially increase

14
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ERROR: Position, Rate, Acceleration Trajectories
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Figure 18.
Trajectory tracking ervor in forced VDP system.

trajectory will provide 7:. where A = 5, for an arbitrary circle radius of 5 in the phase
plane.

This approach takes the ideal forcing function for the Van der Pol oscillator, Asin
(o t), and by modifying the nominal derivative, ® Acos(w t), via an exponential
dithering method (1 — ) manipulates the targeted trajectory section (in this case
where t < 2) in order to attempt to minimize the unwanted micro-transients.
Generating the three trajectories in I, 7, and § via the expressions in Eq. (28)
result in a output phase portrait as illustrated in Figure 19, with the residual
tracking error on each trajectory component in Figure 20.

The benefits by utilizing the targeted exponential weighting method are imme-
diately noticeable when comparing the original phase portrait of the forced VDP
system in Figure 7, and the results using the isolated trajectory fractionalization
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method in Figure 15. Additionally, the objective cost function, ], decreases from

J =4.9603, to ] = 1.0604, to ] = 0.6328 for an overall reduction of 87%

from

implementing target exponential weighting algorithm. The next step will be to

implement the same methodology on 7 to gain further improvement.

Phase Portrait
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Figure 19.
Phase plane error in forced VDP system using 1-term targeted exponential weighting.
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Figure 20.
Trajectory tracking evvor in forced VDP system using 1-term targeted exponential weighting.
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2.3.2 2-term targeted exponential weighting

Using the same methodology in the 1-term method previously described, the
exponential dithering will be applied to the 2nd derivative, x,. Starting with
Eq. (29) where x, is of the form: A(1 — e P9 cos(t). The direct derivative is of the

Phase Portrait

Figure 21.
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Phase plane error in forced VDP system using 2-term tavgeted exponential weighting.
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Figure 22.

Trajectory tracking evvor in forced VDP system using 2-term targeted exponential weighting.
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form: —Ae ®*((e ®* — 1)sin(t) — Bcos(t)). And making the assumption from a
heuristic approach that e ®'~Brt in the dithering sine term to get Eq. (30).

X, = Asin(t), %4 = A(1— e >) cos (2), (29)
%q = —Ae>Y((3.17t — 1) sin (¢) — 3.17 cos (t)) (30)

Generating the three trajectories in Z 7, and 7 via the expressions in Egs. (29)
and (30) result in a output phase portrait as illustrated in Figure 21, with the
residual tracking error on each trajectory component in Figure 22.

The 2-term targeted exponential weighting method does indeed show an
improvement over the 1-term variation. The resulting improvement based on the
objective cost function shows an extra 5% decrease in trajectory tracking error to
get ] = 0.3758, which results in an overall reduction in tracking error on the order of
92% over the baseline forced Van der Pol system.

3. Conclusion

This chapter presented a small set of deterministic approaches to transient
trajectory generation with particular interest in minimizing unwanted micro-
transients that may cause havoc on a control system performance. Beginning with a
brief introduction to control theory terminology which introduced state-space
notation, transfer functions, feedback controllers, and the concept of observers for
estimating unknown system states. From there the Van der Pol oscillatory equation
was introduced and presented as a system under test to apply the deterministic
trajectory generation techniques to.

Using the Van der Pol oscillator, feedforward controllers were introduced
through the forced Van der Pol system and initial results of system performance
were discussed and evaluated through the use of phase portraits. The micro-
transients in the baseline case, the forced Van der Pol system using a forcing
function in the form of Asin(t), were illustrated and compared to three different
approaches. The first approach utilized a common feedback technique for linear
system, the linear quadratic regulator (LQR). This was shown to be unstable.

Sinusoidal LQRFB LQR w/ Custom FF Exp Xdot  Exp Xddot
(base) FF trajectory w/FF w/FF
RMSe on U 0.4171 19181  0.9624 0.1044 0.0739 0.0616
RMSe on .CU 1.065 3.1803  2.2486 0.2206 0.1062 0.078
RMSe on CU 4.8266 13.8416  11.7283 1.0319 0.6194 0.3624

K —2.6818 —2.6818

14

Kq —0.4142 —-0.4142
K; —0.2682 —0.2682
1, jj) 1.1438 3.7139 2.4459 0.2441 0.1294 0.0994
J(x.i'fli' ) 4,9603 14.3312 11.9806 1.0604 0.6328 0.3758
% error 0 n/a n/a 78% 87% 92%
reduction

Table 1.

Summary of case study results.
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The next approach utilized the isolated trajectory fractionalization technique which
segmented the desired trajectory into sub-trajectories, and isolated the transition
points and applying a Fourier fitting routine to stich the desired trajectories back
together. This approach led to a reduction in trajectory error (as evaluated by an
objective cost function) by 78%.

The final method was split into two slightly different variants. The first one
presented was the 1-term targeted exponential weighting method. This method
utilized a-priori knowledge of where the largest micro-transient response and
applied dithering techniques to minimize those unwanted transients in the deriva-
tive of the desired trajectory. The second variation, the 2-term targeted exponential
weighting method, applied a similar approach to the 2nd derivative of the desired
trajectory. The resulting improvement over the baseline case was an 87, and 92%
trajectory tracking error reduction.

For ease of comparison, the results are summarized in Table 1.
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