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Francisco Alejandro Lagunas-Rangel  

and Rosa María Bermúdez-Cruz

Abstract

Aging is defined as the time-dependent decline of functional properties. One 
common denominator of aging is mitochondrial dysfunction and accumulation 
of genetic damage throughout life. In fact, the imperfect maintenance of nuclear 
and mitochondrial DNA likely represents a critical contributor of aging. Each day, 
the integrity and stability of DNA are challenged by exogenous physical, chemical, 
or biological agents, as well as by endogenous processes, including DNA replica-
tion mistakes, spontaneous hydrolytic reactions, and reactive oxygen species. In 
this way, DNA repair systems have evolved a complex network that is collectively 
able of dealing with most of the damages inflicted. However, their efficiency may 
decrease with age and, therefore, influence the rate of aging. Thus, the purpose of 
this work is to summarize the recent knowledge in cellular aging process and its link 
with DNA repair systems, with a particular emphasis on the molecular mechanisms 
associated.
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1. Introduction

Aging is a complex biological process that results in a progressive loss of physi-
ological integrity. Overall, aging is a consequence of accumulation of cellular 
damage and is characterized by nine hallmarks: genomic instability, telomere 
attrition, epigenetic alterations, cellular senescence, mitochondrial dysfunction, 
loss of proteostasis, deregulated nutrient sensing, stem cell exhaustion, and altered 
intercellular communication (Figure 1) [1]. Although aging may involve damage to 
various cellular constituents, there is evidence suggesting that DNA constitutes the 
key target in this process [2]; consequently, genomic instability is the main factor 
of aging [3–5]. Genome instability has been implicated as a cause of aging since 
unrepaired DNA damage, DNA mutations, and epimutations accumulate in an 
age-related manner [3]. In the same way, the notion that multi-system premature 
aging syndromes are mainly caused by defects in genome maintenance or affect 
genome function highlights the role of genome integrity in aging [6]. Meanwhile, 
normal aging is accompanied by telomere shortening with cell division due to the 
“end-replication problem” and telomere end processing. Currently, there is a wide 
body of evidence associating reduction in the length of telomeres with failure of cell 
division and senescence of normal cells, and oxidative stress and inflammation can 
contribute to the rate of attrition of telomere length [7]. Age-related changes involve 
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alterations in DNA methylation patterns and posttranslational modification of 
histones such as increased histone H4K16 acetylation [8], H4K20 trimethylation [9], 
or H3K4 trimethylation [10], as well as decreased H3K9 methylation [11] or H3K27 
trimethylation [12]. At the same time, with aging there is also a global heterochro-
matin loss and redistribution [13], thus affecting the expression of several genes, 
mainly those involved in DNA repair, cellular proliferation, differentiation, and 
cell-cycle regulation, and therefore triggering the emergence of other hallmarks of 
aging [14, 15]. Cellular senescence is a process that has become an important con-
tributor in aging since it imposes a permanent proliferative arrest of cells in response 
to various stressors such as DNA damage and telomere loss [16]. Furthermore, as 
cells and organisms age, mitochondria suffer a decline in their integrity and func-
tion, tending to diminish the efficacy of the respiratory chain and thus reducing 
ATP generation, increasing electron leakage and ROS production that can damage 
DNA, proteins, and lipids, among other important biomolecules [17]. Proteostasis 
involves mechanisms for correct folding proteins and mechanisms for the degrada-
tion of proteins, which act in a coordinated fashion to prevent the accumulation 
of damaged components and assuring the continuous renewal of intracellular 
proteins. There is evidence that aging is associated with perturbed proteostasis, 
thus favoring the development of several diseases [18]. Recent data have shown that 
anabolic signaling accelerates aging; in agreement with this, caloric-restricted diet 
decreases nutrient signaling and as a result, a long life span is promoted since DNA 
repair systems are improved; on the other hand, protein homeostasis decreases ROS 
production and delays cellular senescence [19]. Decline in the regenerative potential 
of tissues is one of the most obvious characteristics of aging, where stem cell exhaus-
tion is also important and explained by a decreased cell-cycle activity. Interestingly, 
this correlates with the accumulation of DNA damage, telomere shortening, and 
overexpression of cell-cycle inhibitory proteins such as p16INK4a, increasing the 
relevancy of DNA repair systems [20]. Finally, aging also involves changes at the 
level of intercellular communication, where neurohormonal signaling tends to be 
deregulated together with composition of the peri- and extracellular environment 

Figure 1. 
The hallmarks of aging. The figure illustrates nine hallmarks previously described [1] and where age-related 
changes in DNA repair systems have important roles to promote the development of this phenotype.
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and immune system, specially increasing inflammatory reactions and declining 
immunosurveillance against pathogens and premalignant cells [21]. In this way, our 
work focuses on describing the molecular bases that associate DNA damage and the 
cell aging process, with a special emphasis in DNA repair systems.

2. Age-related changes in DNA repair

Each day, the integrity and stability of DNA are challenged by exogenous physical, 
chemical, or biological agents, as well as by endogenous processes, including DNA 
replication mistakes, spontaneous hydrolytic reactions, and reactive oxygen species 
(ROS). Thus, depending on the source of damage, DNA can be affected in different 
ways, including nucleotide alterations, bulky adducts, single-strand breaks (SSB), 
and double-strand breaks (DSB). To combat threats posed by DNA damage, cells have 
evolved complex and finely regulated mechanisms collectively referred to as DNA 
damage response (DDR) which detects DNA lesions, signals their presence, and pro-
motes their repair [22–24]. However, according with the genome maintenance hypoth-
esis of aging, DNA repair can itself be subject to age-related changes and deterioration, 
allowing accumulation of damages (Figure 2). The wide diversity of DNA-lesion 
types requires multiple, largely distinct DNA repair mechanisms that differ in their 
components, whereas some lesions are subject to direct protein-mediated reversal, 
most are repaired by a sequence of catalytic events mediated by multiple proteins [22]. 
Thus, cells with defects in key proteins involved in DDR have been shown an acceler-
ated aging phenotype caused by the accumulation of mutations and epimutations that 
eventually cause malfunction of the cells, senescence, or apoptosis [25].

2.1 Response to DNA single-strand breaks (SSBs)

2.1.1 Base excision repair (BER)

BER pathway corrects DNA damage from oxidation, deamination, alkyla-
tion, and other small DNA alterations that do not distort the overall structure of 
double helix. In general, BER is initiated by a DNA glycosylase that recognizes and 

Figure 2. 
Age-related changes in DNA repair and their consequences. Aging involves deterioration of DNA repair systems 
allowing the damages to accumulate and eventually cause a malfunction of the cells. In general, all age-
related changes in DNA repair pathways promote genomic instability in different ways. Decline in efficiency 
and fidelity of BER and NER leads to point mutations, whereas inefficient MMR leads to microsatellite 
instability and point mutations. Meanwhile, deficiencies in NHEJ and HRR result in deletions and genomic 
rearrangements.
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removes the damaged base, leaving an abasic (apurinic/apyrimidinic; AP) site that 
is subsequently processed by an AP endonuclease (APE), an exonuclease, a DNA 
polymerase, a ligase, and many other ancillary factors in a short-patch repair or 
long-patch repair [26]. Notably, several pieces of evidence indicate that the efficacy 
of BER may negatively change with age, and it has a significant impact in longevity 
together with homologous recombination repair (HRR) [27]. Age-related changes 
in the BER mechanism have been studied mainly in neuronal extracts where it con-
stitutes the main repair pathway. In this way, an overall deficiency in several factors 
has been observed [28], where DNA polymerase β (pol β) together with DNA ligase 
[29] and APE1 activities [30, 31] seem to be the most limiting factors. Interestingly, 
an age-dependent attenuation in the transcriptional activation of pol β and APE1 
was observed in response to DNA damage [32] together with APE1 accumulation 
in the nucleus and mitochondria [33]. Aging has also been shown to have a signifi-
cant effect on cleavage efficacy of tetrahydrofuran:A, U:G mispair, U:A base pair, 
thymine glycol:A, and 8-oxo-7,8-dihydroguanine:C [34]. Thus, senescent human 
fibroblasts as well as leukocytes from old donors showed higher basal level of AP 
sites than young donors. However, after a challenge with the oxidizing agent H2O2 
or the alkylating agent methyl methanesulfonate (MMS), the number of AP sites 
increased quickly in young cells, whereas in senescent and older cells, they were 
observed to grow slowly with a concomitant loss of viability, suggesting a decrease 
in DNA glycosylase activity, mainly in OGG1 8-oxoguanine and 3-methyladenine 
DNA glycosylases [35], although other reports have also mentioned a decrease in 
the UDG uracil-DNA glycosylase [28]. Because polyADP-ribosylation (PARylation) 
levels are linked to downstream mechanisms in DNA repair together with other 
cellular deficiencies as cell-cycle arrest, cell survival, cell death, and/or cell trans-
formation, a decline in PARP1 activity is important since it has been linked with 
the age in humans and rats [36]. Further, a decrease in the interaction between the 
endonuclease VIII-like NEIL1 and PARP1 was observed in old mice when compared 
to young mice [37], which also could be associated with the decrease in PARP1 
activity. Meanwhile, a significant decrease in the expression of SIRT6 has been 
reported to have a relevant role in BER because it regulates repair activity through a 
PARP1-dependent pathway [38]. Since sirtuins can function as metabolic sensors, 
they could also be related with a significative increase in pol β [39] and APE activi-
ties [30] under caloric restricted diets. Consequently, BER pathway showed to be 
deficient when repairing age-downregulated genes in comparison with genes that 
are not affected by age [40].

On the other hand, the mitochondrial free radical theory of aging states that 
free radicals generated in mitochondria are strongly related with the intrinsic aging 
process, mainly due to the accumulation of oxidative damage and derived muta-
tions in mitochondrial DNA (mtDNA) mainly in D-loop region. mtDNA is more 
susceptible to oxidative damage than the nuclear genome, presumably because of 
the physical proximity of the source of ROS and lack of histones [41]. BER is the 
predominant and best understood DNA repair pathway in mitochondria involv-
ing at least four components, a DNA glycosylase, an AP endonuclease (or other 
mechanism for processing abasic sites), DNA polymerase γ (pol γ), and DNA ligase 
[42]. Recently, pol β was also detected in mitochondrial protein extracts, where it is 
required to provide enhanced mtDNA BER activity [43]. In a similar way to nuclear 
BER, in rat brain mitochondria, there is a marked age-dependent decline in mito-
chondrial BER activity, as indicated by a pol β, pol γ, ligase, APE1 endonuclease, 
and OGG1 glycosylase activities [44]. Interestingly, activity of mitochondrial OGG1 
AE8-oxoguanine DNA glycosylase increases in mouse liver mitochondria according 
with the age [45]. However, a significant fraction of the OGG1 remains in the outer 
membrane and intermembrane space in an immature form, presumably because 
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its import into the mitochondrial matrix is impaired as a consequence of aging. 
In addition, a nearly identical phenomenon was observed with the mitochondrial 
uracil-DNA glycosylase [46].

2.1.2 Nucleotide excision repair (NER)

NER is the primary pathway for repairing a wide range bulky DNA lesions, 
including UV-induced photoproducts (cyclopyrimidine dimers [CPDs], 6–4 
photoproducts [6-4PPs]), adducts formed by mutagens in the environment such as 
benzo[a]pyrene or some aromatic amines, some oxidative endogenous lesions such 
as cyclopurines, and adducts formed by cancer chemotherapeutic drugs such as 
cisplatin. NER can be initiated by two subpathways: global genome NER (GG-NER) 
where the participation of XPC-RAD23B is involved and the transcription-coupled 
NER (TC-NER) where RNA polymerase interacts with CSA, CSB, and XAB2. Both 
converge to complete the excision process requiring the core NER factors RPA, 
XPA, TFIIH, XPD, XPB, XPG, and ERCC1–XPF, among other auxiliary proteins 
[47]. NER activity decreases with aging possibly because there is a transcriptional 
downregulation of NER genes together with an altered protein function or process-
ing and a decrease in energy production [48]. In this manner, it was previously 
observed that aged human skin [49] and fibroblasts [50] showed decreased levels 
of XPB, PCNA, RPA, XPA, and p53, and more importantly the UVB-induced 
pyrimidine dimers were removed in a slower manner than in younger counterparts 
[50]. Interestingly, the effect of age on the repair of UV-induced DNA damage 
varies for transcribed and nontranscribed DNA, decreasing considerably in unex-
pressed DNA [51, 52] but improving in both cases under calorie restricted diets [52]. 
Furthermore, UV-induced damage and repair in telomeres showed to be slower 
and less frequent than in other regions of the genome such as active genes [53]. 
Additionally, ERCC1 and XPF, which are considered as the rate-limiting members 
in NER, also showed an age-dependent decline in their relative expression levels 
[54]. Because XPC, XPB, and XPF appear to be dependent on the activation status 
of the IGF-1R, decreased levels of IGF-1R observed with aging also contributed 
with the decline of NER pathway [55]. Meanwhile, in an assay based in plasmid 
reactivation after UV damage, cells from older donors introduced an increased 
number of mutations in the transfected plasmid, which suggests that not only the 
repair is less efficient with age but also more mistakes are made [51].

2.1.3 Mismatch repair (MMR)

The mismatched nucleotides in the DNA can result from polymerase misincor-
poration errors, recombination between imperfectly matched sequences, chemical 
or physical damage to nucleotides, and deamination of 5-methylcytosine (5mC) 
mostly during replication. MMR pathway consists of four major heterodimeric 
complexes, MutL homolog (MutL)α, MutLβ, MutS homolog (MutS)α, and MutSβ. 
MutLα involves MLH1 and PMS2, whereas MutLβ consist of MLH1 and PMS1. 
Meanwhile, MutSα consists of MSH2 and MSH6, and MutSβ is constituted by MSH2 
and MSH3. Thus, MutSα complex recognizes single mispaired bases, whereas MutSβ 
detects mispaired runs of 3–6 bases. MutSα or MutSβ recruits MutLα or MutLβ and 
forms a tetrameric complex that serves as a base for the recruitment of excision and 
repair machinery [56]. MMR removes mispaired bases preventing mutations [57], 
and defects in this pathway are strongly associated with a substantial destabilization 
of microsatellites, which are tandemly repeated sequences (from 1 to 6 bp), highly 
polymorphic, interspersed in the genome, and susceptible to slippage during replica-
tion [58]. Previously, a decline in MMR function and efficiency correlation with age 
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was observed [59, 60], especially in microsatellite sequences [61] where age-related 
methylation of the MLH1 [62, 63] and MSH2 [64] promoters could be associated to 
microsatellite instability (MSI). Interestingly, MLH1 shores showed a decrease in 
methylation with increasing age [65]. Shores are regions of the genome around CpG 
islands with lower GC content and with the ability to control gene expression.

2.2 Response to DNA double-strand breaks (DSBs)

2.2.1 Homologous recombination repair (HRR)

With aging there is an increase in DNA double-strand breaks [66]. However, it 
is unknown whether this increase is a consequence of accumulation of unrepaired 
DSBs or progressively delayed repair events, possibly as a reflection of an inherently 
limited capacity to process DSBs [67]. To repair this kind of DNA damage, HRR, 
considered a highly reliable pathway, allows the cell to access and copy information 
from the intact DNA sequence into the sister chromatid. Notably, HRR is restricted 
to late S to G2 phases when chromosomes are aligned [68]. RAD51 and other 
members of the RAD52 epistasis group as RAD50, MRE11, and XRS2 are needed 
for HRR. The efficiency of HRR is enhanced by mediator proteins that promote 
the loading of RAD51 onto ssDNA, RAD52 among them [69]. HR-mediated repair 
efficiency declines precipitously during cellular aging together with a decline of 
RAD51, RAD51C, RAD52, NBS1, CTIP, and MRE11 levels [66, 70]. Furthermore, 
in human and mice oocytes, a decrease in expression of BRCA1 and ATM [71] and 
an impaired recruitment of RAD51 to DNA damage sites during aging [72] were 
observed, which could force cells to utilize the error-prone NHEJ pathway. At the 
same time, in older mice a lower activity of the ATM kinase that results in less 
p53 phosphorylation was reported, thus affecting apoptosis, cell-cycle arrest, and 
senescence [73]. In addition to the above, the decrease in the levels of PARP1 [36] 
and SIRT6 [38] not only affects BER pathway but also has a relevant role in HRR 
since supplementation of recombinant SIRT6 was able to partly restore HR activ-
ity [70]. This could be related to a higher binding of DBC1 to PARP1 inhibiting 
its enzymatic activity as well as the change in NAD+ levels [74]. Decreased NAD+ 
levels observed with age also reduce activity of other sirtuins as SIRT1 and SIRT7 
together with PARP1, reducing NHEJ and HRR pathways [75]. Although HRR is 
essential, its activity must be carefully controlled in order to maintain genomic 
integrity [76]. Previously, it has been demonstrated that frequency of recombinant 
cells is highly variable among tissues, from very low levels in the brain and stomach 
to very frequent in the pancreas and spleen. Additionally, de novo recombination 
events indeed accumulate in mice colonic somatic stem cells with age [77].

2.2.2 Nonhomologous end joined (NHEJ)

In human cells, NHEJ is the major pathway for the repair of DSBs, where 
two ends of DNA with little or no sequence homology are brought together and 
repaired. NHEJ can act throughout most of the cell cycle but predominantly in G1 
phase [68]. NHEJ is divided into two subpathways: the classical NHEJ pathway 
(c-NHEJ), in which DNA-PKcs, Ku70/Ku80 heterodimers, Artemis, XRCC4, XLF, 
and DNA Ligase 4 are involved, and the alternative NHEJ pathway (alt-NHEJ), 
comprised of the repair factors PARP1 and DNA ligase 3 [78]. Both NHEJ pathways 
are associated with changes in DNA sequence, where c-NHEJ causes deletions and 
insertions, whereas alt-NHEJ propitiates the loss of genetic information between 
microhomologies on chromosomes [79]. NHEJ becomes inefficient and more error-
prone during cellular senescence, thus favoring genomic instability and higher 
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incidence of cancer in the elderly [80, 81]. Furthermore, NHEJ-mediated VDJ 
recombination in B lymphocytes is impaired, reducing class switch recombination 
efficiency and contributing to reduced humoral repertoire and impaired immunity 
with aging [82]. Frequency of microhomology-mediated end joining (MMEJ) 
increases as a compensatory mechanism; however, at the same time, it favors that 
more mistakes are generated [81]. Ku 70 and 80 proteins decreased their expres-
sion at least twofold in two lines of senescent human fibroblast; at the same time, 
their localization was changed concentrating them in the nucleus when compared 
with young cells where they are present in both the nucleus and cytoplasm [83]. 
Cytoplasmic Ku proteins could serve as a reserve (pool) that is recruited to the 
nucleus upon DNA damage; therefore in senescent cells these proteins are unavail-
able to repair new lesions [25]. Additionally, binding activity of the Ku 70/80 
heterodimers to broken DNA ends also declines with aging [66]. Notably, mice and 
cells deleted for either Ku70 or Ku80 exhibited not solely NHEJ disruption but also 
altered BER [84]. On the other hand, decreased expression of XRCC4, DNA ligase 
4, and DNA ligase 3 has been observed, and this implicates that during the aging 
process, NHEJ becomes more inefficient and inaccurate, leaving more damage sites 
repaired with a loss of additional genetic information [72]. Interestingly, aging 
increases DNA-PK activity phosphorylating HSP90α and decreasing its chaperone 
function in AMPK, which is critical for mitochondrial biogenesis and energy 
metabolism [85]. Consistently, DNA ligase 4 and Ku80 gene promoters were fre-
quently observed as hypermethylated in elderly people, which could be associated 
with the silencing expression of both genes [86]. However, as mentioned for other 
DNA repair mechanisms, caloric restriction diet improves NHEJ activity possibly 
through SIRT1 and FOXO activity [87].

3. Conclusions

Aging is a consequence of damage accumulation in different cellular constituents 
and where DNA damage is one of the most important. Every day there are thousands 
of insults that affect DNA, either due to endogenous factors (such as metabolism) or 
exogenous factor like contact with radiation sources or exposure to toxic substances; 
but only a minimal amount (less than 0.02%) accumulates as permanent damage, 
while the rest is totally repaired. However, if only one gene is not repaired and its 
function is important as that of a proto-oncogene, a tumor suppressor, or any DNA 
repair genes, this could lead to accumulation of mutations, and then DNA damage 
checkpoints can halt the cell cycle and induce cellular senescence or apoptosis, or 
well erroneous repair or replicative bypass of lesions can result in mutations and 
chromosomal aberrations leading the cells to transform into cancer cells.

Notably, DNA repair systems are able of dealing with most of the damages 
inflicted to DNA; however, their efficiency decrease with age, permitting that point 
mutations, insertions, deletions, and rearrangements, among others, occur more 
frequently and accumulate over time. This is due in part to the fact that critical 
proteins involved in DNA repair significantly decrease their expression in an age-
related manner. In Figure 2, the main age-related changes reported over the differ-
ent mechanisms of DNA repair together with their consequences that globally cause 
genomic instability and favor cellular senescence and cancer are summarized.

Overall, this area needs to be more exploited in order to improve our quality of 
life and prevent or delay the harmful effects of aging. Thus, the more knowledge we 
acquire about the natural cell aging process and its interrelation with the mecha-
nisms of DNA repair, the closer we will be to develop drugs, therapies, or even 
vaccines that could help us to prolong our life.
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