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1. Introduction 

The widespread diffusion of wheeled mobile robots (WMRs) in research and application 
environments has emphasized the importance of both intelligent autonomous behaviors and 
the methods and techniques of motion control applied to these robot vehicles (Choset et al., 
2005; Morin & Samson, 2008). In particular, the motion control of WMRs can be improved 
by planning smooth paths with the aim to achieve swift and precise vehicle movements. 
Indeed, smooth paths in conjunction with a suitable or optimal velocity planning lead to 
high-performance trajectories that can be useful in a variety of applications (Kant & Zucker, 
1986; Labakhua et al., 2006; Suzuki et al., 2009). 
At the end of the eighties Nelson (Nelson, 1989) pointed out that Cartesian smooth paths for 
WMRs should possess continuous curvature. He proposed two path primitives, quintic 
curves for lane change maneuvers and polar splines for symmetric turns, to smoothly 
connect line segments. In the same period, also Kanayama and Hartman (Kanayama & 
Hartman, 1989) proposed the planning with continuous curvature paths. They devised the 
so-called cubic spiral, a path primitive that minimizes the integral of the squared curvature 
variation measured along the curve. Subsequently, Delingette et al. (Delingette et al., 1991) 
proposed the “intrinsic spline”, a curve primitive that makes it possible to achieve overall 
continuous curvature and whose curvature profile is a polynomial function of the arc 
length. 
A line of research starting with Boissonnat et al. (Boissonnat et al., 1994) and continued in 
(Scheuer & Laugier, 1998; Kito et al., 2003) evidenced the advisability to plan paths not only 
with continuous curvature, but also with a constraint on the derivative of the curvature. In 
particular, Fraichard and Scheuer (Fraichard & Scheuer, 2004) presented a steering method, 
called CC Steer, leading to paths composed of line segments, circular arcs, and clothoids 
where the overall path has continuous bounded curvature and bounded curvature 
derivative. On this topic, Reuter (Reuter, 1998) went further. On the ground of avoiding 
jerky motions, he presented a smoothing approach to obtain trajectories with continuously 
differentiable curvature, i.e. both curvature and curvature derivative are continuous along 
the robot path. 

Reuter’s viewpoint was enforced in (Guarino Lo Bianco et al., 2004b) where it was shown 

that in order to generate velocity commands with continuous accelerations for a unicycle 

robot, the planned path must be a G3-path, i.e., a path with third order geometric continuity 
Source: Motion Control, Book edited by: Federico Casolo,  
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(continuity along the curve of the tangent vector, curvature, and derivative of the curvature 

with respect to the arc length). More specifically, considering the classic kinematic model of 

the unicycle (cf. 1) we have that the Cartesian path generated with linear and angular 

continuous accelerations is a G3-path and, conversely, given any G3-path there exist initial 

conditions and continuous-acceleration commands that drive the robot on the given path. A 

related path-inversion algorithm was then presented to obtain a feedforward (open-loop) 

smooth motion generation that permits the independent planning of both the path and the 

linear velocity. For mobile robots engaged in autonomous and event-driven navigation it 

emerged the necessity to perform iterative path replanning in order to comply with 

changing guidance tasks. The resulting composite path must retain G3-continuity of the 

whole path in order to avoid breaks of motion smoothness. In this context, it is useful a G3-

path planning tool that permits, on one hand, interpolating an arbitrary sequence of 

Cartesian points with associated arbitrary tangent directions, curvatures, and curvature 

derivatives, and on the other hand, shaping the path between two consecutive interpolating 

points according to the current navigation task. 

An answer to this necessity emerging from G3-path replanning is a Cartesian primitive, 

called η3-spline, succinctly presented in (Piazzi et al., 2007). It is a seventh order polynomial 

spline that allows the interpolation of two arbitrary Cartesian points with associated 

arbitrary G3-data (unit tangent vector, curvature, and curvature derivative at the path 

endpoint) and depends on a vector (η) of six parameter components that can be used to 

finely shape the path. The η3-spline, a generalization of the η2-spline presented in 

(Piazzi&Guarino Lo Bianco, 2000; Piazzi et al., 2002), can generate or approximate, in a 

unified framework, a variety of simpler curve primitives such as circular arcs, clothoids, 

spirals, etc. 

This chapter exposes the motivation and the complete deduction of the η3-splines for the 

smooth path generation od WMRs. Sections are organized as follows. Section 2 introduces 

the concept of third order geometric continuity for Cartesian curves and paths. A brief 

summary of the path inversion-based control of WMRs (Guarino Lo Bianco et al., 2004b) is 

reported in Section 3. Section 4 proposes the polynomial G3-interpolating problem and 

exposes its solution, the η3-spline, defined by explicit closed-form expressions (cf. (4)-(19) 

and Proposition 2). This curve primitive enjoys relevant and useful properties such as 

completeness, minimality, and symmetry (Properties 1-3). Section 5 presents a variety of 

path generation examples. A note on the generalization of η3-splines is reported in Section 6. 

Conclusions are made in Section 7. 

2. G3-continuity of Cartesian curves and paths 

A curve on the {x, y}-plane can be described by the map 

 

where [u0, u1] is a real closed interval. The associated “path” is the image of [u0, u1] under 

the vectorial function p (u), i.e., p ([u0, u1]). We say that curve p(u) is regular if  (u) ∈ Cp([u0, 

u1]) and  (u) ≠0 ∀ u ∈[u0, u1] (Cp denotes the class of piecewise continuous functions). The 

arc length measured along p(u), denoted by s, can be evaluated with the function 
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where  denotes the Euclidean norm and sf is the total curve length, so that sf = f (u1). Given 

a regular curve p(u), the arc length function f (⋅) is continuous over [u0, u1] and bijective; 
hence its inverse is continuous too and is denoted by 

 

Associated with every point of a regular curve p(u) there is the orthonormal moving frame, 

referred in the following as { (u), ν(u)}, that is congruent with the axes of the {x, y}-plane 

and where  denotes the unit tangent vector of p(u). For any regular curve 

such that  the scalar curvature c(u) and the unit vector ν(u) are well 

defined according to the Frenet formula  (see for example (Hsiung, 1997, 

p. 109)). The resulting curvature function can be then defined as 

 

The scalar curvature can be also expressed as a function of the arc length s according to the 
notation: 

 

Hence, this function can be evaluated as (s) = c( f 
-1(s)). In the following, “dotted” terms 

indicate the derivative of a function made with respect to its argument, so that  

whereas  
Definition 1 (G1-,G2- and G3-curves) A parametric curve p(u) has first order geometric continuity, 

and we say p(u) is a G1-curve, if p(u) is regular and its unit tangent vector is a continuous function 

along the curve, i.e., (⋅) ∈ C0([u0, u1]). Curve p(u) has second order geometric continuity, and we 

say p(u) is a G2-curve, if p(u) is a G1-curve, (⋅)∈ Cp([u0, u1]), and its scalar curvature is 

continuous along the curve, i.e., c(⋅)∈ C0([u0, u1]) or, equivalently,  (⋅) ∈ C0([0, sf ]). Curve p(u) 

has third order geometric continuity, and we say p(u) is a G3-curve, if p(u) is a G2-curve,  

(⋅)∈ Cp([u0, u1]), and the derivative with respect to the arc length s of the scalar curvature is 

continuous along the curve, i.e., (⋅)∈ C0([0, sf ]). 

Barsky and Beatty (Barsky&Beatty, 1983) introduced G1- and G2- curves in computer 

graphics. G3-curves have been proposed in (Guarino Lo Bianco et al., 2004b) for the 

inversion-based control of WMRs. The related definition of Gi-paths is straightforwardly 

introduced as follows. 

Definition 2 (G1-, G2- and G3-paths) A path of a Cartesian plane, i.e., a set of points in this plane, 

is a Gi-path (i = 1, 2, 3) or a path with i-th order geometric continuity if there exists a parametric Gi-
curve whose image is the given path. 

Hence, G3-paths are paths with continuously differentiable curvature. The usefulness of 
planning with such paths was advocated by Reuter (Reuter, 1998) on the grounds of 
avoiding slippage in the motion control of wheeled mobile robots. 

3. Inversion-based smooth motion control of WMRs 

Consider a WMR whose nonholonomic motion model is given by 
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(1) 

As usual, x and y indicate the robot position with respect to a stationary frame, θ is the robot 
heading angle, and v and ω are its linear and angular velocities to be considered as the 
control inputs. 

In order to achieve a smooth control, inputs v(t) and ω(t) must be C1-functions, i.e., linear 
and angular accelerations have to be continuous signals. It is useful to define an “extended 
state” of model (1) that also comprises the inputs and their first derivatives: 

 
Then, the following local Smooth Motion Planning Problem (SMPP) can be posed (Guarino 
Lo Bianco et al., 2004b). 

SMPP: Given any assigned traveling time tf > 0, find control inputs v (⋅), ω(⋅) ∈ C1 ([0, tf ]) 
such that the WMR, starting from any arbitrary initial extended state 

 
reaches any final, arbitrarily assigned, extended state 

 

The solution of the above problem, exposed in (Guarino Lo Bianco et al., 2004b), can be used 

in a motion control architecture based on the iterative steering approach (Lucibello & 

Oriolo, 1996). In such a way, a swift high-performance motion of the WMR can be achieved, 

while intelligent or elaborate behaviors are performed. The solution to SMPP is based on a 

path dynamic inversion procedure that needs the planning of a G3-path connecting pA with 

pB. This relies on the following result. 

Proposition 1 (Guarino Lo Bianco et al., 2004b) Assign any tf > 0. If a Cartesian path is generated 

by model (1) with inputs v(t), ω(t) ∈ C1([0, tf ]) and v(t) ≠ 0 ∀t ∈ [0, tf ] then it is a G3-path. 

Conversely, given any G3-path there exist inputs v(t), ω(t) ∈ C1([0, tf ]) with v(t) ≠ 0 ∀t ∈ [0, tf ] and 

initial conditions such that the path generated by model (1) coincides with the given G3-path. 

The G3-path connecting pA with pB must satisfy interpolating conditions at the endpoints 
that depend on the initial and final extended states of the WMR. Consider, for example, the 
case vA > 0 and vB > 0. Then, angles θA and θB between the x-axis and the endpoint unit 
tangent vectors must coincide with the heading angles of the WMR at the initial and final 
poses (see Fig. 1). Moreover, curvatures and their derivatives with respect to the arc length 
can be determined at the endpoints according to the expressions: 

 

www.intechopen.com



Smooth Path Generation for Wheeled Mobile Robots Using η 3-Splines  

 

79 

 

Fig. 1. A G3-path connecting pA with pB for the SMPP. 

The critical cases vA = 0 and/or vB = 0, as well as other cases, are discussed in (Guarino Lo 
Bianco et al., 2004b). 

Proposition 1 makes clear that continuous curvature paths, or G2-paths, may be 

insufficiently smooth for a motion planning with fast and swift robot maneuvers. Indeed, 

with G2-paths the command accelerations can be discontinuous causing the possible 

slippage of the WMR. On the contrary, G3-paths are well suited for smooth motion planning 

because they can be followed with continuous accelerations commands. 

4. The η3-splines 

In the context of smooth iterative steering for WMRs, the previous section has recalled the 

necessity of planning G3-paths having arbitrary interpolating conditions at the endpoints. 
Then, a natural approach is to find a polynomial curve for the associated interpolation 
problem. This justifies the introduction of the following formal problem. 

The polynomial G3-interpolating problem: Determine the minimal order polynomial curve 

which interpolates two given endpoints pA = [xA yA]T
 and pB = [xB yB]T

 with associated unit tangent 

vectors defined by angles θA and θB, scalar curvatures A and B, and curvature derivatives with 

respect to the arc length A and B (see Fig. 1). Assume that interpolating data pA, pB ∈ R2,  

θA, θB ∈ [0, 2π), A, B ∈ R and A, B ∈ R can be arbitrarily assigned. 
The solution proposed for the above interpolating problem is given by a seventh order 

polynomial curve p(u) = [α (u) β (u)]T, u ∈[0, 1] defined as follows 

         (2) 

         (3) 

         (4) 

         (5) 

         
(6) 

         
(7) 
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(8) 

         

(9) 

         

(10)

         

(11)

         (12)

         (13)

         
(14)

         
(15)

         

(16)

         

(17)

         

 

(18)
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(19)

The real parameters ηi, i = 1,…, 6 which appear in (4)-(19), can be freely selected and 

influence the path shape without violating the endpoint interpolating conditions. They can 

be packed together to form a six-dimensional vector η := [η1 η2 η3 η4 η5 η6]
T, and the 

parametric curve (2)-(3) will be concisely denoted in the following as p(u, η) or, informally, 

η3-spline. Vector η spans in  denotes the set of positive real numbers). 
Coefficient expressions (4)-(19) were deduced by solving a nonlinear equation system 
associated to the endpoint interpolation conditions. The correctness of the provided 
expressions is formally stated by the following proposition. 

Proposition 2 The parametric curve p(u; η) satisfies any given set of interpolating data pA, θA, A, 

A and pB, θB, B, B, for all η ∈ H. 

Proof – Basically, Proposition 2 asserts that curve p(u; η) fulfills any set of interpolating 

conditions independently from the choice of η. The proof can be then established by direct 

computation. Owing to definitions given for (s) and c(u), it is possible to write 

 

or, briefly, 

 

Bearing in mind this result and the definition of the unit tangent vector τ(u), curve p(u; η) 

satisfies the assigned boundary conditions if the following equalities hold for all η ∈ H. 

 (20)

 (21)

 
(22)

 
(23)

 (24)

 (25)

 (26)

 (27)
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First consider conditions (20) and (21). Taking into account that the parametric curve  

p(u; η) is described by means of (2) and (3), and its coefficients are defined according to (4)–

(19), it is immediate to verify that, as required, p(0; η) = pA and p(1; η) = pB ∀η ∈ H. 

Further, differentiating p(u; η) with respect to u, we obtain  where 

 (28)

 (29)

Evaluating  (u; η) for u = 0 and u = 1, and considering (4)–(19), it is easy to verify that, for 

all η ∈ H, 

 

Bearing in mind that η1, η2 ∈R+, it follows that 

 (30)

 (31)

and, consequently, as desired 

 

According to the theory of planar curves, the scalar curvature can be evaluated by means of 

the formula 

 
(32)

where  can be obtained by differentiating (28) and (29), i.e., 

 (33)

 (34)

Applying (4)–(19) to (28)–(34) and evaluating c(u) for u = 0 and u = 1 we verify that, for all  

η ∈ H, 

 

The first derivative of c(u) with respect to u is given by 

 
(35)

An explicit differentiation of (33) and (34) makes it possible to write 
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 (36)

 (37)

The initial and final values of c can be then obtained from (35) by applying (4)–(19) to (28)–
(37): 

 

Both equalities hold for all η ∈ H.                                                                                                     ■ 

The next result shows how the introduced η3-spline is a complete parameterization of all the 

seventh order polynomial curves interpolating given endpoint data. 

Property 1 (Completeness) Given any seventh order polynomial curve q(u), u ∈ [0; 1] with (0) ≠ 

0 and (1) ≠ 0 which satisfies a given set of interpolating conditions pA, θA, A, A and pB, θB, B, B, 

there exists a parameter vector η ∈ H such that p(u; η) coincides with q(u). 
Proof – Consider a seventh order polynomial curve q(u) defined as follows 

 

where 

 
We assume that (0) ≠ 0, (1) ≠ 0, and all the interpolating conditions at the path endpoints 
are satisfied. 
Considering the zero and first order boundary conditions we have 

 

 

 
which can be rewritten as follows 

 (38)

 (39)
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 (40)

 (41)

 (42)

 (43)

 (44)

 (45)

Further, taking into account that the scalar curvature c(u) of q(u) and its first derivative 

c(u) can be evaluated with expressions similar to (32) and (35), the second and third order 
boundary conditions can be explicitly written as follows 

 

(46)

 

(47)

 

(48)

 

(49)

The proof requires to show that there exists a parameter vector η ∈ H such that p(u; η) 

coincides with q(u), i.e., such that (i = 0, 1,…, 7) 

 

To this aim, select the ηi  parameters as follows 

 (50)

 (51)

 (52)

 (53)
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 (54)

 (55)

Owing to the above assignments, the interpolating conditions (38)–(49) on the polynomial 
curve q(u) can be rewritten as follows 

 (56)

 (57)

 (58)

 (59)

 (60)

 (61)

 (62)

 (63)

 (64)

 (65)

 (66)

 (67)

From definitions (4) and (12) and relations (56) and (57) obviously we get 

 

Analogously, from (5) and (13), and taking into account (60) and (61), it is possible to  
infer 

   

Owing to definition (52) and condition (64), we obtain from (6) and (14) 
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In the same way, from (7) and (15), and taking into account (54) and (66), it is possible to 
verify 

  

  

Focusing on the αi expressions given by (8)–(11), the ηi definitions (52)–(55), and the 

interpolating equations (56), (58), (60), (62), (64)–(67) we obtain, after some algebraic 

manipulations, to express α4, α5, α6, and α7 as a linear combinations of  

 

   

  

       

       

Then, by virtue of the definition given for γ(u), it is easy to verify that αi = γi  for i = 4, 5, 6, 7. 
A similar procedure can be also adopted for the remaining βi coefficients by manipulating 
(52)–(55), (57), (59), (61), (63), (64)–(67) and replacing the resulting expressions in (16)–(19). 
These final passages are left to the interested reader. 

The minimality of the η3-spline is the focus of the next statement.                                              ■ 

Property 2 (Minimality) The curve p(u; η) is the minimal order polynomial curve interpolating 

any arbitrarily given set of data pA, pB ∈ R2, θA, θB ∈ [0, 2π), A, B∈ R and A, B ∈ R. 

Proof – Proposition 2 and Property 1 have shown that the η3-spline p(u; η) is the family of all 

polynomial curves, till to the seventh order, interpolating any given endpoint data. Hence, if 

a sixth or lower order polynomial curve exists interpolating any assigned set of boundary 

conditions, it must coincide with p(u; η) for some appropriate η ∈ H. Consider the 

following boundary conditions (leading to a so-called lane-change path): 

    

and evaluate the η3-spline curve using (4)–( 19) 
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Evidently, β(u; η) is a strict seventh order polynomial that does not depend on η. Thus, it is 

not possible to interpolate the given data with a sixth or lower order polynomial curve.       ■ 

Proposition 2 and Property 2 show that the η3-spline is the solution to the introduced G3-

interpolating problem. Moreover, the η3-spline represents a family of curves that depends 

on a symmetric parameterization induced by the chosen η vector. This property, presented 

below formally, may be useful in shaping the η3-spline by varying the ηi components. 

Property 3 (Symmetry) Assume η1 = η2 = v ∈ R+, η3 = –η4 = w ∈ R, η5 = η6 = z ∈ R and define η 

= [v v w – w z z]T. Moreover, consider θA = θB = θ ∈ [0, 2π), A = B = 0, A = B = 0. Then, for any 

pA and pB, curve p(u; η) satisfies the following symmetry relation 

 (68)

∀u ∈ [0, 1], ∀v ∈ R+, ∀w, z ∈ R. 

 

 
 

Fig. 2. A graphical interpretation of symmetry relation (68). 

Proof – It is always possible to find d1, d2 ∈ R such that (cf. Fig. 2) 

 

Curve p(u; η), evaluated by means of (4)–(19) and the assigned interpolating conditions, can 

be expressed as 
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(69)

Now, use (69) to evaluate p(u; η) + p(1 – u; η). Some algebraic manipulations are required to 

obtain 

 

and conclude that, evidently, (68) holds ∀u ∈ [0, 1], ∀v ∈ R+, ∀w, z ∈ R.                               ■ 

The η3-spline can be used to generate or approximate a variety of path primitives, for 

example among many others, clothoids, spirals, circular arcs, etc. (see the next section). The 

most fundamental primitive, i.e. the line segment, can be obtained with appropriate 

interpolating conditions regardless of the shaping vector η. 

Property 4 (Line segments generation) Define d = ║pB – pA║and assume xB = xA + d cos θ,  
yB = yA + d sin θ, θA = θB = θ ∈ [0, 2π), A = B = 0, A = B = 0. Then, p(u; η) is a line segment  

∀η ∈ H. 

Proof – Take the assigned interpolating conditions and evaluate the η3-spline coefficients by 

means of (4)–(19). Few algebraic manipulations lead to the following expression for the 

parametric curve p(u; η) 

 
(70)

where f (u; η) is the following scalar function 

 

It is easy to verify that f (0; η) = 0 and f (1; η) = d. Thus, equation (70) proves that p(u; η) 

belongs to the segment line joining pA with pB ∀u ∈ [0, 1] and ∀η ∈ H.                                     ■ 
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5. Path generation with η 3-splines 

As shown in the previous section, the η3-spline depends on a vector η of parameters that can 

be freely selected to shape the spline while preserving the interpolating conditions at the 

path endpoints. Specifically, parameters η1, η3, and η5 influence the curve at its beginning 

whereas η2, η4, and η6 affect the curve ending. Parameters η1 and η2 can be interpreted as 

“velocity” parameters. Parameters η3, η4 and η5, η6 are “twist” parameters that depend on the 

curve accelerations and curve jerks at the path endpoints respectively(cf. definitions given in 

(50)-(55)). 

Some examples illustrate the path shaping by varying the ηi parameters. Consider the 

following interpolating conditions that lead to symmetric lane-change curves: pA = [0 0]T, pB 

= [4 3]T, θA = θB = 0, A = B = 0, A = B = 0. Fig. 3 shows the influence of the velocity 

parameters on the curve shape by plotting ten splines with η1 = η2 = 1, 2,… 10 while 

maintaining η3 = η4 = η5 = η6 = 0 for all the curves. Curves of Fig. 4 are drawn by assuming η1 

= η2 = 5, η5 = η6 = 0 and η3 = –η4 = –50,–40,…, 40, 50. They depict the effect of varying the twist 

acceleration parameters η3 and η4. Fig. 5 considers the case η1 = η2 = 5, η3 = –η4 = 10 and plots 

curves with twist jerk parameters assuming the values η5 = η6 = –1000,–900,…, 900, 1000. 

The proposed examples make evident that, acting on the shaping parameter vector η, a wide 

variety of curves satisfying the boundary conditions can be obtained. This suggests choosing 

η to generate optimal curves. Different optimality criteria may be chosen depending on the 

desired WMR motion smoothness. For instance, consider a robot motion with constant 

linear velocity. According to the inversion-based control proposed in (Guarino Lo Bianco et 

al., 2004b), the path arc length and the angular velocity are given by s = vt and ω(t) = vκ(vt) 

with t ∈[0, tf ]. Hence, to minimize the maximum absolute value of the angular velocity we 

are requested to minimize the maximum absolute value of the path curvature, i.e. to solve 

the problem 

 

Alternatively, to avoid rough movements of the WMR, we 

 

 
 

Fig. 3. Lane-change curves with η3 = η4 = η5 = η6 = 0. 
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Fig. 4. Lane-change curves with η1 = η2 = 5 and η5 = η6 = 0. 

 

Fig. 5. Lane-change curves with η1 = η2 = 5 and η3 = –η4 = 10. 

may desire to minimize the maximum absolute value of the angular acceleration along the 
planned path that leads to the problem 

 
(71)

In many planning cases, an acceptable sub-optimal solution to (71) can be obtained by a 

rough heuristic rule: η1 = η2 = ║pA – pB║and η3 = η4 = η5 = η6 = 0. This rule can be viewed as 

the straightforward extension of an analogous rule proposed in (Piazzi et al., 2002) for the 
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path planning of quintic η2-splines (see also (Guarino Lo Bianco & Piazzi, 2000) where 

computational results of optimal path planning were reported). In Fig. 6 this rule has been 

applied to a lane-change curve with variations on the curvature derivative at the initial path 

point. The chosen interpolating conditions are: pA = [0 0]T, pA = [4 3.5]T, θA = θB = π/2, a = B 

= 0, and B = 0, while the curvature derivative in pA takes the values A = –5, 0, 5. According 

to the heuristic rule, we have chosen η = [5.3151 5.3151 0 0 0 0]T. The curves of Fig. 6 show 

that variations of the boundary curvature derivative may have a neat impact on the shape of 

the η3-spline. 
 

 

Fig. 6. Modifying a lane-change curve by perturbing A. 

When appropriate endpoint interpolating conditions are chosen, the η3-spline can 

approximate a variety of primitive curves. Fig. 7 shows the plot of an η3-spline that is a good 

approximation of a clothoid (curve with label 2): it has (s) 0 0.04 ∀ s ∈ [0, sf]. The 

interpolating conditions are pA = [0 0]T, pB = [2.0666 1.0568]T, θA = 0, θB = 1.4450, A = 0,  

B = 1.1333, A = B = 0.04 and the shaping parameters have been fixed as η1 = η2 = 2.37 and η3 

= η4 = η5 = η6 = 0. The other two curves plotted in Fig. 7 departs from the clothoid by 

modifying the curvature derivative in pB, with variation ±0.4, so that to obtain B = −0.36 

(curve 1) and B = 0.44 (curve 3). 

The last example depicted in Fig. 8 reports a composite G3-path completely generated with 

η3-splines. It is made of five curves: a lane-change curve, a line segment, a cubic spiral (i.e. a 

curve whose tangent direction is a cubic function of the arc length, cf. (Kanayama & 

Hartman, 1989)), a generic twirl arc, and a circular arc. The interpolating and shaping 

parameters are reported in Table 1. 

6. A note on η k-splines 

The concept of geometric continuity of planar curves and paths, introduced in Section 2, can 

be generalized as follows (Dk denotes the k-th order derivative operator). 
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Fig. 7. Modifying a clothoid by perturbing B. 
 

 
Fig. 8. A composite G3-path made by η3-splines. 
 

 

Table 1. The interpolating parameters and the ηi coefficients used to generate the composite 

G3-path of Fig. 8. 
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Definition 3 (Gk-curves; k ≥ 2) A parametric curve p(u) has k-th order geometric continuity and 

we say p(u) is a Gk-curve if p(u) is Gk–1-curve, Dkp(·) ∈ Cp([u0, u1]), and Dk–2κ (·) ∈ C0([0, sf
 ]). 

Definition 4 (Gk-paths; k ≥2) A set of points of a Cartesian plane is a Gk-path if there exists a 

parametric Gk-curve whose image is the given path. 

Roughly speaking, the k-th order geometric continuity of curves amounts to the continuity 

of the curvature function up to the (k – 2)-nd derivative. In a more general setting, geometric 

continuity is treated in (Peters, 2002). Now we can naturally state the polynomial Gk-

interpolating problem as the generalization of the G3-problem of Section 4. 

The polynomial Gk-interpolating problem: Determine the minimal order polynomial curve 

which interpolates two given endpoints pA = [xA yA]T
 and pB = [xB yB]T

 with associated unit tangent 

vectors defined by angles θA and θB, and curvature derivatives DiκA and DiκB for i = 0, 1,…, k – 2. All 

the endpoint interpolating data can be arbitrarily assigned. 

Then, following the approach proposed in Section 4, we could derive the ηk-spline as the 

solution of the above problem characterized by minimality, completeness, and symmetry. 

For k = 2 this has been done in (Piazzi & Guarino Lo Bianco, 2000) and the deduced η2 

splines are quintic polynomial curves that depend on a four-dimensional η vector (η ∈  × 

R2 is the vector of the shaping parameters). The η2-splines have been proposed for 

autonomous guidance of cars (Piazzi et al., 2002) and of wheeled omnidirectional robots 

(Guarino Lo Bianco et al., 2004a). The remaining elementary cases k = 1 and k = 0 leading to 

the η1-spline and the η0-spline are reported in the Appendix. 

On the grounds of the already found ηk-splines (k = 0, 1, 2, 3) we infer that the general ηk -

spline is a polynomial curve with order equal to 2k + 1 and whose parameterization 

depends on a shaping vector η with 2k components (η ∈ 2

+R  × R2(k–1)). Closed-form 

expressions of the ηk-spline could be generated by suitably devised computer algebra 

procedures. 

Formally define ηk-Paths as the set of all the paths given by the ηk-splines for all η ∈ 2

+R  × 

R2(k–1) and all the endpoint interpolation data. Then, the following property holds. 

Property 5 ηk -Paths ⊂ ηk +1-Paths for all k ∈ N. 

This property helps to explain why the η3-splines are quite good in approximating standard 

curve primitives. Indeed, it was already shown in (Guarino Lo Bianco & Piazzi, 2000) that 

η2-splines can very well approximate circular arcs or clothoids so that η3-splines can only 

better the approximations with further curve inclusions such as, for example, cubic spirals 

(see previous Section 5). Following (Guarino Lo Bianco et al., 2004b) we can foresee the use 

of η4-splines to achieve for WMRs the generation of velocity commands with continuous 

jerk signals (signals with continuous acceleration derivatives). 

7. Conclusions 

This chapter has presented the η3-spline, a seventh order polynomial curve that interpolates 

between two Cartesian points with arbitrary assigned tangent vectors, curvatures and 

curvature derivatives. This curve primitive, given with explicit closed-form expressions, 

depends on a shaping parameter vector that can be freely chosen to shape or optimize the 

path. An advantage of the new spline over other curve primitives, such as clothoids or 

polynomial spirals, is the avoidance of any numerical integration/procedure to evaluate the 

curve coordinates. Properties of the η3-spline such as completeness, minimality, and 
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symmetry have been also reported. Investigations on optimal η3-splines have been reported 

in (Guarino Lo Bianco & Gerelli, 2007; Gerelli, 2009). How to achieve high-performance 

motion control of WMRs with the η3-spline in conjunction with obstacle avoidance 

capabilities has been addressed in (Villagra & Mounier, 2005; Chang & Liu, 2009). 

8. Appendix 

Case k = 1 (solution to the polynomial G1-interpolating problem). The η1-spline is a third-

order polynomial curve p(u; η) u ∈ [0, 1], η = [η1η2]
T ∈  with coefficients defined as 

follows. 

 

Case k = 0 (solution to the polynomial G0-interpolating problem). For completeness we also 

give the η0-spline which is simply expressed by the first-order curve p(u) = pA + pB · u, u ∈ 

[0, 1]. There are no shaping parameters as the curve is just the line segment connecting pA 

with pB. Note that zero-order geometric continuity coincides with the standard notion of 

function continuity (C0-continuity). 
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