
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Prognostics 102: Efficient
Bayesian-Based Prognostics
Algorithm in MATLAB
Ting Dong, Dawn An and Nam H. Kim

Abstract

An efficient Bayesian-based algorithm is presented for physics-based
prognostics, which combines a physical model with observed health monitoring
data. Unknown model parameters are estimated using the observed data, from
which the remaining useful life (RUL) of the system is predicted. This paper focuses
on the Bayesian method for parameter estimation of a damage degradation model
where epistemic uncertainty in model parameters is reduced with the observed
data. Markov-chain Monte Carlo sampling is used to generate samples from the
posterior distribution, which are then propagated through the physical model to
estimate the distribution of the RUL. A MATLAB script of 76 lines is included in this
paper with detailed explanations. A battery degradation model and crack growth
model are used to explain the process of parameter estimation, the evolution of
degradation and RUL prediction. The code presented in this paper can easily be
altered for different applications. This code may help beginners to understand and
use Bayesian method-based prognostics.

Keywords: Bayesian method, physics-based prognostics, remaining useful life,
MATLAB code, crack growth, battery degradation

1. Introduction

Structural health monitoring (SHM) [1, 2] is the process of identifying damage
and evaluating the safety of a system based on online and/or off-line data. It uses an
array of sensors to obtain measurement data that are directly or indirectly related to
damage. The statistical analysis of these measurements can help predict the future
state of the system and thus improve the safety of the system. SHM can be found in
a wide variety of applications such as bridges and dams, buildings, stadiums, plat-
forms, airframes, turbines, etc. Prognostics is an extension of SHM, which is the
process of estimating the time beyond which a system can no longer function to
meet desired performances [3]. The time, in terms of cycles/hours, remaining to
run the system before it fails is called the remaining useful life (RUL).

There are two types of prognostics methods: data-driven and physics-based
approaches. The data-driven approaches are advantageous when many training data
are available for a complex system, while the physics-based approaches are good
when a physical model of damage degradation is available. The physics-based
approach is used for prognostics in this paper with a well-defined physics model.

1

Measured data is used to estimate model parameters, which are then used to predict
the RUL.

Recently, many prognostics algorithms have been published in the literature
[4–8]. However, many of the proposed algorithms are complex and not easily
applicable. This complexity can present a serious hurdle for the beginner. In addi-
tion, using commercial programs may not be the best choice in teaching algorithms
to students. As a continuation of our educational paper on prognostics algorithm
[9], the objective of this paper is to explain the fundamentals of a Bayesian-based
prognostics method and demonstrate how to use it using a simple MATLAB code.

The MATLAB code consists of 76 lines, which is further divided into three parts:
(1) problem definition; (2) prognostics using the Bayesian method (BM); and (3)
post-processing. The program is structured in such a way that the users only need to
modify the problem definition part for their own application. This paper shows an
example of battery degradation and crack growth models, and attempts to explain
prognostics using BM with MATLAB code.

The remaining sections are organized as follows: In Section 2, the overall process
of BM is explained; in Section 3, implementation of the code is explained with
details using battery degradation example; and in Section 4, modification of the
code for crack growth example is described, followed by conclusions in Section 5.

2. Methodology

In this section, a physics-based approach is explained using the procedure shown
in Figure 1. The theoretical discussions in this section are mainly to help understand
the MATLAB implementation in Section 3. The physics-based approach comprises
of the following steps: (1) developing or identifying a physical model that describes
the degradation of system health, (2) collecting data by operating the system under
usage conditions and measuring degradation at a sequence of times/cycles, (3)
estimating the model parameters by fitting the measured data, (4) progressing the
physical model to the future times/cycles, and (5) predicting the RUL. A statistical

Figure 1.
Flowchart of physics-based prognostics.

2

Fault Detection, Diagnosis and Prognosis

inference technique called the Bayesian method (BM) is used in this paper to
estimate the model parameters based on measured data. Many other methods, such
as particle filter and Kalman filter, also use Bayesian inference to estimate the model
parameters. In BM, all model parameters are estimated in the form of a joint
probability density function (PDF), whose distribution can be represented using
samples. Among various sampling methods, Markov-chain Monte Carlo (MCMC)
algorithm is employed to draw samples from the distribution. These samples of
model parameters are then substituted in the physical model to calculate the sam-
ples of RUL, from which the statistical distribution is evaluated.

2.1 Model definition

In this section, a degradation model of a battery is used to explain the physics-
based prognostics algorithm using the Bayesian method. The degradation model of
crack growth will also be explained in Section 4. It is expected that the users develop
a degradation model for their own application. This section explains the basic
requirements of a degradation model.

In a lithium-ion battery, it is well known that the capacity of a secondary cell
degrades over cycles in use. Therefore, the capacity can be used as a degradation
feature. The degradation feature is an output of the degradation model that shows a
monotonic trend as a function of time. The system is considered failed when the
degradation feature goes beyond a threshold. In the case of a lithium-ion battery,
the failure threshold is defined when the charging capacity fades by 30% of that of a
pristine battery. In this paper, the C/1 capacity (capacity at a nominally rated
current of 1A) of the battery is used as a degradation feature. Since the C/1 capacity
is inversely proportional to the sum of the transfer resistance and the electrolyte
resistance, it represents the overall performance of a battery.

Although the degradation process of a battery is complicated, a simple empirical
model is available when the usage of the battery is the repetition of fully charging-
discharging cycles. In such a case, the degradation model can be written as a
function of time only. Since the capacity of a battery degrades over time, the ratio of
the capacity compared to that of the pristine battery is expressed by an exponential
decaying model as [10]

~y t; bð Þ ¼ exp �btð Þ (1)

where b is the model parameter, t is the time, and ~y t; bð Þ is the relative degradation
of the C/1 capacity compared to the pristine capacity. The notation in Eq. (1) is
chosen such that the degradation model depends on both the time of usage and
model parameters. In general, the degradation model is either monotonically
decreased (e.g., the capacity decay of a battery) or monotonically increased
(e.g., crack growth).

The main goal of the physics-based prognostics is to predict the degradation
behavior using the degradation model. If the model is perfect, then it can be used to
find the time tEOL at the end of life from

~y tEOL; bð Þ ¼ ythreshold (2)

where ythreshold is the failure threshold. Since the relative capacity is used as a
degradation feature, the failure threshold is defined at ythreshold ¼ 0:7. Let the
current time be tCUR, then the RUL can be defined as

tRUL ¼ tEOL � tCUR (3)

3

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

In practice, however, the degradation model is not perfect in the sense that the
model form, as well as the model parameters, may not be accurate. The error in the
model form can be handled by introducing a model form error and identifying the
error using measured data, which would be considered as the out of the scope of this
paper. Interested readers can refer to Guan et al. [11].

Once the model form is accepted, the next task is to identify the accurate model
parameters. In the case of the battery degradation model in Eq. (1), the parameter b
needs to be identified. In most cases, the model parameters are not an intrinsic
property but depend on operating conditions and environment. Therefore, these
parameters can be different for different batteries and need to be identified for the
specific battery of interest. In fact, the major task of physics-based prognostics is to
identify the model parameters.

The model parameter b for a specific battery can be identified by measuring the
capacity degradation during regular operation. The measuring process is often
called health monitoring, where the degradation feature is measured over time. It is
possible that the degradation feature can be monitored online. However, for the
purpose of prognostics, the real-time continuous monitoring may not be necessary.
Therefore, it is often suggested to collect data in a discrete set of times. Then, many
different physics-based prognostics algorithms use these data to identify the model
parameters so that the degradation model represents the degradation feature the
best. For example, nonlinear least-squares method minimizes the error between
measured data and the model prediction. Kalman filter, particle filter, and Bayesian
methods are using Bayesian inference to estimate the model parameters. Different
methods use different assumptions and different numerical approaches. Interested
readers are referred to Kim et al. [3] for details of these methods.

If the measured data are accurate, then a small number of measured data
should be good enough to estimate the model parameters. In reality, however,
most measured data include noise and bias, which make the estimation process
difficult. Noise is a random fluctuation of signals due to uncontrollable factors in
the measurement environment, while bias is a systematic departure from the
average data. If the measurement is repeated, noise can be changed, while the bias
may remain the same. The bias can occur because of calibration error of the
sensors, but it may also occur due to the model form error. The effect of the
model form error can partially be addressed by introducing the bias in the esti-
mation process. Bias can be added in the model as an extra term and estimated in
the same way as other parameters. The distribution of estimated bias is a good
indicator if the model can represent degradation data well enough. If estimated
bias is widely distributed, it means model form error is large. If it is narrowly
distributed and the mean is close to 0, it means the model is accurate. Since noise
is random, it is important to compensate for its effect in the parameter estimation
process. It is obvious that a large level of noise makes the process difficult.
Therefore, it is important to keep the signal-to-noise ratio as high as possible. It is
also important to understand the statistical characteristics of the noise. In this
paper, it is assumed that the noise follows a Gaussian distribution with a zero
mean and unknown standard deviation. On the other hand, the effect of bias will
not be considered. Therefore, in addition to the unknown model parameters, it is
necessary to estimate the unknown standard deviation of noise in data.

Because of noise and bias, it is often expected that a large number of data be
required to estimate the model parameters accurately. In prognostics, it is often
assumed that Ndata data are collected from a start time to the current time
t∈ t0; tCUR½ �. Time does not have to be a physical time; it can also be the number of
cycles of operation. Then, the model parameters are estimated using Ndata data, and
future degradation is predicted using the degradation model with the estimated

4

Fault Detection, Diagnosis and Prognosis

parameters. In particular, the goal is to accurately predict the end of life in Eq. (2)
and the RUL in Eq. (3).

It is important to note that the data should show a significant change in the
damage feature over time. In the case of crack growth in Section 4, for example,
when the crack size is small, it grows very slowly. Therefore, the measurement data
in an early stage do not show a significant change in the crack size. In such a case, the
signal-to-noise ratio is too low and it is difficult to estimate the model parameters.

In this paper, instead of measuring the degradation of a real battery, the degra-
dation data are generated based on an assumed true model. This has a couple of
advantages. First, since the true model and its model parameters are known, it is
possible to evaluate the accuracy of the estimation process and that of the RUL. It
also allows us to investigate the effect of noise on the performance of prognostics
algorithms. In this paper, the relative capacity data are generated based on Eq. (1)
with the true model parameter btrue = 0.012. It is assumed that the C/1 capacity of
the battery is measured once a week up to the ninth week. In order to simulate the
real measurement environment, a Gaussian noise ε � N(0, 0.0052) is added to
the true data. The following MATLAB commands can be used to generate the
measured data:

>> time=(0:9)';

>> b=0.012;

>> trueData=exp(-b*time);

>> measuData=trueData+0.005*randn(10,1);

Once the measurement data are generated, the true model parameters and the
information of noise are not used. Table 1 and Figure 2 show the true degradation
data and simulated measurement data up to the current time tCUR ¼ 9 weeks. Based
on the true model, the end of life of the battery is tEOL ¼ 29:72 weeks, and thus, the
true RUL should be tRUL ¼ 20:72 weeks.

2.2 Bayesian parameter estimation

Once the measurement data are available, the next step would be to estimate the
model parameters. Among many parameter estimation methods, the Bayesian
inference is explained in this section. In the following explanation, Θ represents the
random variable of the unknown model parameter, and Y represents the random
variable of degradation feature. A variable with an upper case denotes a random
variable, while a variable with a lower case denotes a realization of the random
variable. Bayesian inference estimates the degree of belief in a hypothesis based on
collected evidence. Bayes [12] formulated the degree of belief using the identity in
conditional probability:

P Θ∩Yð Þ ¼ P ΘjYð ÞP Yð Þ ¼ P YjΘð ÞP Θð Þ (4)

where P ΘjYð Þ is the conditional probability of Θ given Y. In the case of estimating
the model parameter using measured data, the conditional probability of Θ when
the probability of measured data Y is available can be written as

Time (weeks) 0 1 2 3 4 5 6 7 8 9

True degradation 1.000 0.988 0.976 0.965 0.953 0.942 0.931 0.919 0.909 0.898

Measured degradation 0.995 0.983 0.975 0.974 0.942 0.938 0.930 0.920 0.911 0.895

Table 1.
Measurement data (relative capacity) for the battery degradation example.

5

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

P ΘjYð Þ ¼ P YjΘð ÞP Θð Þ
P Yð Þ (5)

where P Θð Þ is the prior probability of parameter Θ, which represents the
preexisting knowledge on the parameter. P ΘjYð Þ is the posterior probability of
parameter Θ after updating the prior with measurement data Y. P YjΘð Þ is the
likelihood function or the probability of obtaining data Y for a given parameter Θ.
The measurement data affect the posterior probability through the likelihood func-
tion. The denominator, P(Y), is the marginal probability of Y and acts as a normal-
izing constant. The above equation can be used to improve the knowledge of P(Θ)
when additional information P(Y) is available.

If the Bayes’ theorem in Eq. (5) is going to be used for identifying unknown
model parameters, it would be better to express the theorem in the form of a
probability density function (PDF) [13], which is used in the present paper. Let
f
Θ
θð Þ be a PDF of model parameter Θ. When there are more than one model

parameters, fΘ θð Þ can be a joint PDF of multiple parameters. If the health monitor-
ing measures a degradation feature Y, the measurement variability can be
represented using PDF, f Y yð Þ. Then, the conditional PDFs between Θ and Y can be
related to the joint PDF and the marginal PDF, f

Θ
θð Þ and f Y yð Þ, as

f
ΘY θ; yð Þ ¼ f

Θ
θjY ¼ yð Þf Y yð Þ ¼ f Y yjΘ ¼ θð Þf

Θ
θð Þ (6)

It is obvious that the joint PDF can be written as f
ΘY θ; yð Þ ¼ f

Θ
θð Þf Y yð Þ when Θ

and Y are independent, and Bayesian inference cannot be used to improve the
probability distribution of f

Θ
θð Þ. Similar to Eqs. (5) and (6) can be used for

obtaining the Bayesian inference in the form of PDF as [14].

f
Θ
θjY ¼ yð Þ ¼ f Y yjΘ ¼ θð Þf

Θ
θð Þ

f Y yð Þ (7)

Since the denominator f Y yð Þ is a constant and since the integral of f
Θ
θjY ¼ yð Þ is

one from the property of PDF, the denominator in Eq. (7) can be considered as a

Figure 2.
True degradation curve and measured data for the relative capacity.

6

Fault Detection, Diagnosis and Prognosis

normalizing constant. Similar to Eq. (5), f
Θ
θjY ¼ yð Þ is the posterior PDF of param-

eter Θ that is updated from the prior PDF f
Θ
θð Þ with the likelihood function

f Y yjΘ ¼ θð Þ, which is the probability density value of measured data y given model
parameter Θ ¼ θ. The process of updating the posterior distribution f

Θ
θjY ¼ yð Þ of

the model parameter using the measured data y is called Bayesian inference.
The Bayesian inference can be extended to the case when many data are avail-

able. In general, it is possible that the posterior PDF can be obtained by applying all
data simultaneously or by iteratively applying each data at a time. Although two
approaches are theoretically equivalent, they end up numerically different methods.
For example, the particle filter method uses a single measurement to update the
posterior distribution, and the previous posterior distribution is used as a prior
distribution for the following measurement. On the other hand, Bayesian method
uses all measurement data together to build a single posterior distribution, which is

used in this paper. Let us consider that y ¼ y1; y2;…; yNdata

n o

is the vector or Ndata

measurements. In such a case, the Bayes’ theorem can be written as

f
Θ

θjY ¼ y
� �

¼ 1

K

Y

Ndata

i¼1

f Y yijΘ ¼ θ
� �� �

f
Θ
θð Þ (8)

where K is the product of all marginal PDFs. However, it can be considered as a
normalizing constant to make the integration of the posterior PDF to be one. It is
noted that the total likelihood function is the product of the likelihood functions of
individual data, which is then multiplied by the prior PDF followed by normaliza-
tion to yield the posterior PDF.

In contrast to the traditional least-squares method, the Bayes’ theorem can
estimate not only the best values of parameters but also the uncertainty structure of
the identified parameters. Since these uncertainty structures are derived from that
of the prior distribution and likelihood function, the uncertainty of the posterior
distribution is directly related to that of the likelihood and the prior distribution.

In the Bayesian method, it is assumed that the users know the prior distribution
of model parameters and the distribution type of measurement noise. In this paper,
it is assumed that the prior distribution is given as a uniform distribution with a
lower- and upper-bound. It is also assumed that the measurement noise is a
Gaussian distribution; that is ε � N 0; s2ð Þ, where s is the standard deviation of noise.
However, users can change these assumptions easily. For example, the case when
noise in data follows a lognormal distribution is considered in the crack growth
problem in Section 4. In most cases, since the standard deviation of noise is
unknown, it should be a part of unknown model parameters. In the case of the
battery model, therefore, the vector of unknown model parameters is defined as
Θ ¼ b; sf g. By assuming that the two model parameters are statistically indepen-
dent, the prior joint PDF of the two parameters can be defined as

fΘ θð Þ ¼ f bð Þ � f sð Þ, f bð Þ � U 0;0:05ð Þ, f sð Þ � U 10�5;0:1
� �

(9)

Once the prior distribution is determined, it is necessary to build the likelihood
function using the measurement data and to yield the posterior distribution shown
in Eq. (8). The meaning of the likelihood function is the PDF value of obtaining the
measured data yk for given model parameters θ ¼ b; sf g. Since the measured data
are fixed, the likelihood function is a function of model parameters, which makes
the likelihood function different from the PDF. If the model prediction is close to the
measured data, then the likelihood is large, while the likelihood is small when
the two values are significantly different. In order to build the likelihood, it is

7

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

necessary to measure degradations at different times. Since the measured degradation
data yk; tk

� �

, k ¼ 1, 2,…, Ndata are given at discrete times, the degradation model is
also evaluated at the same discrete times as ~yk bð Þ ¼ ~y tk; bð Þ, k ¼ 1, 2,…, Ndata. Since
the times between the measurement and the model are synchronized, ~yk bð Þ is only a
function of model parameter b. The measured data yk include the random noise that is
governed by s, while the model prediction ~yk bð Þ depends on b. Then, the likelihood
function of the k-th measured data can be defined as

f Y ykjθ
� �

¼ 1

s
ffiffiffiffiffi

2π
p exp � 1

2s2
yk � ~yk bð Þ
� �2

� �

, k ¼ 1, 2,…, Ndata (10)

As shown in Eq. (8), the likelihoods of multiple data can be multiplied to obtain

the posterior distribution. With Ndata data, y ¼ y1; y2;…; yNdata

n o

, the posterior joint

PDF can be calculated by multiplying all likelihood functions and the prior PDF as

fΘ θjy
� �

¼ 1

KsNdata
exp � 1

2s2
∑
Ndata

k¼1

yk � ~yk bð Þ
� �2

� �

fΘ θð Þ (11)

where K is again a normalizing constant.

2.3 Markov chain Monte Carlo sampling

Bayesian parameter estimation in Eq. (11) shows the functional expression of the
posterior joint PDF of unknown model parameters. When the prior and posterior
are conjugate, the posterior distribution can be expressed in the form of a standard
probability distribution. In general cases, however, the posterior distribution can be
expressed as a product of complex functions, such as the posterior PDF shown in
Eq. (11).

The posterior PDF is then used to calculate the degradation trend and predict the
RUL. For complex nonlinear models, it is difficult to propagate uncertainty in the
parameters to the degradation model. Instead, samples of model parameters are
generated from the posterior distribution, and the degradation model with the
threshold in Eq. (2) is used to propagate these samples to calculate the samples of
the end of life, and thus, the samples of the RUL in Eq. (3). Therefore, it is
important to generate samples that follow the posterior distribution of parameters.

In general, the inverse cumulative distribution function (CDF) method is the
easiest way of generating samples from a non-standard probability distribution, but it
requires the functional expression of CDF, not PDF. For practical engineering appli-
cations, it is likely that the posterior PDF may be different from a standard probabil-
ity distribution, or the posterior PDF is complicated due to the complex correlation
structures between parameters. In such a case, sampling-based methods can be used
to generate samples of parameters. There are many sampling methods, such as the
grid approximation [15], rejection sampling [16], importance sampling [17], and the
Markov Chain Monte Carlo (MCMC) method [18]. In this paper, the MCMCmethod
using the Metropolis-Hastings (MH) algorithm is employed. MCMC is a simulation
technique used to estimate quantities of interest by sampling consecutive random
variables wherein the future state depends only on the current state [19].

The MCMC sampling method uses a Markov chain model in a random walk,
where the distribution of the next sample depends only on the current sample
(see Figure 3). As the algorithm generates more and more samples, the samples
more closely approximate the posterior PDF. Specifically, Starting with an arbitrary
initial sample (current sample), a new candidate sample is drawn from a proposal

8

Fault Detection, Diagnosis and Prognosis

distribution centered at the current sample. In this paper, a uniformly distributed
proposal distribution is used. Therefore, it is expected that the users provide the
initial sample of parameters and the width of the proposal distribution. At i-th

iteration, it is expected that the current sample θ i�1ð Þ is available, and the new
candidate sample θ∗ is drawn from the following proposal distribution that is uni-

formly distributed centered at θ i�1ð Þ:

g θ∗; jθ i�1ð Þ
	

� U θ i�1ð Þ �w; θ i�1ð Þ þw
h i

(12)

where w is the user-provided width of the proposal distribution. It is noted that the

proposal distribution is symmetric; that is g θ∗; jθ i�1ð Þ� �

¼ g θ i�1ð Þ; jθ∗
� �

.
Once the candidate sample is generated, it is either accepted as a new sample or

rejected based on an acceptance criterion. When accepted, the candidate sample is
added to a new sample and used in the next iteration. When rejected, the candidate
sample is discarded, and the current sample is reused in the next iteration. In the
original MH algorithm, it is suggested to use a function that is proportional to
the posterior distribution for the acceptance/rejection test. In this paper, however,
the posterior distribution is directly used as its evaluation is not computationally
expensive. Since the proposal distribution is symmetric, the following acceptance
ratio can be defined:

Q θ i�1ð Þ; θ∗
	

¼ fΘ θ∗jy
� �

fΘ θ i�1ð Þjy
� � (13)

The acceptance ratio compares the posterior probability of the new candidate
sample against that of the current sample. If the candidate sample has a higher proba-

bility than that of the current sample; i.e.,Q θ i�1ð Þ; θ∗
� �

>1, then it is always accepted as

a new sample. When 0 <Q θ i�1ð Þ; θ∗
� �

< 1; that is, the probability of the candidate
sample is lower than that of the current sample, the acceptance is determined based on
the ratio. A high acceptance ratio has a more probability to be accepted, while a low
ratio is occasionally accepted. This can be achieved by generating a sample from a
uniform distribution, u � U 0; 1½ �, and the candidate sample is accepted if

u<Q θ i�1ð Þ; θ∗
� �

; otherwise, it is rejected. Intuitively, this is why this algorithmworks,

and returns samples that follow the desired distribution fΘ θjy
� �

. In Figure 3, two

Figure 3.
Markov chain Monte Carlo sampling using random walk.

9

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

dashed circles mean that these candidate samples are not selected according to the
criterion. In such a case, the current sample is selected again. This process is repeated as
many times as necessary until a sufficient number of samples are obtained. Figure 4
summarizes the MCMC sampling procedure using theMH algorithm.

The performance of MCMC sampling depends on the initial sample and the
selection of the proposal distribution. A too-narrow proposal distribution can yield
destabilization by not fully covering the posterior distribution, while a too-wide
distribution can yield many duplications in sampling result by not accepting new
samples. In addition, if the initial sample is located far away from the posterior
distribution, many iterations (samples) will be required to converge to the posterior
distribution. To prevent the effect of inaccurate initial samples, an initial portion
of the samples can be discarded in estimating the posterior distribution, which is
called the burn-in. In this paper, the first 20 percent of the samples are discarded as
a burn-in.

2.4 Prognostics

Once the samples of parameters are obtained based on the posterior distribution,
the future damage state and the RUL can be predicted by substituting the samples
of parameters in the degradation model and estimating the RUL using Eqs. (2) and
(3). In general, since the degradation model is a nonlinear implicit function of time,

solving for t
ið Þ
EOL with a given sample b ið Þ in Eq. (2) may require an iterative process.

Instead, in this paper, the degradation model is evaluated at a set of discrete future
times, and then, the end of life is calculated using a simple interpolation. More
specifically, let the set of discrete times is defined as

time ¼ t0 t1 ⋯ tCUR ⋯ tend½ � (14)

Then, the measurement data are available between t0 and tCUR. Bayesian param-
eter estimation in the previous section uses the measurement data between t0 and

Figure 4.
Metropolis-Hastings algorithm for generating samples from a posterior distribution.

10

Fault Detection, Diagnosis and Prognosis

tCUR to estimate the posterior PDF of model parameters. Using the estimated model
parameters, the degradations in the future times between tCUR and tend are calcu-
lated in the prediction stage. If two consecutive degradations cross the threshold;
that is,

~yk bð Þ � ythresholdÞ � ~ykþ1 bð Þ � ythresholdÞ≤0
��

(15)

then tEOL exists between tk and tkþ1, which can be found by a simple linear interpo-
lation. When the set of futures times do not include the end of life, it can extrapo-
late based on the trend of data. It is also possible that the degradation model never
reaches the threshold; that is, the system has an infinite of life. In such a case, the
sample is deleted from the calculation. Once the samples of the end of life are
obtained, the samples of RUL can be calculated using Eq. (3).

Once the samples of RUL are available, the confidence interval and/or the
prediction interval is used to evaluate the accuracy or precision of the RUL. The
confidence interval represents how good the RUL is. Therefore, the confidence
interval of 95% means that the true RUL will be within this interval with the
probability of 95%. That is, the confidence interval tells us about the likely location
of the true RUL. In the case of RUL samples, the 95% confidence interval can be
calculated by taking the lower 2.5 percentile and the upper 2.5 percentile from the
samples. On the other hand, the prediction interval shows the possible location of
the next sample. Knowing that the next sample will have additional randomness
from the predicted RUL, the prediction interval is calculated by adding additional
randomness to the data. In practice, the RUL estimation is important for
scheduling maintenance. Therefore, only the lower confidence/prediction bound is
of interest in the practical application. Figure 5 shows a representative result of
prognostics, which shows the statistical distribution and the confidence interval of
the RUL.

Figure 5.
Statistical distribution and the confidence interval of the remaining useful life.

11

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

3. MATLAB implementation

In this section, MATLAB implementation of prognostics using the Bayesian
method is discussed. In the following explanation, ‘line’ or ‘lines’ in a parenthesis
indicated the number of the line of the code in Appendix. The code is divided into
three parts: (1) Problem Definition (lines 2–15, 65–67) (2) Bayesian parameter
estimation and MCMC sampling (lines 16–29, 60–76) (3) Post-processing for
displaying results (lines 40–57). Only the Problem Definition part needs to be
changed for different applications. Detailed explanations are given in the subse-
quent sections with an example of battery degradation.

It is expected that the MATLAB script is saved as a file with the name of ‘BM.m’,
which has two input arguments, para0 and weigh (line 1). The first argument,
para0, is the initial sample of model parameters, and weigh is the width w of the
proposal distribution in Eq. (12). The size of each array should be the same as the
number of model parameters. The following is an example of calling the code in the
command window of MATLAB:

samplResul=BM([0.011 0.02]', [0.001 0.003]');

In the above MATLAB command, para0 = [0.011 0.02]' is the initial sample of b
and s, and weigh = [0.001 0.003]' is the width of proposal distribution of b and s.
Since the convergence and accuracy depend on these two variables, it is suggested
to try with different values. Since the users know the prior distribution of the model
parameters, it is a good practice to start with the mean of the prior distribution as an
initial sample. If the code ran successfully, it will return the samples of model
parameters in the samplResul array and will generate two plots. The first plot is the
trace of MCMC samples, and the second plot is the histogram of the RUL.

3.1 Problem definition (lines 2–15, 65–67)

The problem definition means defining the degradation equation using model
parameters and time/cycle. All known parameters, as well as the initial estimate of
unknown parameters, parameter names, and model data, need to be defined. The
problem definition consists of two parts: parameter definition and model definition.
For parameter definition (lines 2–15), ‘Battery’ is used as a WorkName (line 3).
The capacity is measured every week, so TimeUnit is ‘weeks’ (line 4). In line 5,
time is an array of discrete times in the units of TimeUnit. Measurements and
predictions will be done at these times. The relative C/1 capacity data is stored as
measuData (lines 6–7), which has 10 weeks of measurement; that is, Ndata ¼ 10 (k1
in line 18). These data correspond to the first 10 times in time array. Since time
starts from 0, the 10th time corresponds to 9 weeks, which is the current time; that
is, tCUR ¼ 9week. The degradation will be predicted for future times that are from
10 to 50 weeks. The measurement data are generated using the MATLAB script in
Section 2.1. It is noted that due to random noise, the users may experience different
realizations of measurement data.

In line 8, the degradation threshold ythreshold is defined using variable ‘thres’with
the value of 0.7. ParamName in line 9 is the name of model parameters: model
parameter ‘b’ and standard deviation of noise ‘s’. Since the parameter name will
actually be used in the model, it is important to use the actual name of variables
here. The number of parameters is stored in the variable ‘p’ in line 17. It is noted
that the last parameter should be the standard deviation of noise ‘s’. prioDisPar
stores the information of the prior distribution of model parameters, as given in

12

Fault Detection, Diagnosis and Prognosis

Eq. (9). When a uniform prior distribution is used, each row contains the lower-
and upper-bounds of the distribution.

During MCMC sampling, the number of samples Ns is set to 5000 (line 12). Since
the sampling process takes many iterations to converge, the initial 20% of the samples
are discarded in calculating the posterior distribution by command burnIn = 0.2
(line 13). In order to keep 5000 samples, Ns/(1-burnIn) = 6250 samples (line 21) are
generated first, and then, nBurn = 1250 samples (line 30) are discarded.

Since the RUL is represented by Ns samples, the confidence interval or the
prediction interval is often used to support the decision-making process. signiLevel
(line 14) is the significance level of this interval in percentage. When signiLevel = 5,
the code will return the lower 5 percentile, median, and the upper 5 percentile.
Following is the sample output from BM.m:

Percentiles of RUL at 9 cycles

5prct: 18.7182, median: 20.381, 95prct: 22.1576

For the model definition, the degradation model ~y t; bð Þ in Eq. (1) is defined in
lines 65–67. In this equation, t is the time of measurement, and b is the model
parameter as defined in line 9. The model equation needs to be defined in such a
way that component-by-component operations are possible. This is because the
time and model parameters can be an array of samples.

3.2 Bayesian parameter estimation with MCMC (lines 16–31)

In the Bayesian parameter estimation process, the posterior distribution is
expressed in terms of the product of the prior distribution and the likelihoods of all
measured data. In the MATLAB code BM.m, the degradation model and the poste-
rior distribution are calculated in the function BMappl (lines 60–76). First, the
parameter samples in param are assigned to the variables using the eval function
(line 62–64):

for j=1:size(param,1)

eval([ParamName(j,:) '=param(j,:);']);

end

In the case of the battery example, this command is equivalent to.
b = param(1,:);

s = param(2,:);

This is why the ParamName in line 9 must have the same name with the actual
variable. Then, these parameters are used to calculate the degradation model with
given time t (line 66).

If measurement data (measuData) is empty, then BMappl only calculates the
degradation model with given parameter samples at a given time t. This corre-
sponds to propagating the degradation model using parameter samples to the future
time for prognostics. If measurement data are provided (lines 71–74), then BMappl
calculates the values of the posterior distribution at the parameter samples. In this
case, the time should be given as an array ofNdata components from the start time to
the current time. The posterior distribution in Eq. (11) (line 74) is the multiplication
of the prior distribution (line 71) in Eq. (9) with the likelihood of all measured
data (lines 72–73) in Eq. (10). The calculated posterior distribution from BMappl
is used for calculating the acceptance ratio (line 23).

MCMC sampling using the MH algorithm starts with the initial sample that is
provided by the users (line 19) and the value of the posterior PDF (line 20). In the

13

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

loop of MCMC sampling (lines 21–29), a candidate sample is randomly generated
from a uniform distribution, centered at the current sample and the width of �w
(line 22). The value of posterior PDF for the candidate sample is also calculated (line
23). If the acceptance ratio in Eq. (13) is greater than a randomly generated number
u, then the candidate sample is accepted as a new sample (lines 25–26). Otherwise,
the current sample and its posterior PDF are kept as a new sample and PDF. Once
the MCMC sampling loop is over, the first 20% of the samples are discarded as a
burn-in process (line 31). At the end of Bayesian parameter estimation, samplResul
array contains Ns samples of model parameters.

3.3 Remaining useful life prediction (lines 32–39)

Once the samples of model parameters are obtained based on the posterior
distribution, they can be used to find the RUL, which is the time when the degra-
dation prediction reaches the threshold. First, for all samples in samplResul, the
degradation is predicted in the future times between tCUR ¼ k1 and tend.

for k=1:length(time(k1:end))

[degrPreCon(k,:),�]=BMappl(samplResul,ParamName,time(k1-1+k),[],[]);
end

Once the degradations in the future times are calculated, MATLAB function
interp1 is used to find the time when ~y tEOL; bð Þ ¼ ythreshold. Once tEOL is found, the
RUL can be calculated using Eq. (3).

for i=1:Ns

RUL(i)=interp1(degrPreCon(:,i),time(k1:end),thres,'pchip') - time(k1);

end

The option ‘pchip’ in interp1 uses a shape-preserving piecewise cubic interpola-
tion, which preserves C1-continuity.

3.4 Postprocessing (lines 40–58)

In the postprocessing stage, the results given in samples are interpreted in terms
of statistical quantities or in the form of graphs. First, in the RUL array, those
components that have an infinite life should be removed (line 41). Then, the
confidence intervals of [5%, median, 95%] are calculated from the RUL array and
stored in rulPerce (line 42–43).

The MATLAB code plots two figures. The first figure plots the trace of
MCMC samples (lines 45–50) as shown in Figure 6(a). This trace shows the
quality of MCMC samples. If samples are distributed randomly and symmetrically
around the mean with a constant bound, then it means that the samples are
stabilized and well represent the posterior distribution. If the trace of samples
shows an irregular behavior as shown in Figure 6(b), the samples may not
represent the posterior PDF properly. This can happen when the initial sample was
far away from the mean and when the width of the proposal distribution is too
narrow or too wide.

The second plot is the histogram of RUL (lines 51–53) as shown in Figure 7. At
the end of the code, the confidence intervals of [5%, median, 95%] are printed on
the command window (lines 54–56). All variables are saved in the computer file so
that they can be loaded to the memory for further analysis (line 57). The name of
the saved database is “WorkName at tCUR.mat”. For example, in the battery case,
the saved database name is “Battery at 9.mat”.

14

Fault Detection, Diagnosis and Prognosis

Although the MATLAB code plots two figures, it is possible that the users can
plot different figures using the saved database. After calling the BM.m function, the
saved database has to be loaded to the memory using the following commands:

clear; clc; load('Battery at 9.mat')

Figure 6.
Trace of samples from MCMC sampling (a) proper samples and (b) improper samples.

Figure 7.
Histogram of the remaining useful life.

15

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

In addition to the trace of samples shown in Figure 6, it is possible to plot the
histogram of model parameters using the same samples. The following commands
plot the histograms of all model parameters.

figure; % histogram of parameters

for j=1:p;

subplot(1,p,j);

hist(samplResul(j,:),30);

end

When the true degradation model is known, it is possible to compare the
predicted degradation with the true one. The following MATLAB script plots the
median and confidence intervals of the predicted degradation along with the true
degradation and the threshold.

figure;

degraTrue=exp(-0.012.*time);

degraPI=prctile(degraPredi',perceValue)';

plot(time,degraTrue,'k'); hold on;

plot(time(1:k1),measuData,'*b');

plot(time(k1:end),degraPI(:,1),'–r');

plot(time(k1:end),degraPI(:,2:3),':r');

plot([0 time(end)],[thres thres],'g');

xlabel('weeks'); ylabel('Relative C/1 capacity');

The degradation curves up to 50 weeks are shown in Figure 8 for the battery
example. The true degradation with b ¼ 0:012 is shown with the black curve. The
red curves show 5, 50 (median) and 95 percentiles of the predicted degradation,
which are caused by signiLevel = 5 (line 14). The plot also shows the threshold
(green line) and measurement data (blue asterisk marks). Based on the true model,
the end of life of the battery is tEOL ¼ 29:72 weeks, and thus, the true RUL should
be tRUL ¼ 20:72 weeks. The prediction shows that the median of RUL is

Figure 8.
Comparison of the predicted degradation with the true degradation.

16

Fault Detection, Diagnosis and Prognosis

20.38 weeks, which is close to the true RUL. In addition, the 90% confidence
interval is about 3.4 weeks; that is, the uncertainty in the prediction is about 17%.

4. Application to crack growth prognostics

The code can be modified easily by the users for various applications. In this
section, an example of crack growth is used to explain how the MATLAB code BM.m
can be modified.

4.1 Model definition: crack growth

In fatigue crack growth, the failure criterion is given in terms of the crack size.
Therefore, it would be appropriate to use the size of crack as a degradation feature.
In this case, the degradation feature monotonically increases, while it was mono-
tonically decreased for the battery example. Assuming that a through-the-thickness
center crack exists in an infinite plate under mode-I loading condition, the rate of
fatigue crack growth can be expressed using the Paris-Erdogan model as

da

dN
¼ C ΔKð Þm (16)

where a is the half crack size, N is the number of cycles, m and C are model
parameters, ΔK ¼ Δσ

ffiffiffiffiffiffi

πa
p

is the range of stress intensity factor, and Δσ is the stress
range. It is assumed that time is the number of fatigue loading cycles. For the
consistent notation, the crack size and cycles are replaced with ~y ¼ a and t ¼ N in
the following explanation. Since the degradation model requires the crack size as a
function of time and model parameters, Eq. (16) can be integrated to obtain the
following degradation model:

~y t;m;Cð Þ ¼ tC 1�m

2

	

Δσ
ffiffiffi

π
p� �m þ a

1�m
2

0

h i 2
2�m

(17)

The system is under fatigue loading with the range of stress being Δσ ¼ 75MPa at
each cycle. It is assumed that the health monitoring is performed every 50 cycles to
measure the crack size yk until the current time tCUR ¼ 1, 200 cycles, and the initial
size of the crack is a0 ¼ 0:01m. Similar to the battery degradation example, the
measurement data are simulated by adding random noise to the true crack size. First,
the true crack size data are generated at every 50 cycles using Eq. (17) with

mtrue ¼ 3:8 and Ctrue ¼ 1:5� 10�10. The measured crack size data are then generated
by adding Gaussian noise ε � N 0; s2ð Þ, s ¼ 0:0005m to the true crack sizes. The
measured crack size data are used to identify three model parameters,
θ ¼ m; ln Cð Þ; sf g. In the Paris-Erdogan model, the y-intercept C is very small but
changes its magnitude by several orders. Therefore, it would be better to identify
logarithm of C. For RUL calculation, the critical crack size is determined as 0.043 m.

For the Bayesian method, it is necessary to define the prior distribution and the
likelihood function. In the battery example, it was assumed that noise in data
follows a normal distribution. However, when the distribution type of measure-
ment noise is unknown, it is possible that the likelihood function might be different
from the true noise distribution. The same is true for the prior/initial distribution.
Therefore, it would be a good exercise to study the effect of different distribution
types by changing the MATLAB codes. In this example, the lognormal distribution
is employed for the likelihood function as:

17

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

f ykjθ
� �

¼ 1

ykζk
ffiffiffiffiffi

2π
p exp � 1

2

ln yk � ηk

ζk

� �2
" #

, k ¼ 1,…, Ndata (18)

where ζk ¼
ffi

ln 1þ s=~ykÞ
2

	 ih

r

and ηk ¼ ln ~ykÞ � 0:5 ζkð Þ2
	

are the standard

deviation and mean of a lognormal distribution, respectively. In the above equation,
~yk θð Þ is the model prediction from Eq. (17) at time tk with given model parameters
m and C.

Also, the prior distribution of each parameter is assumed as a normal distribution as

f mð Þ � N 4;0:22
� �

, f lnCð Þ � N �22:33;0:52
� �

, and f sð Þ � N 5� 10�4; 1� 10�4
� �2

	

.

Therefore, the joint prior distribution can be obtained from the independence
assumption as

fΘ θð Þ ¼ f mð Þ � f lnCð Þ � f sð Þ (19)

The posterior distribution can be obtained by multiplying the prior distribution in
Eq. (19) with the likelihood function in Eq. (18).

4.2 Modifying the code

For the crack growth example, the code in Appendix needs to be changed as
follows. First, the problem definition part in lines 2–15 is replaced with the follow-
ing code:

%===== PROBLEM DEFINITION 1 (Required Parameters)==================

WorkName='Crack'; %work results are saved by WorkName

TimeUnit='cycles'; % time unit name

time=(0:50:3600)'; % time including both at measurement and at prediction

measuData=[1.03 1.00 0.96 1.14 1.13 1.10 1.15 1.15 1.19 1.19 1.14 ...

1.14 1.20 1.22 1.37 1.21 1.25 1.25 1.36 1.30 1.32 1.48 ...

1.52 1.47 1.59]'*0.01;

thres=0.043; % threshold - critical value

ParamName=['m'; 'C'; 's']; % model parameters' name to be estimated

prioDisPar=[4 0.2; -22.33 .5; 5E-4 1E-4]; % parameter prior distributions

Ns=10000; % num. of samples for MCMC simulation

burnIn=0.2; % burn-in fraction

signiLevel=2.5; % significance level for C.I. and P.I.

%===

A total of Ndata ¼ 25 measurement data are provided up to tCUR ¼ 1, 200cycles,
and the degradation is predicted until tend ¼ 3, 600cycles. Since the prior distribu-
tions are assumed a normal distribution, the first column of prioDisPar is the mean,
and the second column is the standard deviation.

Next, the model definition part in lines 65–67 is replaced with the following
code:

%===== PROBLEM DEFINITION 2 (model equation)=======================

a0=0.01; dsig=75; coef=1-m/2;

degraModel=(t.*exp(C).*coef.*(dsig*sqrt(pi)).^m + a0.^coef).^(1./coef);

loca=imag(degraModel)�=0; degraModel(loca)=real(degraModel(loca));

%===

18

Fault Detection, Diagnosis and Prognosis

Initially, a fatigue crack grows slowly and then grows rapidly just before
becoming unstable. The crack growth model in Eq. (17) is only valid when the crack
growth is stable. Normally the threshold ythreshold is set before the crack becomes
unstable. When the crack becomes unstable, Eq. (17) yield a complex number.
Therefore, the last line of the model definition code identifies if a prediction
yields a complex number and converts it to a real number by ignoring the
complex part.

In addition to the problem definition part, the posterior distribution part also
needs to be modified because instead of a uniform distribution, a normal distribu-
tion is used for the prior distribution. Also, lognormal distributions are used instead
of normal distributions for the likelihood function. The posterior distribution part
in lines 71–74 needs to be modified as follows:

prior=prod(normpdf(param,prioDisPar(:,1),prioDisPar(:,2)));

likel=1;

for k=1:length(measuData)

zeta=sqrt(log(1+(s./degraModel(k)).^2)); eta=log(degraModel(k))-0.5*zeta.^2;

likel=lognpdf(measuData(k),eta,zeta).*likel;

end

poste=likel.*prior;

4.3 Results

Similar to the battery example, the MATLAB code can be used to plot the trace
of MCMC sampling and the histogram of model parameters and RUL. Using a
similar code provided in Section 3.4, the degradation trend could also be plotted.
For example, Figure 5 shows the predicted degradation with the true degradation.
Even if the median (1553 cycles) has a relatively large error with the true RUL
(1709 cycles), the 95% confidence interval covers the true RUL.

An important information that was not discussed before is the correlation
between model parameters. It is well known that the Paris-Erdogan model parame-
ters, m and C, are strongly correlated [20]. Therefore, it would be beneficial to plot
the MCMC samples in the parameter space. The following MATLAB script plots the
MCMC samples of the parameters.

clear; clc; load('Crack at 1200.mat');

[m, C]=meshgrid((3.4:0.009:4.3)',(-24:0.025:-21.5));

for i=1:101; for j=1:101

para=[m(i,j); C(i,j); 0.0005];

[�,post(i,j)]=BMappl(para,ParamName,time(1:k1),measuData,prioDisPar);

end; end

plot(samplResul(1,:),samplResul(2,:),'.','color',[0.5 0.5 0.5]); hold on

contour(m,C,real(post));

plot(3.8,log(1.5E-10),'pk','markersize',14);

Figure 9 shows the MCMC samples in the parameter space along with the
exact value of the parameters (star marker). The figure also shows the contour of
the joint posterior PDF based on the grid method. It can be observed that the
MCMC samples represent the joint posterior PDF well, and the joint PDF covers the
true parameter values. However, due to a strong correlation between the two
Paris-Erdogan model parameters, the joint PDF shows a narrow but long tail. Any
combination of model parameters along the correlation line may yield a similar
damage growth trend.

19

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

5. Conclusions

This paper presents a Bayesian-based prognostics algorithm with a MATLAB
code. This code is constructed with simply 76 lines in the case of a battery degrada-
tion example. Users can easily modify this code as per their own application. As an
example of code modification, the case of crack growth model is also presented. The
paper also provided several MATLAB scripts to help plot the degradation curve and
correlation between multiple parameters.

A. Appendix

1 function samplResul=BM(para0,weigh)

2 %===== PROBLEM DEFINITION 1 (Required Parameters)================

3 WorkName='Battery'; % work results are saved by WorkName

4 TimeUnit='weeks'; % time unit name

5 time=(0:50)'; % time including both at measurement and at prediction

6 measuData=[0.9951 0.9826 0.9750 0.9736 0.9424 0.9381 ...

7 0.9300 0.9203 0.9114 0.8952]'; % measured data at time (0:9)

8 thres=0.7; % threshold - critical value

9 ParamName=['b'; 's']; % model parameters' name to be estimated

10 prioDisPar=[0 0.05; % parameter prior distributions

11 1e-5 0.1];

12 Ns=5000; % num. of samples for MCMC simulation

13 burnIn=0.2; % burn-in fraction

14 signiLevel=5; % significance level for C.I. and P.I.

15 %==

16 %%% Bayesian parameter estimation with MCMC

17 p=size(ParamName,1); % num. of parameters

18 k1=length(measuData); % num. of data

19 sampl(:,1)=para0; % Initial samples of parameters

20 [�,jPdf0]=BMappl(para0,ParamName,time(1:k1),measuData,prioDisPar);

21 for i=2:Ns/(1-burnIn) %% MCMC Process

Figure 9.
Correlation between the two Paris-Erdogan model parameters.

20

Fault Detection, Diagnosis and Prognosis

22 para1(:,1)=para0+weigh.*(2*rand(p,1)-1); % sample from proposal dist.

23 [�,jPdf1]=BMappl(para1,ParamName,time(1:k1),measuData,prioDisPar);

24 if rand<(jPdf1/jPdf0) && jPdf1>0 % acceptance criterion

25 para0=para1;

26 jPdf0=jPdf1;

27 end

28 sampl(:,i)=para0; % new MCMC sample

29 end

30 nBurn=Ns/(1-burnIn)-Ns; % No. of effective MCMC samples

31 samplResul=sampl(:,nBurn+1:end); % Final Sampling results

32 %%% RUL prediction

33 for k=1:length(time(k1:end)) % degradation prediction

34 [degrPreCon(k,:),�]=BMappl(samplResul,ParamName,time(k1-1+k),[],[]);
35 degraPredi(k,:)=degrPreCon(k,:)+normrnd(0,samplResul(end,:));

36 end

37 for i=1:Ns % RUL prediction

38 RUL(i)=interp1(degrPreCon(:,i),time(k1:end),thres,'pchip') - time(k1);

39 end

40 %%% POST-PROCESSING

41 Index=isnan(RUL); RUL(Index)=[];

42 perceValue=[50 signiLevel 100-signiLevel]; % median & confi-

dence intervals

43 rulPerce=prctile(RUL,perceValue); %percentiles of RUL

44 figure(1);

45 for j=1:p % plotting MCMC sample trace

46 subplot(p,1,j); % for all model parameters

47 plot(samplResul(j,:));

48 ylabel(ParamName(j,:));

49 title('MCMC sample trace');

50 end

51 figure(2); set(gca,'fontsize',14); hist(RUL,30); % RUL histogram

52 xlim([min(RUL) max(RUL)]); xlabel(['RUL' ' (' TimeUnit ')']);

53 titleName=['at ' num2str(time(k1)) ' ' TimeUnit]; title(titleName)

54 fprintf('\n # Percentiles of RUL at %g cycles \n', time(k1))

55 fprintf('\n %gprct: %g, median: %g, %gprct: %g \n' , perceValue(2), ...

56 rulPerce(2), rulPerce(1), perceValue(3), rulPerce(3))

57 Name=[WorkName ' at ' num2str(time(k1)) '.mat']; save(Name); % save work

58 end

59 %
60 function [degraModel, poste]=BMappl(param,ParamName,t,measuData,

prioDisPar)

61 % Evaluate the degradation model or posterior PDF

62 for j=1:size(param,1)

63 eval([ParamName(j,:) '=param(j,:);']);

64 end

65 %===== PROBLEM DEFINITION 2 (model equation)====================

66 degraModel=exp(-b.*t);

67 %===

68 if isempty(measuData)

69 poste=0;

70 else

71 prior=prod(unifpdf(param,prioDisPar(:,1),prioDisPar(:,2))); % prior

72 likel=(1./s).^length(measuData) ... % likelihood

21

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

73 .*exp(-0.5./s.^2.*norm(measuData-degraModel)^2);

74 poste=likel.*prior; % posterior

75 end

76 end

Author details

Ting Dong, Dawn An and Nam H. Kim*
University of Florida, Gainesville, FL, USA

*Address all correspondence to: nkim@ufl.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

22

Fault Detection, Diagnosis and Prognosis

References

[1] Giurgiutiu V. Structural Health
Monitoring with Piezoelectric Wafer
Active Sensors. 2nd Edition. Waltham,
MA, USA: Academic Press; 2014

[2] Sohn H, Farrar CR, Hemez FM,
Czarnecki JJ, Shunk DD, Stinemates
DW, et al. “A Review of Structural
Health Monitoring Literature: 1996–
2001,” Report Number LA-13976-MS.
Los Alamos, NM: Los Alamos National
Laboratory; 2004

[3]Kim NH, An D, Choi J-H. Prognostics
and Health Management of Engineering
Systems: An introduction. Switzerland:
Springer International Publishing; 2017.
DOI: 10.1007/978-3-319-44742-1

[4] Si XS, Wang W, Hu CH, Zhou DH.
Remaining useful life estimation—A
review on the statistical data driven
approaches. European Journal of
Operational Research. 2011;213:1-14

[5] Lee J, Wu F, Zhao W, Ghaffari M,
Liao L, Siegel D. Prognostics and health
management design for rotary
machinery systems—reviews,
methodology and applications.
Mechanical Systems and Signal
Processing. 2014;42(1–2):314-334

[6] Saha B, Goebel K, Christophersen J.
Comparison of prognostic algorithms
for estimating remaining useful life of
batteries. Transactions of the Institute of
Measurement and Control. 2009;31
(3–4):293-308

[7] Xing Y, Williard N, Tsui K-L, Pecht
M. A comparative review of prognostics-
based reliability methods for Lithium
batteries. In: Prognostics and System
Health Management Conference,
Shenzhen, China; 24-25 May 2011

[8] Zhang J, Lee J. A review on
prognostics and health monitoring of
Li-ion battery. Journal of Power
Sources. 2011;196:6007-6014

[9]An D, Choi J-H, Kim NH. Prognostics
101: A tutorial for particle filter-based
prognostics algorithm using Matlab.
Reliability Engineering and System
Safety. 2013;115:161-169. DOI: 10.1016/
j.ress.2013.02.019

[10]Goebel KB, Saha A, Saxena JR, et al.
Prognostics in battery health
management. IEEE Instrumentation and
Measurement Magazine. 2008;11(4):
33-40

[11]Guan X, Jha R, Liu Y. Model
selection, updating and averaging for
probabilistic fatigue damage prognosis.
Structural Safety. 2011;33(3):242-249

[12] Bayes T, Price R. An essay towards
solving a problem in the doctrine of
chances. By the late rev. Mr. Bayes,
communicated by Mr. Price, in a letter
to John Canton, A. M. F. R. S.
Philosophical Transactions of the Royal
Society of London. 1763;53:370-418.
DOI: 10.1098/rstl.1763.0053

[13] An D, Choi J-H, Kim NH,
Pattabhiraman S. Fatigue life prediction
based on Bayesian approach to
incorporate field data into probability
model. Structural Engineering and
Mechanics. 2011;37(4):427-442

[14] Athanasios P, editor. Probability,
Random Variables, and Stochastic
Processes. New York: McGraw-Hill;
1984

[15]Gelman A, Carlin JB, Stern HS,
et al., editors. Bayesian Data Analysis.
New York: Chapman & Hall; 2004

[16] Casella G, Robert CP, Wells MT.
Generalized Accept-Reject Sampling
Schemes. Lecture Notes-Monograph
Series. Vol. 45. Beachwood: Institute of
Mathematical Statistics; 2004.
pp. 342-347

[17]Glynn PW, Iglehart DL. Importance
sampling for stochastic simulations.

23

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781

Management Science. 1989;35(11):
1367-1392

[18] Andrieu C, Freitas DN, Doucet A,
et al. An introduction to MCMC for
machine learning. Machine Learning.
2003;50(1):5-43

[19] An D, Kim NH, Choi J-H. Practical
options for selecting data-driven or
physics-based prognostics algorithms
with reviews. Reliability Engineering &
System Safety. 2015;133:223-236. DOI:
10.1016/j.ress.2014.09.014

[20] An D, Choi J-H, Kim NH.
Identification of correlated damage
parameters under noise and bias using
Bayesian inference. Structural Health
Monitoring. 2012;11(3):293-303. DOI:
10.1177/1475921711424520

24

Fault Detection, Diagnosis and Prognosis

