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1. Introduction     

This chapter presents a novel family of intelligent controllers. These controllers are based on 
semiphysical (or gray-box) modeling. This technique is intended to combine the best of two 
worlds: knowledge-based modeling and black-box modeling. 
A knowledge-based (white-box) model is a mathematical description of the phenomena that 
occur in a process, based on the equations of physics and chemistry (or biology, sociology, 
etc.); typically, the equations involved in the model may be transport equations, equations 
of thermodynamics, mass conservation equations, etc. They contain parameters that have a 
physical meaning (e.g., activation energies, diffusion coefficients, etc.), and they may also 
contain a small number of parameters that are determined through regression from 
measurements.  
Conversely, a black-box model is a parameterized description of the process based on 
statistical learning theory. All parameters of the model are estimated from measurements 
performed on the process; it does not take into account any prior knowledge on the process 
(or a very limited one). Very often, the devices and algorithms that can learn from data are 
characterized as intelligent. The human mental faculties of learning, generalizing, 
memorizing and predicting should be the foundation of any intelligent artificial device or 
smart system (Er & Zhou, 2009). Even if we are still far away from achieving anything 
similar to human intelligence, many products incorporating Neural Networks (NNs), 
Support Vector Machines (SVMs) and Fuzzy Logic Models (FLMs) already exhibit these 
properties. Among the smart controller’s intelligence is its ability to cope with a large 
amount of noisy data coming simultaneously from different sensors and its capacity to plan 
under large uncertainties (Kecman, 2001). 
A semiphysical (or gray-box) model may be regarded as a tradeoff between a knowledge-
based model and a black-box model. It may embody the entire engineer’s knowledge on the 
process (or a part thereof), and, in addition, it relies on parameterized functions, whose 
parameters are determined from measurements. This combination makes it possible to take 
into account all the phenomena that are not modeled with the required accuracy through 
prior knowledge (Dreyfus, 2005).  
A controller based on gray-box modeling technique is very valuable whenever a 
knowledge-based model exists, but is not fully satisfactory and cannot be improved by 
further analysis, or can only be improved at a very large computational cost (Maouche & 
Attari, 2008a; 2008b). Physical systems are inherently nonlinear and are generally governed 
by complex equations with partial derivatives. A dynamic model of such a system, to be 
used in control design, is by nature an approximate model. Thus, the modeling error 

Source: Motion Control, Book edited by: Federico Casolo,  
 ISBN 978-953-7619-55-8, pp. 580, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Motion Control 

 

32 

introduced by this approximation influences the performance of the control. Choosing an 
adaptive control based on neural network, allows dealing with modeling errors and makes 
it possible to compensate, until a certain level, physical phenomena such as friction, whose 
representation is difficult to achieve (Maouche & Attari, 2007). 
We will consider as an application to this type of control, a robot manipulator with flexible 
arms. Flexible manipulators are a good example of complex nonlinear systems difficult to 
model and to control.  
In this Chapter we describe a hybrid approach, based on semiphysical modelling, to the 
problem of controlling flexible link manipulators for both structured and unstructured 
uncertainties conditions (Maouche & Attari, 2008a; 2008b). First, a neural network controller 
based on the robot’s dynamic equation of motion is elaborated. It aims to produce a fast and 
stable control of the joint position and velocity, and to damp the vibration of each arm. 
Then, an adaptive neural controller is added to compensate the unknown nonlinearities and 
unmodeled dynamics, thus enhancing the accuracy of the control. The robustness of the 
adaptive neural controller is tested under disturbances and compared to a classical 
nonlinear controller. Simulation results show the effectiveness of the proposed control 
strategy. 

2. Lightweight flexible manipulators 

The demand for increased productivity in industry has led to the use of lighter robots with 
faster response and lower energy consumption. Flexible manipulator systems have 
relatively smaller actuators, higher payload to weight ratio and, generally, less overall cost. 
The drawbacks are a reduction in the stiffness of the robot structure which results in an 
increase in robot deflection and poor performance due to the effect of mechanical vibration 
in the links. 
The modeling and control of non-rigid link manipulator motion has attracted researchers 
attentions for almost three decades. A non-rigid link in a manipulator bears a resemblance 
to a flexible (cantilever) beam that is often used as a starting point in modeling the dynamics 
of a non-rigid link (Book, 1990). Well-known approaches such as Euler-Lagrange’s equation 
and Hamilton’s principle are commonly used in modeling the motion of rigid-link 
manipulators and to derive the general equation of motion for flexible link manipulators. 
The infinite-dimensional manipulator system is commonly approximated by a finite-
dimensional model for controller design. The finite element method is used in the derivation 
of the dynamical model leading to a computationally attractive form for the displacement 
bending. 
The motion control of a flexible manipulator consists of tracking the desired trajectory of the 
rigid variables which are the angular position and velocity. But due to the elasticity of the 
arms, it has also to damp the elastic variables which are, in our case, deflection and elastic 
rotation of section of the tip. The main difficulty in controlling such a system is that unlike a 
rigid manipulator, a flexible manipulator is a system with more outputs to be controlled 
(rigid and elastic variables) then inputs (applied torques), that involves the presence of 
dynamic coupling equations between rigid and elastic variables.  
Moreover, the dynamic effect of the payload is much larger in the lightweight flexible 
manipulator than in the conventional one. 
However, most of the control techniques for non-rigid manipulators are inspired by classical 
controls. A multi-step control strategy is used in (Book et al., 1975; Hillsley & Yurkovitch, 
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1991; Ushiyama & Konno, 1991; Lin & Lee, 1992; Khorrami et al., 1995; Azad et al., 2003; 
Mohamed et al., 2005) that consists of superimposing to the control of the rigid body, the 
techniques of shaping or correction of the elastic effects. Other algorithms use the technique 
of decoupling (De Shutter et al., 1988; Chedmail & Khalil, 1989), others are based on the 
method of the singular perturbation approach (Siciliano & Book, 1988; Spong, 1995; Park et 
al., 2002), use noncollocated feedback (Ryu et al., 2004) or use model-based predictive 
control for vibration suppression (Hassan et al., 2007).  
Neural network-based controllers were also used as they reduce the complexity and allow a 
faster computation of the command (Kuo & Lee, 2001; Cheng & Patel, 2003; Tian & Collins, 
2004; Tang et al., 2006).  
With recent developments in sensor/actuator technologies, researchers have concentrated 
on control methods for suppressing vibration of flexible structures using smart materials 
such as Shape Memory Alloys (SMA) (Elahinia & Ashrafiuon, 2001), Magnetorheological 
(MR) materials (Giurgiutiu et al., 2001), Electrorheological (ER) materials (Leng & Asundi, 
1999), Piezoelectric transducers (PZT) (Shin & Choi, 2001; Sun et al., 2004; Shan et al., 2005), 
and others. 
The use of knowledge-based modeling, whereby mathematical equations are derived in 
order to describe a process, based on a physical analysis, is important to elaborate effective 
controllers. However, this may lead to a complex controller design if the model of the 
system to be controlled is more complex and time consuming.  
Therefore, we propose a controller based on artificial neural networks that approximate the 
dynamic model of the robot. The use of artificial neural networks, replacing nonlinear 
modeling, may simplify the structure of the controller and, reduce its computation time and 
enhance its reactivity without a loss in the accuracy of the tracking control (Maouche & 
Attari, 2008a; 2008b). This is important when real time control is needed.  
The main advantage of neural networks control techniques among others is that they use 
nonlinear regression algorithms that can model high-dimensional systems with extreme 
flexibility due to their learning ability. 
Using dynamic equations of the system to train the neural network presents many 
advantages. Data (inputs/outputs set) are easily and rapidly obtained via simulation, as 
they are not tainted with noise, and they can be generated in sufficient number that gives a 
good approximation of the model. Moreover, it is possible to generate data that have better 
representation of the model of the system. 
To reduce the modeling error between the actual system and its representation, we propose 
to add an adaptive neural controller. Here, the neural network is trained online, to 
compensate for errors due to structured and unstructured uncertainties, increasing the 
accuracy of the overall control. 
The control law presented here has several distinguished advantages. It is easy to compute 
since it is based on artificial neural network. This robust controller design method 
maximizes the control performance and assures a good accuracy when regulating the tip 
position of the flexible manipulator in the presence of a time-varying payload and 
parameter uncertainties.  

3. Dynamic modeling 

The system considered here consists of two links connected with a revolute joint moving in 
a horizontal plane as shown in Figure 1. The first and the second link are composed of a 

www.intechopen.com



 Motion Control 

 

34 

flexible beam cantilevered onto a rigid rotating joint. It is assumed that the links can be bent 
freely in the horizontal plane but are stiff in the vertical bending and torsion. Thus, the 
Euler-Bernoulli beam theory is sufficient to describe the flexural motion of the links. 
Lagrange’s equation and model expansion method can be utilized to develop the dynamic 
modeling of the robot. 

As shown in Figure 1,{ }f f
0 0 0O x y  represents the stationary frame, { }f f

1 1 1O x y  and { }f f
2 2 2O x y  

are the moving coordinate frames with origin at the hubs of links 1 and 2, respectively. 
f

1y  

and 
f

2y  are omitted to simplify the figure. 1ǉ  and 2ǉ  are the revolving angles at the hub of 

the two links with respect to their frames. 1f , α1 , 2f  and α2  are the elastic displacements, 

they describe the deflection and the section rotation of the tip for the first and the second 

arm, respectively. 
The motion of each arm of the manipulator is described by one rigid and two elastic 
variables: 

 = T[ ]r eq q q   (1) 

where =rq T
1 2[ ]ǉ ǉ  and  α α= T

1 1 2 2[ ]f feq . 

The torques applied to the manipulator joints are given by: 

 = T
1 2[ ]Γ ΓΓ   (2) 

Let consider an arbitrary point iM  on the link i  ( = 1,2i ). The kinetic energy of the link i  

is given by: 

 ρ= ∫ ∫ 2

0 0

1
( )

2

i iL S

i i iT V M dsdx   (3) 

 
 

 
 

Fig. 1. Two-link manipulator with flexible arms 
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where ( )iV M  is the velocity of iM  on the flexible link i . iL , iS  and ρ i  are the length, the 

section and the mass density of link i  ( = 1,2i ), respectively. 

Now, the total kinetic energy T can be written as (Ower & Van de Vegt, 1987): 

θ θ α θ α θ= + + + + + + +$ $ $ $$ $
1 1 2

2 22
1 2 1 1 1 1 1 2

1 1 1
( ) ( )

2 2 2
A B AT T T J J J  

 θ α θ α+ + + + + +$ $$ $
2 1 2

2 2 2
1 1 2 2 2

1 1 1
( ) ( ) ( )

2 2 2
B C CJ M V O M V C   (4) 

where
iAJ  and 

iBJ  are, respectively, the mass moment of inertia at the origin and at the end 

of the link i  ( = 1,2i ). Note that the first and the second terms on the right-hand side in (4) 

are kinetic energy of the flexible links 1 and 2, respectively. The third term is due to moment 

of inertia of the portion of the mass of the first actuator relative to link 1. The fourth and the 

fifth terms are due to moment of inertia of the portion of the mass of the second actuator in 

relation to link 1 and portion of the mass of the second actuator in relation to link 2, 

respectively. The sixth term is due to moment of inertia of mass at C (payload). The seventh 

and the eighth terms are kinetic energy of mass at 2O  and C respectively. 

The potential energy U  can be written as:  

 = T1

2
U q Kq   (5) 

with 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦e

0 0
K

0 K
, 

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

E
e

E

K 0
K

0 K
 and  

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−⎣ ⎦

3 2

2

12 / 6 /

6 / 4 /
i

i i i i i i

i i i i i i

E I L E I L

E I L E I L
EK   ( = 1,2i ). 

The term on the right-hand side in (5) describes the potential energy due to elastic 

deformation of the links. Note that the term relative to the gravity is not present here as the 

manipulator moves on a horizontal plane. K  is the stiffness matrix. The first two rows and 

columns of K  are zeros as U  does not depend on rq . iE  is the Young modulus and iI  the 

quadratic moment of section of the considered link. 

The dynamic motion equation of the flexible manipulator can be derived in terms of 

Lagrange-Euler formulation: 

 
⎡ ⎤ ⎡ ⎤∂ ∂

− = =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

` `
$

d
( 1,2)

d ( ) ( )
i

r r

Γ i
t q i q i

  (6a) 

 
⎡ ⎤ ⎡ ⎤∂ ∂

− = =⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

` `
$

d
0 ( 1,4)

d ( ) ( )e e

j
t q j q j

  (6b) 

where  `  is the Lagrangian function and  = −` T U .  
Substituting (4) and (5) into (6a) and (6b) yields to: 

 [ ] ⎡ ⎤= + + +⎣ ⎦
$$ $ $ $ 2

rL Γ A(q)q B(q) qq C(q) q Kq   (7) 
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where A(q)  is the ( x n n ) inertia matrix, B(q)  is the ( × −2( ) / 2n n n ) matrix of Coriolis 

terms and [ ]$ $qq  is an ( − ×2( ) / 2 1n n ) vector of joint velocity products given by: 

[ ]−$ $ $ $ $ $ $ $ T
1 2 1 3 1 4 1, , ,..., n nq q q q q q q q , C(q)  is the  (  x n n ) matrix of centrifugal terms and ⎡ ⎤

⎣ ⎦
$ 2q is 

an (  x 1n ) vector given by: ⎡ ⎤
⎣ ⎦

$ $ $
T2 2 2

1 2, ,..., nq q q , K  is the ( x n n ) stiffness matrix and rL Γ  is 

the n  torque vector T
1 r[ ... ,0...0 ]Γ Γ  applied to the joints. n  is the total number of 

variables: +r en n  (rigid and elastic, respectively) of the system, in our case, 

= 6n , = 2rn , = 4en . 

If we suppose known the length of the two links, we define (Pham et al., 1991): 

 = + + +
1 1 1 1 2 2 2 2 2

T
A 1 1 1 1 1 2 2 2 2 2[ , , , , , , , , , , , ]B B C C A B B CJ J J M M ρ I M E I J J J M ρ I M E IX  (8) 

where X  is the vector of the robot dynamic parameters. 

4. Nonlinear control 

This control is a generalization of the classically known 'computed torque' used to control 
rigid manipulator (Slotine & Li, 1987). It consists of a proportional and derived (PD) part 
completed by a reduced model which contains only the rigid part of the whole nonlinear 
dynamic model of the flexible manipulator (Pham, 1992). Let: 

 [ ] 2⎡ ⎤= + ⎣ ⎦h(q,q) B(q) qq C(q) q$ $ $ $   (9) 

Then, the model can be reduced to: 

 = + +$$ $ $)rL Γ A(q)q h(q,q q Kq   (10) 

or even: 

 
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$$ $
$$ $

r re r rer r r

e r e e e r e e e e

A A h hΓ q q 0 0 q

0 A A q h h q 0 K q
  (11) 

we deduce from (11) that: 

 = + + +$$ $ $$ $r r r r re e re eΓ A q h q A q h q   (11a) 

 = + + + +$$ $ $$ $e r r e r r e e e e e e0 A q h q A q h q K q   (11b) 

we can then use the following control law: 

 = + + + $$$ $ $ $ # #d d
NL r r e r r r e r e r pr r vr rΓ A (q ,q )q h (q ,q ,q ,q )q K q K q   (12) 

where, 
d
rq , $ d

rq  and $$d
rq  define the desired angular trajectory. = −# d

r r rq q q , = −$# $ $d
r r rq q q  

are angular position and velocity errors. vrK  and prK  are positive definite matrices of gain. 
If we consider the ideal case where no errors are made while evaluating the dynamic 
parameters X, a Lyapunov stability analysis of this control law is presented on Appendix A.  
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5. Adaptive neural control 

The control system structure proposed in this paper is a combination of two controllers. The 
construction of the first controller is based on the approximation of the nonlinear functions 
in (12) by neural network to reduce the computation burden. The second controller is based 
on adaptive neural network. Here the network is trained online, to compensate for errors 
due to structured and unstructured uncertainty, increasing the precision of the overall 
controller.  

5.1 Reducing the computation burden using Neural Network 

The nonlinear law presented in (12) has some major advantages as it uses information 
extracted from the dynamic motion equation of the system to control the manipulator. 
Physical characteristics like the passivity of the system can then be used to elaborate a stable 
controller (Kurfess, 2005). 
The drawback is that, using dynamic motion equation of the system in the construction of 
the controller can lead to a complex controller. Computing such a controller can be time 
consuming. This is mainly the case with flexible manipulators as they are governed by 
complex equations which lead generally to a huge model. Using such a model can be 
incompatible with real time control. 
To avoid this problem we propose to approximate the part of the model which is used in the 
controller with neural networks. The main feature that makes neural network ideal 
technology for controller systems is that they are nonlinear regression algorithms that can 
model high-dimensional systems and have the extreme flexibility due to their learning 
ability. In addition their computation is very fast. 

The functions r r eA (q ,q )  and $ $r r e r eh (q ,q ,q ,q )  are approximated with the artificial neural 

networks rΑ ΝΝ and rh NN . We will then use their outputs in addition to the PD part of 

(12) to elaborate the first controller: 

 = + + + $$$ $ # #d d
NN r r r r pr r vr rΓ A NN q h NN q K q K q   (13) 

In the neural network design scheme of rΑ ΝΝ  and rh NN , there are three-layered 

networks consisting of input, hidden and output layers. We use sigmoid functions in the 

hidden layer and linear functions in the output layer.  
The back-propagation algorithm is adopted to perform supervised learning (Gupta et al., 
2003). The two distinct phases to the operation of back-propagation learning include the 
forward phase and the backward phase. 
In the forward phase the input signal propagate through the network layer by layer, 

producing the response Y  at the output of the network: 

 = ⋅ ⋅( ( ) )o hf fY Xi Wij Wjk   (14) 

where Xi  is the input signal, Y  is the actual output of the considered neural network. In 
this control scheme, the input signals of the input layer for rΑ ΝΝ are the rigid and elastic 

position of the two links: α α T
1 2 1 1 2 2[ , , , , , ]ǉ ǉ f f . For rh NN the inputs are rigid and elastic 

position and velocity of the two links: α α α α$ $ $ $$ $ T
1 2 1 1 2 2 1 2 1 1 2 2[ , , , , , , , , , , , ]ǉ ǉ f f ǉ ǉ f f . ⋅Xi Wij  

is the weighted sum of the outputs of the previous layer, ijWij  and jkWjk  denote the 
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weights between units i  and j  in the input layer to the hidden layer and between units j  

and k  in the hidden layer to the output layer, respectively.  

In this paper, the function of  is a linear function and hf  is a tangent sigmoid function 

expressed by: 

 −= −
+ 2

2
( ) 1

1
h x

f x
e

  (15) 

The actual responses of rΑ ΝΝ  and rh NN so produced are then compared with the desired 

responses of rΑ  and rh  respectively. Error signals generated are then propagated in a 

backward direction through the network. 
In the backward phase, the delta rule learning makes the output error between the output 
value and the desired output value change weights and reduce error.  
The training is made off line so that it does not disturb the real time control. The free 
parameters of the network are adjusted so as to minimize the following error function: 

 = − 21

2
d

NNE (Y Y)   (16) 

where dY  and Y  are the desired and actual output of the considered neural network 

( rΑ ΝΝ or rh NN ). 

The connect weight jkWjk  is changed from the error function by an amount: 

 γ= ⋅ ⋅Δ jk k jWjk ǅk H   (17) 

where γ  is the learning rate and jH  is the thj  hidden node. 
The connect weight ijWij  is changed from the error function by an amount: 

 γ= ⋅ ⋅Δ ij j iWij ǅj Xi   (18) 

Delta rule learning for the units in the output layer is given by: 

 = −d
k k kǅk Y Y   (19) 

Delta rule learning for the units in the hidden layer is given by: 

 = − ⋅ ⋅∑2(1 ) ( )j j k jk
k

ǅj H ǅk Wjk   (20) 

Neural networks corresponding to rΑ ΝΝ and rh NN have been trained over different 

trajectories (training set). The stop criterion is a fundamental aspect of training. We consider, 

that the simple ideas of capping the number of iterations or of letting the system train until a 

predetermined error value are not recommended. The reason is that we want the neural 

network to perform well in the test set data; i.e., we would like the system to perform well in 

trajectories it never saw before (good generalization) (Bishop, 1995).  

The error in the training set tends to decrease with iteration when the neural network has 
enough degrees of freedom to represent the input/output map. However, the system may 
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be remembering the training patterns (overfitting or overtraining) instead of finding the 
underlying mapping rule. To overcome this problem we have used the ‘Cross Validation’ 
method.  
To avoid overtraining, the performance in a validation set (data set from trajectories that the 
system never saw before) must be checked regularly during training. Here, we performed 
once every 50 passes over the training set. The training should be stopped when the 
performance in the validation set starts to decrease, despite the fact that the performance in 
the training set continues to increase.  

5.2 Construction of the adaptive neural controller 

Let us consider now the case where the estimated parameters X̂  used in the dynamic 

equations to model the system are different from the actual parameters X  of the 

manipulator. This will introduce an error in the estimation of the torque. 
In addition to the structured uncertainties, there are also unstructured uncertainties due to 
unmodeled phenomena like frictions, perturbations etc. A more general equation of motion 
of the horizontal plane flexible robot is given by: 

 = + + + +$$ $ $ $ $2
rL Γ A(q)q B(q)qq C(q)q Kq F(q,q)   (21) 

where $F(q,q) is the unstructured uncertainties of the dynamics, including frictions (viscous 

friction and dynamic friction) and other disturbances. 
We will then add a second controller to the system based on adaptive neural network in 
order to compensate the errors induced by the structured and unstructured uncertainties. 
The basic concept of the adaptive neural network used in the second controller is to produce 
an output that forms a part of the overall control torque that is used to drive manipulator 
joints to track the desired trajectory.  
The errors between the joint’s desired and actual position/velocity values are then used to 
train online the neural controller. 
In the adaptive neural network design scheme there are also three layers. Sigmoid and 
linear functions are used in the hidden and the output layer respectively.  

The input signals of the input layer are angular position and velocity: θ θ θ θ$ $ T
1 2 1 2[ , , , ]  at the 

hub 1 and 2, and the output signals Y of the output layer is the torque ANΓ  = 

Γ Γ
1 2

T[ , ]AN AN .  

Training is made online and the parameters of the network are adjusted to minimize the 
following error function: 

 = − = + $# #2 21 1

2 2
d

AN pn r vn rE (Y Y) (K q K q )   (22) 

where dY  and Y  are the desired and actual output of the neural network, pnK , vnK are 

positive definite matrices of gain. 
As the training of the adaptive neural controller is made online, we must minimize its 
computational time. The learning rate is designed relating the network learning, local 
minimum, and weight changes which can be overly large or too small in the neural network 
learning. A momentum factor is then used to help the network learning (Krose & Smagt, 1996). 
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The formulation of the weight change is then given by: 

 
∂

+ = ⋅ + ⋅
∂

Δ ( 1) Δ ( )t Ǆ ǈ t
E

W W
W

  (23) 

where W  designates Wij  or Wjk , t  indexes the presentation number and ǈ  is a constant 

which determines the effect of the previous weight change. 
When no momentum term is used, it takes a long time before the minimum has been 
reached with a low learning rate, whereas for the high learning rates the minimum is never 
reached because of the oscillations. When adding the momentum term, the minimum will be 
reached faster. This will drive the adaptive neural controller to produce a faster response. A 
better control can then be achieved. 
The overall robotic manipulator control system proposed is shown in Figure. 2. It can be 
written: 

 = +NΝ ANΓ Γ Γ   (24) 

where Γ  is the overall controller output (torque); NNΓ  is the first controller output based 

on the neural model of the robot, as defined in (13); ANΓ  is the second controller output 

based on the adaptive neural network. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The overall control system 

6. Simulation results 

Performance of the control strategy proposed is tested using a dynamic trajectory having 
'Bang-Bang' acceleration, with a zero initial and final velocity: 
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with  θ θ= =1 2(0) (0) 0
d d

and θ θ= =$ $
1 2(0) (0) 0
d d

. 
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To avoid the destabilization of the control induced by fast dynamics, we choose T = 30 sec. 
The maximum angular velocity is reached for t = T/4 and for t = 3T/4 and its absolute value 
is 4π /T rad/sec or 24 deg/sec. 

The gain matrices are adjusted as follows: 

- in the nonlinear control law (12), 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1 0

0 0.6prK  and vrK  = 
⎡ ⎤
⎢ ⎥
⎣ ⎦

4 0

0 0.8
 

- in the error function (23), pnK = 
⎡ ⎤
⎢ ⎥
⎣ ⎦

0.8 0

0 0.4
and vnK  = 

⎡ ⎤
⎢ ⎥
⎣ ⎦

4.8 0

0 1.5
. 

Let us suppose now that the actual values of the parameters of the robot are such as 
specified in Table 1. To test the robustness of the proposed control strategy, we consider the 

extreme case where the estimation error on the dynamic parameters X is: 

 =ˆ
100

X
X   (26) 

then, we use these values ( X̂ ) in the training of rΑ ΝΝ  and rh NN . This will drive the first 

controller to produce an incorrect torque. We will see how the second controller deals with 

this error and how it will correct it.  
Our goal here is to simulate an important error due to a bad estimation of the dynamic 
parameters (or ignorance of some of them). We can suppose that if the hybrid controller can 
handle this important error, it can a fortiori handle a small one.  
For simplicity on the simulation tests, dynamic parameters are equally bad estimated in (26). 
Even if it is not always the case on practice, this will not affect the adaptive neural controller, 
which is in charge of compensating these errors, because the adaptive neural controller 
considers the global error (the resultant of the sum of all errors). 
In order to better appreciate the effectiveness of the overall adaptive neural controller we 
compare its results with the nonlinear controller given in (12). 
Figures 3 to 12 illustrate the results obtained with the adaptive neural controller applied to 

the two-link flexible manipulator. They describe the evolution of: angular position, error on 

position, deflection, angular velocity and error on the angular velocity, for the joints 1 and 2, 

respectively.  

Results of the nonlinear control are reported in dashed line for comparison. The desired 
trajectory (target) is reported on Figures 3, 6, 8 and 11 in dotted line.  
Table 2 and Table 3 presents the maximum error and the Root Mean Square error (RMS) of 

the angular position and velocity obtained with the two types of control strategy used. 

The desired trajectory imposes a fast change of acceleration on moment t = T/4 = 7.5 sec and 

t = 3T/4 = 22.5 sec. This radical change from a positive to a negative acceleration for the first 

moment and from a negative to positive acceleration for the second one stresses the control. 

We can see its impact on the control of the angular velocity in Figure 6 and Figure 11.  

However, the trajectory following obtained with the adaptive neural control is good and the 

error induced is acceptable. Whereas, the nonlinear control strongly deviates from the 

target.  

We can see from Table 2 and Table 3 that the error on velocity, obtained with the 
conventional nonlinear control, reaches 0.19 rad/sec (10.9 deg/sec) for the first joint and 0.13 
rad/sec (7.7 deg/sec) for the second one. With the adaptive neural control, results are 
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significantly better with an velocity error lower than 0.01 rad/sec (lower than 0.5 deg/sec) for 
the two joints.  
For the position control (see Figures 3 and 8), we notice that the angular trajectory obtained 

with the adaptive neural controller matches perfectly the target, with an error of no more 

than 0.003 rad, (0.2 deg) for the first and the second links, whereas it exceeds 0.34 rad (20 deg) 

with the nonlinear controller for the two links (see Table 2 and Table 3).  

The hybrid controller proposed deals well with the flexibility of the link as the deflection is 

lessened (see Figure 5 and Figure 10). However, results obtained with the nonlinear control 

alone are slightly better.  

The deflection of the first flexible link, shown in Figure 5, is within ± 0.055 m with the hybrid 

control where as it is lower than 0.036 m with the nonlinear control. For the second flexible 

link and as shown in Figure 10, the deflection reaches 0.017 m with the hybrid control where 

as it is lower than 0.011 m with the nonlinear control 

We notice also from Figure 5 and Figure 10, the appearance of vibrations with the hybrid 

control. However, their amplitude is lessened.  

Therefore, we can make the following conclusion. On the one hand, the use of the nonlinear 

model based controller ( NNΓ ) alone reduces the precision of the control in the presence of 

structured and unstructured uncertainties. But, on the other hand, the use of the adaptive 

part of the neural controller ( ANΓ ) alone increases the deflection of the links and no 

damping of vibrations is achieved which can lead to an unstable system.  
Combining these two control technique schemes gives a good compromise between stability 
and precision. Simulation results show the effectiveness of the control strategy proposed. 
 

Physical parameters    Link 1     Link 2 

Length (m)    1L = 1.00     2L = 0.50 

Moment of inertia at the  
Origin of the link (kg m2) 

   
1AJ = 1.80 10−3     

2AJ = 1.85 10−4 

Moment of inertia at the   
end of the link (kg m2) 

   
1BJ = 4.70 10−2     

2BJ = 0.62 

Mass of the link (kg)    1M = 1.26     2M = 0.35 

Mass at the tip (kg)    
1CM = 4.0     

2CM = 1.0 

Mass density (kg/m3)    ρ 1 = 7860     ρ 2 = 7860 

Young’s modules     1E = 1.98 1011     2E = 1.98 1011 

Quadratic moment of  
section (m4) 

   1I = 3.41 10−11     2I = 6.07 10−12 

 

Table 1. Manipulator characteristics 
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Fig. 3. Evolution of the angular position θ 1 (rad) 
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Fig. 4. Evolution of the angular position errorθ 1
# (rad) 
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Fig. 5. Evolution of the deflection 1f (m) 
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Fig. 6. Evolution of the angular velocity θ 1
$ (rad/sec) 
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Fig. 7. Evolution of the angular velocity error θ 1
$# (rad/sec) 

 

 

Table 2.  Error on joint 1 

 
Maximum Error Root Mean Square Error

Variable θ1 (rad) θ1$ (rad/sec) θ 1 (rad) θ$1 (rad/sec) 

Adap. Neural 
Control 3.07 × −310  5.19 × −310  1.14 × −310  1.60 × −310  

Nonlinear 
Control 4.31 × −110  1.90 × −110  2.98 × −110  8.92 × −210  
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Fig. 8. Evolution of the angular position θ 2 (rad) 
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Fig. 9. Evolution of the angular position error 2θ# (rad) 

0 5 10 15 20 25 30

-0.04

-0.02

0.00

0.02

0.04

D
ef

le
ct

io
n

 (
m

)

Time (sec)

 Adap. Neural. Ctrl.

 Nonlinear Control 

 
 

Fig. 10. Evolution of the deflection 2f (m) 
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Fig. 11. Evolution of the angular velocity θ$ 2 (rad/sec) 

 

0 5 10 15 20 25 30

-0.1

0.0

0.1

A
n

g
u

la
r 

v
el

o
ci

ty
 e

rr
o

r 
(r

ad
/s

ec
)

Time (sec)

 Adap. Neural. Ctrl.

 Nonlinear Control 

 
 

Fig. 12. Evolution of the angular velocity error 2θ$# (rad/sec) 

 

 

Table 3.  Error on joint 2 

 
Maximum Error Root Mean Square Error

Variable θ 2 (rad) θ$2 (rad/sec) θ 2 (rad) θ$2 (rad/sec) 

Adap. Neural 
Control 2.85 × −310  8.67 × −310  8.43 × −410  2.55 × −310  

Nonlinear 
Control 3.44 × −110  1.35 × −110  1.83 × −110  5.53 × −210  

www.intechopen.com



Intelligent Control 

 

47 

7. Conclusion 

Our goal is to search for intelligent control techniques that improve the performance of the 
controller and reduce the computation burden. The main idea here is to combine two 
control techniques, nonlinear control and neural network control.   
The new adaptive neural control strategy presented is a combination of two controllers.  
The first controller is based on the approximation with neural networks of the robot 
dynamic equation of the motion. Its aim is to provide a stable and fast control based on the 
dynamic model of the system. Using artificial neural network in the place of the nonlinear 
model allow to simplify the structure of the controller reducing its computation time and 
enhancing its reactivity. 
The second controller is based on neural networks that are trained online. Its objective is to 
ensure that the actual trajectory matches the desired one by compensating errors due to 
structured and unstructured uncertainty, increasing the precision of the control. 
Simulation results on a robot manipulator with two flexible arms have shown the 
robustness in performance of this control design scheme against adverse effects such as 
model parameter variations. 
In summary, this article provides a novel control structure, to overcome the robotic 
manipulator control difficulties faced by conventional control schemes when uncertainties 
(e.g., friction, changing payload, time-varying friction, disturbances) cannot be ignored.  

8. Appendix A: Stability analysis 

By subtracting (12) from (11a), we obtain the error equation: 

 + + + + + =$$ $$ $ $ $# # # # # #r r re e r r re e pr r vr rA q A q h q h q K q K q 0   (A.1) 

with, = − = −# e e eq 0 q q  and = − =−$# $ $e e eq 0 q q  representing the elastic stabilization errors. In 

addition, rewriting the coupling equation (11b) according to the trajectory and the elastic 

stabilization error variables ( # rq  and # eq ) gives: 

 + + + + = +$$ $$ $ $# # # # # $$ $d d
e r r e e e r r e e e e er r er rA q A q h q h q K q A q h q   (A.2) 

Using (A.1) and (A.2), the global error equation becomes: 

 + + + + =$$ $ $# # # #p v 1Aq hq K q K q s 0   (A.3) 

where the positive constant matrices pK , vK  are respectively 
⎡ ⎤
⎢ ⎥
⎣ ⎦

pr

e

K 0

0 K
, 
⎡ ⎤
⎢ ⎥
⎣ ⎦

vrK 0

0 0
, and 

⎡ ⎤
=− ⎢ ⎥+⎣ ⎦$$ $1

er rd er rd

0
s

A q h q
. 

To study the stability of the global system, the following Lyapunov function is considered: 

 = +$ $# # # #T T(1 /2) (1 / 2) pV q Aq q K q   (A.4) 

by differentiating V and using (A.3), and the fact that A  is a symmetric positive-definite 
matrix (Kurfess, 2005), we obtain: 
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 = − − +$ $ $ $$ $# # # #T T((1 / 2) ) ( )v 1V q A h q q K q s   (A.5) 

The property of passivity of the flexible manipulator implies that −$(1 /2)A h  is skew 

symmetric (Lewis, 1999), finally we have: 

 = − + +$ $ $$ # # # $$ $T T ( )r vr r e er rd er rdV q K q q A q h q   (A.6) 

The Lyapunov second method provides that the asymptotic stability of the control is 

assured if the following conditions are met. V  is strictly positive everywhere except in 

=#q 0  where it is 0 and $V is strictly negative everywhere except in =#q 0  where it is 0.  

These conditions are always met if the desired angular velocities and accelerations are not 

too significant for a given tuning of vrK , so that $V  remains  essentially negative to ensure 

the control stability. 
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