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Chapter

The Discrete Hankel Transform
Natalie Baddour

Abstract

The Hankel transform is an integral transform and is also known as the Fourier-
Bessel transform. Until recently, there was no established discrete version of the
transform that observed the same sort of relationship to its continuous counterpart
as the discrete Fourier transform does to the continuous Fourier transform. Previ-
ous definitions of a discrete Hankel transform (DHT) only focused on methods to
approximate the integrals of the continuous Hankel integral transform. Recently
published work has remedied this and this chapter presents this theory. Specifically,
this chapter presents a theory of a DHT that is shown to arise from a discretization
scheme based on the theory of Fourier-Bessel expansions. The standard set of shift,
modulation, multiplication, and convolution rules are shown. In addition to being a
discrete transform in its own right, this DHT can approximate the continuous
forward and inverse Hankel transform.

Keywords: Fourier-Bessel, Hankel transform, transform rules, discrete transform,
polar coordinates

1. Introduction

The Hankel transform has seen applications in many areas of science and engi-
neering. For example, there are applications in propagation of beams and waves, the
generation of diffusion profiles and diffraction patterns, imaging and tomographic
reconstructions, designs of beams, boundary value problems, etc. The Hankel
transform also has a natural relationship to the Fourier transform since the Hankel
transform of zeroth order is a 2D Fourier transform of a rotationally symmetric
function. Furthermore, the Hankel transform also appears naturally in defining the
2D Fourier transform in polar coordinates and the spherical Hankel transform also
appears in the definition of the 3D Fourier transform in spherical polar coordinates
[1, 2].

As useful as the Hankel transform may be, there is no discrete Hankel transform
(DHT) that exists that has the same relationship to the continuous Hankel trans-
form in the same way that the discrete Fourier transform (DFT) exists alongside the
continuous Fourier transform. By this, we mean that the discrete transform exists as
a transform in its own right, has its own mathematical theory of the manipulated
quantities, and finally as an added bonus, can be used to approximate the continu-
ous version of the transform, with relevant sampling and interpolation theories.
Until recently, a discrete Hankel transform merely implied an attempt to discretize
the integral(s) of the continuous Hankel transform, rather than an independent
discrete transform in its own right.

Such a theory of a DHT was recently proposed [3]. Thus, goal of this chapter is
to outline the mathematical theory for the DHT. The mathematical standard set of
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“DFT-like” rules of shift, modulation, multiplication and convolution rules are
derived and presented. A Parseval-like theorem is presented, as are sampling and
interpolation theorems. The manner in which this DHT can be used to approximate
the continuous Hankel transform is also explained.

2. Hankel transforms and Bessel series

To start, we define the Hankel transform and Fourier-Bessel series as used in this
work.

2.1 Hankel transform

The nth-order Hankel transform F ρð Þ of the function f rð Þ of a real variable, r≥0,
is defined by the integral [4]

F ρð Þ ¼ Hn f rð Þð Þ ¼

ð∞

0

f rð ÞJn ρrð Þrdr, (1)

where Jn zð Þ is the nth-order Bessel function of the first kind. If n is real and
n. � 1=2, the transform is self-reciprocating and the inversion formula is given by

f rð Þ ¼

ð∞

0

F ρð ÞJn ρrð Þρdρ: (2)

Thus, Hankel transforms take functions in the spatial r domain and transform them
to functions in the spatial frequency ρ domain f rð Þ⇔F ρð Þ. The notation⇔ is used to
indicate a Hankel transform pair.

2.2 Fourier Bessel series

It is known that functions defined on a finite portion of the real line 0;R½ �, can be
expanded in terms of a Fourier Bessel series [5] given by

f rð Þ ¼ ∑
∞

k¼1

f k Jn
jnkr

R

� �

, (3)

where the order, n, of the Bessel function is arbitrary and jnk denotes the kth root of
the nth Bessel function Jn zð Þ. The Fourier Bessel coefficients f k of the function f rð Þ

are given by

f k ¼
2

R2J2nþ1 jnk
� �

ðR

0

f rð ÞJn
jnkr

R

� �

rdr: (4)

Eqs. (3) and (4) can be considered to be a transform pair where the continuous
function f rð Þ is forward-transformed to the discrete vector f k given in (4). The
inverse transform is then the operation which returns f rð Þ if given f k, and is given
by the summation in Eq. (3). The Fourier Bessel series has the same relationship to
the Hankel transform as the Fourier series has to the Fourier transform.
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3. Sampling and interpolation theorems for band-limited and
space-limited functions

Sampling and interpolation theorems supply the answers to some important
questions. For example, given a bandlimited function in frequency space, a sam-
pling theorem answers the question of which samples of the original function are
required in order to determine the function completely. The interpolation theorem
shows how to interpolate those samples to recover the original function completely.
Here, a band-limit means boundedness in frequency. In many applications such as
tomography, the notion of a band-limit is not necessarily a property of a function,
but rather a limitation of the measurement equipment used to acquire measure-
ments. These measurements are then used to reconstruct some desired function.
Thus, the sampling theorem can also answer the question of how band-limits
(frequency sensitivities) of measurement equipment determine the resolution of
those measurements.

Given a space-limited function, the sampling theorem answers the question of
which samples in frequency space determine the function completely, i.e., those
that are required to reconstruct the original function. In other words, the sampling
theorem dictates which frequency measurements need to be made. As before, the
interpolation theorem will give a formula for interpolating those samples to recons-
truct the continuous function completely.

3.1 Sampling theorem for a band-limited function

We state here the sampling theorem in the same way that Shannon stated it for
functions in time and frequency: if a spatial function f rð Þ contains no frequencies
higher than W cycles per meter, then it is completely determined by a series of

sampling points given by evaluating f rð Þ at r ¼
jnk
Wρ

where Wρ ¼ 2πW.

Proof: suppose that a function f rð Þ is band-limited in the frequency Hankel
domain so that its spectrum F ρð Þ is zero outside of an interval 0; 2πW½ �. The interval
is written in this form since W would typically be quoted in units of Hz (cycles per
second) if using temporal units or cycles per meter if using spatial units. Therefore,
the multiplication by 2π ensures that the final units are in s�1 or m�1. Let us define
Wρ ¼ 2πW. Since the Hankel transform F ρð Þ is defined on a finite portion of the

real line 0;Wρ

� �
, it can be expanded in terms of a Fourier Bessel series as

F ρð Þ ¼ ∑
∞

k¼1

FkJn
jnkρ

Wρ

� �

: (5)

where the Fourier Bessel coefficients can be found from Eq. (4) as

Fk ¼
2

W2
ρ J

2
nþ1 jnk
� �

ðWρ

0
F ρð ÞJn

jnkρ

Wρ

� �

ρdρ

¼
2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� � (6)

In (6), we have used the fact that f rð Þ can be written in terms of its inverse Hankel
transform, Eq. (2), in combination with the fact that the function is assumed
band-limited.

Hence, a function bandlimited to 0;Wρ

� �
can be written as
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F ρð Þ ¼
∑
∞

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� �

Jn
jnkρ

Wρ

� �

ρ,Wρ

0 ρ≥Wρ

8

>><

>>:

(7)

Eq. (7) states that the samples f
jnk
Wρ

� 	

determine the function f rð Þ completely

since (i) F ρð Þ is determined by Eq. (7), and (ii) f rð Þ is known if F ρð Þ is known.

Another way of looking at this is that band-limiting a function to 0;Wρ

� �
results in

information about the original function at samples rnk ¼
jnk
Wρ

. So, Eq. (7) is the

statement of the sampling theorem.
To verify that this sampling theorem is consistent with expectations, we recog-

nize that the zeros of Jn zð Þ are almost evenly spaced at intervals of π and that the
spacing becomes exactly π in the limit as z ! ∞. To determine the (bandlimited)

function f rð Þ completely, we need to sample the function at f
jnk
Wρ

� 	

¼ f
jnk

2πW

� 	

and

these samples are (eventually) multiples of π 2πWÞð ¼ 1 2WÞð




apart, which is consis-

tent with the standard Shannon sampling theorem which requires samples at mul-

tiples of 1 2WÞð



[6].

3.2 Interpolation theorem for a band-limited function

It follows from Eq. (7) that f rð Þ can be found by inverse Hankel transformation
to give

f rð Þ ¼

ðWρ

0

∑
∞

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� �

Jn
jnkρ

Wρ

� �( )

Jn ρrð Þρdρ

¼ ∑
∞

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� � ðWρ

0

Jn
jnkρ

Wρ

� �

Jn ρrð Þρdρ:

(8)

From Watson ([7], p. 134), we have the following result

ð

Jn αzð ÞJn βzð Þzdz ¼
z αJnþ1 αzð ÞJn βzð Þ � βJn αzð ÞJnþ1 βzð Þ
� �

α2 � β2
(9)

Eq. (9) can be used to simplify (8) to give

f rð Þ ¼ ∑
∞

k¼1

f
jnk
Wρ

� �
2jnk

Jnþ1 jnk
� �

Jn rWρ

� �

j2nk � r2W2
ρ

(10)

Eq. (10) gives the formula for interpolating the samples f
jnk
Wρ

� 	

to reconstruct the

continuous band-limited function f rð Þ. Each term used to reconstruct the original

function f rð Þ consists of the samples of the function f rð Þ at r ¼
jnk
Wρ

� 	

multiplied by a

reconstructing function of the form

2jnk
Jnþ1 jnk

� �
Jn rWρ

� �

j2nk � r2W2
ρ

: (11)
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3.3 Interpretation in terms of a jinc

Eq. (8) states

f rð Þ ¼ ∑
∞

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� � ðWρ

0

Jn
jnkρ

Wρ

� �

Jn ρrð Þρdρ (12)

In other research work [8], the generalized shift operator Rr0 indicating a shift of r0
acting on the function f rð Þ has been defined by the formula

Rr0 f rð Þ ¼

ð∞

0

F ρð ÞJn ρr0ð ÞJn ρrð Þρdρ: (13)

With this definition of a generalized shift operator, we recognize the integral in

Eq. (12) as the inverse Hankel transform of the Boxcar function shifted by
jnk
Wρ

� 	

.

More explicitly,

ðWρ

0

Jn
jnkρ

Wρ

� �

Jn ρrð Þρdρ ¼ R
jnk
Wρ

|{z}

generalized

shift of
jnk
Wρ

   

ð∞

0

ΠWρ
ρð ÞJn ρrð Þρdρ

8

<

:

9

=

;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inverse Hankel transform of

ΠWρ
ρð Þ

¼
jnkW

2
ρ

j2nk � rWρ

� �2 Jnþ1 jnk
� �

Jn rWρ

� �

(14)

where

ΠWρ
ρð Þ ¼

1 0≤ ρ≤Wρ

0 otherwise

�

(15)

The boxcar function is a generalized version of the standard Rect function. The
Rect function is usually defined as the function which has value 1 over the interval
�1=2;�1=2½ � and is zero otherwise. Now this is interesting specifically because of
the interpretation of Eq. (14). Had we been working in the standard Fourier domain
instead of the Hankel domain, the Boxcar function would be replaced with the Rect
function and the Hankel transform would be replaced with a standard Fourier
transform. Proceeding with this line of thinking, the inverse Fourier transform of
the Rect function would be a sinc function, which is the standard interpolation
function of the classical Shannon interpolation formula. Hence, the Fourier equiva-
lent interpretation of Eq. (14) is a shifted sinc function. Thus, the formulation
above follows exactly the standard Shannon Interpolation formula (see the original
publication [9], or the classic paper reprint [6]).

For the relatively simple case of the zeroth-order Hankel transform, the inverse
Hankel transform of the Boxcar function is given by

ð∞

0

ΠWρ
ρð ÞJ0 ρrð Þρdρ ¼

ðWρ

0

J0 ρrð Þρdρ

¼
Wρ

r
J1 Wρr
� �

¼ W2
ρ

J1 Wρr
� �

Wρr
:

(16)
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The function 2J1 rð Þ=r is often termed the jinc or sombrero function and is the polar
coordinate analog of the sinc function, so Eq. (16) is a scaled version of a jinc
function.

In fact, from Eqs. (13), (14) and (16), it follows that the generalized shifted
version of the jinc function is given by

R
j0k
Wρ

2J1 Wρr
� �

Wρr

� �

¼
2j0kJ1 j0k

� �

j20k � rWρ

� �2 J0 rWρ

� �
: (17)

Hence, for a zeroth-order Fourier Bessel transform, Eq. (12), the expansion for
f rð Þ reads

f rð Þ ¼ ∑
∞

k¼1

f
j0k
Wρ

� �
1

J21 j0k
� �

2j0kJ1 j0k
� �

J0 rWρ

� �

j20k � rWρ

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼R

j0k
Wρ

2J1 Wρrð Þ
Wρr

n o

(18)

Eq. (18) says that the interpolating function is a shifted jinc function, in analogy
with a scaled sinc being the interpolating function for the sampling theorem used
for Fourier transforms.

3.4 Sampling theorem for a space-limited function

Now consider a space-limited function f rð Þ so that f rð Þ is zero outside of an
interval 0;R½ �. It then follows that it can be expanded on 0;R½ � in terms of a Fourier
Bessel series so that

f rð Þ ¼ ∑
∞

k¼1

f kJn
jnkr

R

� �

, (19)

where the Fourier Bessel coefficients can be found from

f k ¼
2

R2J2nþ1 jnk
� �

ðR

0

f rð ÞJn
jnkr

R

� �

rdr ¼
2

R2J2nþ1 jnk
� �F

jnk
R

� �

: (20)

Here, we have used the definition of the Hankel transform F ρð Þ, Eq. (1), in the right
hand side of Eq. (20). Hence, the function can be written as

f rð Þ ¼
∑
∞

k¼1

2

R2J2nþ1 jnk
� �F

jnk
R

� �

Jn
jnkr

R

� �

r,R

0 r≥R

8

<

:
(21)

From Eq. (21), it is evident that the samples F
jnk
R

� 	

determine the function f rð Þ and

hence its transform F ρð Þ completely. Another way of looking at this is that space
limiting a function to 0;R½ � implies discretization in spatial frequency space, at

frequencies ρnk ¼
jnk
R .

3.5 Interpolation theorem for a space-limited function

The Hankel transform of the function can then be found from a forward Hankel
transformation as

6
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F ρð Þ ¼

ð∞

0

f rð ÞJn ρrð Þrdr

¼ ∑
∞

k¼1

2

R2J2nþ1 jnk
� �F

jnk
R

� �ðR

0

Jn
jnkr

R

� �

Jn ρrð Þrdr

(22)

Using Eq. (9), Eq. (22) can be simplified to give

F ρð Þ ¼ ∑
∞

k¼1

F
jnk
R

� �
2jnk

Jnþ1 jnk
� �

Jn ρRð Þ

j2nk � ρRð Þ2
(23)

Eq. (23) gives the formula for interpolating the samples F
jnk
R

� 	

to give the continu-

ous function F ρð Þ.

4. Intuitive discretization scheme for the Hankel transform

Based on the sampling theorems above, in this section we explore how assuming
that a function can be simultaneously band-limited and space-limited will naturally
lead to a discrete Hankel transform. Although it is known that it is not possible to
fulfill both of these conditions exactly, it is possible to keep the spectrum within a
given frequency band, and to have the space function very small outside some
specified spatial interval (or vice-versa). Hence, it is possible for functions to be
“effectively” space and band-limited.

4.1 Forward transform

We demonstrated above that a band-limited function, with ρ,Wρ ¼ 2πW can
be written as

F ρð Þ ¼ ∑
∞

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� �

Jn
jnkρ

Wρ

� �

: (24)

Evaluating the previous Eq. (24) at the sampling points ρnm ¼
jnmWρ

jnN
(for any integer

N) gives for m,N

F
jnmWρ

j nN

� �

¼ ∑
∞

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� �

Jn
jnk
Wρ

jnmWρ

j nN

� �

   m,N: (25)

For m,N, then ρnm ¼
jnmWρ

j nN
,Wρ, and Eq. (25), summing over infinite k, is exact.

For m≥N, then ρnm ¼
jnmWρ

j nN
≥Wρ and by the assumption of the bandlimited nature

of the function, F ρnmð Þ ¼ 0.
Now, suppose that in addition to being band-limited, the function is also effec-

tively space limited. As mentioned above, it is known that a function cannot be
finite in both space and spatial frequency (equivalently it cannot be finite in both
time and frequency if using the Fourier transform). However, if a function is
effectively space limited, this means that there exists an integer N for which

f
jnk
Wρ

� 	

≈0 for k.N. In other words, we can find an interval beyond which the

space function is very small. In fact, since the Fourier-Bessel series in (24) is known

7

The Discrete Hankel Transform
DOI: http://dx.doi.org/10.5772/intechopen.84399



to converge, it is known that limk!∞ f
jnk
Wρ

� 	

¼ 0, which means that for any arbi-

trarily small ε, there must exist an integer N for which f
jnk
Wρ

� 	

, ε for k.N.

Hence, using the argument of “effectively space limited” in the preceding para-
graph, we can terminate the series in Eq. (25) at a suitably chosenN that ensures the
effective space limit. Terminating the series at k ¼ N is the same as assuming that

f rð Þ≈0 for r.R ¼
j nN
Wρ

. Noting that at k ¼ N, the last term in (25) is

Jn
jnN jnm
j nN

� 	

¼ Jn jnm
� �

¼ 0, then after terminating at N, Eq. (25) becomes for

m ¼ 1::N � 1

F
jnmWρ

j nN

� �

¼ ∑
N�1

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� �

Jn
jnkjnm
j nN

� �

: (26)

In this case, the truncated sum in Eq. (26) does not represent F ρnmð Þ exactly due
to the truncation at N terms, but should provide a reasonably good approximation
since the Fourier-Bessel series is known to converge and we are assuming that we

have terminated the series at the point where additional f
jnk
Wρ

� 	

terms do not con-

tribute significantly.

4.2 Inverse transform

Concomitantly, we know that for any space-limited function then for r,R, we
can write

f rð Þ ¼ ∑
∞

m¼1

2

R2J2nþ1 jnm
� �F

jnm
R

� �

Jn
jnmr

R

� �

: (27)

More specifically, suppose that we follow the logic from the previous section that
the function f rð Þ that was bandlimited but also “effectively space-limited” due the

truncation of the series in Eq. (25) at N. In that case then R ¼
j nN
Wρ

and the band-limit

implies that F ρð Þ ¼ 0 for ρ.Wρ. Following this logic and using R ¼
jnN
Wρ

, then

Eq. (27) becomes

f rð Þ ¼ ∑
N�1

m¼1

2W2
ρ

j2nNJ
2
nþ1 jnm
� �F

jnmWρ

j nN

� �

Jn
jnmWρ

j nN
r

� �

(28)

where we truncated the series in Eq. (28) at N by using the fact that F ρð Þ ¼ 0 for

ρ≥Wρ to deduce that F
jnmWρ

j nN

� 	

¼ 0 for m≥N. Evaluating (28) at rnk ¼
jnkR
j nN

¼
jnk
Wρ

gives for k ¼ 1::N � 1

f
jnk
Wρ

� �

¼ ∑
N�1

m¼1
 

2W2
ρ

j2nNJ
2
nþ1 jnm
� �F

jnmWρ

j nN

� �

Jn
jnmjnk
j nN

� �

: (29)

Compare Eq. (29) to the “forward” transform from Eq. (26), repeated here for
convenience, where we found that for m ¼ 1::N � 1

F
jnmWρ

j nN

� �

¼ ∑
N�1

k¼1

2

W2
ρ J

2
nþ1 jnk
� � f

jnk
Wρ

� �

Jn
jnk jnm
j nN

� �

: (30)
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Eqs. (29) and (30) are the fundamental relations used for the discrete Hankel
transform proposed in the following sections.

4.3 Intuitive discretization scheme and kernel

The preceding development shows that a “natural,” N-dimensional
discretization scheme in finite space 0;R½ � and finite frequency space 0;Wρ

� �
is

given by

rnk ¼
jnk
Wρ

¼
jnkR

j nN
ρnk ¼

jnk
R

¼
jnkWρ

j nN
k ¼ 1…N � 1: (31)

The relationshipWρR ¼ j nN can be used to change from finite frequency domain
to a finite space domain and vice-versa. The size of the transform N, can be
determined from WρR ¼ j nN .

It is pointed out in [10] that the zeros of Jn zð Þ are almost evenly spaced at
intervals of π and that the spacing becomes exactly π in the limit as z ! ∞. In fact, it
is shown in [10] that a simple asymptotic form for the Bessel function is given by

Jn zð Þ≈

ffiffiffiffiffi

2

πz

r

cos z� nþ
1

2

� �
π

2

� �

(32)

Eq. (32) becomes a better approximation to Jn zð Þ as z ! ∞. The zeros of the cosine
function are at odd multiples of π=2. Therefore, an approximation to the Bessel
zero, jnk is given by

jnk ≈ 2kþ n�
1

2

� �
π

2
: (33)

Using this approximation, then WρR ¼ j nN becomes

2πWR ¼ j nN ≈ 2N þ n�
1

2

� �
π

2
(34)

For larger values of N as would typically be used in a discretization scheme, then
we can write approximately

2WR≈ N þ
n

2

� 	

(35)

This is exactly analogous to the corresponding expression for Fourier transforms.
Specifically, for temporal Fourier transforms Shannon [6] argued that “If the func-
tion is limited to the time interval T and the samples are spaced 1/(2 W) seconds
apart (where W is the bandwidth), there will be a total of 2WT samples in the
interval. All samples outside will be substantially zero. To be more precise, we can
define a function to be limited to the time interval T if, and only if, all the samples
outside this interval are exactly zero. Then we can say that any function limited to
the bandwidth W and the time interval T can be specified by giving N ¼ 2WT
numbers”. Following this line of thinking, Eq. (35) states that for an nth-order
Hankel transform, any function limited to the bandwidth W and the space interval
R can be specified by giving N ¼ 2WR� n=2ð Þ numbers and it will certainly be true
that specifying N ¼ 2WR numbers will specify the function, in exact analogy to
Shannon’s result.
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4.4 Proposed kernel for the discrete transform

The preceding sections show that both forward and inverse discrete versions of
the transforms contain an expression of the form

2

J2nþ1 jnk
� � Jn

jnkjnm
j nN

� �

: (36)

This leads to a natural choice of kernel for the discrete transform, as shall be
outlined in the next section. To aid in in the choice of kernel for the discrete
transform, we present a useful discrete orthogonality relationship shown in [11]
that for 1≤m, i≤N � 1

∑
N�1

k¼1

4Jn
jnmjnk
j nN

� 	

Jn
jnkjni
j nN

� 	

J2nþ1 jnk
� � ¼ j2nNJ

2
nþ1 jnm
� �

δmi (37)

where jnm represents the mth zero of the nth-order Bessel function Jn xð Þ, and δmi is
the Kronecker delta function, defined as

δmn ¼
1 if m ¼ n

0 otherwise
:

�

(38)

If written in matrix notation, then the Kronecker delta of Eq. (38) is the identity
matrix.

Fisk-Johnson discusses the analytical derivation of Eq. (37) in the appendix of
[11]. Eq. (37) is exactly true in the limit as N ! ∞ and is true for N. 30 within the

limits of computational error �10�7
� �

. For smaller values of N, Eq. (37) holds with

the worst case for the smallest value of N giving �10�3.

5. Transformation matrices

5.1 Transformation matrix

With inspiration from the notation in [11], and an additional scaling factor of
1=j nN, we define an N � 1ð Þ � N � 1ð Þ transformation matrix with the (m,k)th
entry given by

Y nN
m,k ¼

2

j nNJ
2
nþ1 jnk
� � Jn

jnmjnk
j nN

� �

1≤m, k≤N � 1: (39)

In Eq. (39), the superscripts n andN refer to the order of the Bessel function and the
dimension of the space that are being considered, respectively. The subscripts m
and k refer to the (m,k)th entry of the transformation matrix.

Furthermore, the orthogonality relationship, Eq. (37), states that

∑N�1
k¼1 Y

nN
i,k Y

nN
k,m ¼ ∑N�1

k¼1 4
Jn jnijnk=j nN

� 	

Jn jnkjnm=j nN

� 	

j2nNJ
2
nþ1 jnk
� �

J2nþ1 jnm
� � ¼ δim: (40)

Eq. (40) states that the rows and columns of the matrix Y nN
m,k are orthonormal and

can be written in matrix form as
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Y nNY nN ¼ Ι, (41)

where I is the N � 1 dimensional identity matrix and we have written the N � 1

square matrix Y nN
m,k as Y

nN . The forward and inverse truncated and discretized

transforms given in Eqs. (26) and (29) can be expressed in terms of Y nN . The
forward transform, Eq. (26), can be written as

F ρnmð Þ ¼
j nN
W2

ρ

∑
N�1

k¼1

Y nN
m,kf rnkð Þ: (42)

Similarly, the inverse transform, Eq. (29), can be written as

f rnkð Þ ¼
W2

ρ

j nN
∑
N�1

m¼1
Y nN
k,mF ρnmð Þ: (43)

5.2 Another choice of transformation matrix

Following the notation in [12], we can also define a different N � 1ð Þ � N � 1ð Þ
transformation matrix with the (m,k)th entry given by

T nN
m,k ¼ 2

Jn jnmjnk=jnN

� 	

Jnþ1 jnm
� �

Jnþ1 jnk
� �

j nN
1≤m, k≤N � 1: (44)

In Eq. (44), the superscripts n and N refer to the order of the Bessel function and
the dimension of the space that are being considered, respectively. The subscriptsm
and k refer to the (m,k)th entry of the matrix. From (39), it can be seen that

T nN
m,k ¼ T nN

k,m so that T nN is a real, symmetric matrix. The relationship between the

T nN
m,k and Y nN

m,k matrices is given by

T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � ¼ Y nN

m,k: (45)

The orthogonality relationship, Eq. (37), can be written as

∑
N�1

k¼1

4
Jn jnmjnk=jnN

� 	

Jn jnkjni=j nN

� 	

J2nþ1 jnm
� �

J2nþ1 jnk
� �

j2nN
¼ ∑

N�1

k¼1

T nN
m,kT

nN
k, i ¼ δmi: (46)

Eq. (40) states that the rows and columns of the matrix T nN are orthonormal so that

T nN is an orthogonal matrix. Furthermore, T nN is also symmetric. Eq. (46) can be
written in matrix form as

T nNT nN ¼ T nN T nN
� �T

¼ I: (47)

Therefore, the T nN matrix is unitary and furthermore orthogonal since the entries
are real.

Using the symmetric, orthogonal transformation matrix T nN, the forward
transform from Eq. (26) can be written in as
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F ρnmð Þ ¼
R2

j nN
∑
N�1

k¼1

T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � f rnkð Þ

¼
j nN
W2

ρ

∑
N�1

k¼1

T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � f rnkð Þ

(48)

Similarly, the inverse discrete transform of Eq. (29) can be written as

f rnkð Þ ¼
j nN
R2 ∑

N�1

m¼1
T nN
k,m

Jnþ1 jnk
� �

Jnþ1 jnm
� �F ρnmð Þ

¼
W2

ρ

j nN
∑
N�1

m¼1
T nN
k,m

Jnþ1 jnk
� �

Jnþ1 jnm
� �F ρnmð Þ:

(49)

6. Discrete forward and inverse Hankel transform

From the previous section is it clear that the two natural choices of kernel for a DHT

are either Y nN
m,k or T

nN
m,k. Y

nN
m,k is closer to the discretized version of the continuous

Hankel transform that we hope the discrete version emulates. However, T nN
m,k is an

orthogonal and symmetric matrix, therefore it is energy preserving and will be
shown to lead to a Parseval-type relationship if chosen as the kernel for the DHT.
Thus, to define a discrete Hankel transform (DHT), we can use either formulation:

Fm ¼ ∑
N�1

k¼1

Y nN
m,k f k or Fm ¼ ∑

N�1

k¼1

T nN
m,k f k: (50)

Here, the transform is of any N � 1 dimensional vector f k to any N � 1 dimensional
vector Fm for the integersm, k where 1≤m, k,N � 1. This can be written in matrix
form as

F ¼ Y nNf or F ¼ T nNf (51)

where F is any N � 1 dimensional column vector and f is also any column vector,
defined in the same manner.

The inverse discrete Hankel transform (IDHT) is then given by

f k ¼ ∑
N�1

m¼1
Y nN
k,mFm or f k ¼ ∑

N�1

m¼1
T nN
k,mFm: (52)

This can also be written in matrix form as

f ¼ Y nNF or f ¼ T nNF: (53)

We note that the forward and inverse transforms are the same.
Proof

We show the proof for the Y nN formulation, but it proceeds similarly if Y nN is

replaced with T nN . Substituting Eq. (52) into the right hand side of (50) gives

∑
N�1

k¼1

Y nN
m,k f k ¼ ∑

N�1

k¼1

Y nN
m,k ∑

N�1

p¼1
Y nN
k,pFp

" #

: (54)

Switching the order of the summation in Eq. (54) gives
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∑
N�1

p¼1
∑
N�1

k¼1

Y nN
m,kY

nN
k,p

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

δmp

Fp ¼ ∑
N�1

p¼1
δmpFp ¼ Fm (55)

The inside summations as indicated in Eq. (55) are recognized as yielding the Dirac-

delta function, the orthogonality property of Eq. (40) (or Eq. (46) if using T nN),
which in turn yields the desired result. This proves that the DHT given by (50) can
be inverted by (52).

7. Generalized Parseval theorem

Inner products are preserved and thus energies are preserved under the T nN

matrix formulation. To see this, consider any two vectors given by the transform

g ¼ T nNG, h ¼ T nNH then

gTh ¼ T nNG
� �T

T nNH ¼ GT T nN
� �T

T nN

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼I

H ¼ GTH: (56)

The Y nN matrix formulation does not directly preserve inner products:

gTh ¼ Y nNG
� �T

Y nNH ¼ GT Y nN
� �T

Y nNH: (57)

However, under the Y nN formulation, the inner product between
gk

Jnþ1 jnkð Þ
and

hk
Jnþ1 jnkð Þ

is preserved. To see this, we calculate the inner product between them as

∑
N�1

k¼1

gk
Jnþ1 jnk

� �
hk

Jnþ1 jnk
� � ¼ ∑

N�1

k¼1

1

J2nþ1 jnk
� � ∑

N�1

p¼1
Y nN
k,pGp ∑

N�1

q¼1
Y nN
k,qHq

¼ ∑
N�1

p¼1
∑
N�1

q¼1

1

J2nþ1 jnp

� 	 ∑
N�1

k¼1

4 jnkjnp=j nN

� 	

Jn jnkjnq=j nN

� 	

j2nNJ
2
nþ1 jnk
� �

J2nþ1 jnq

� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δpq

HqGp

(58)

Making use of the now-present Dirac-delta function, Eq. (58) simplifies to give a
modified Parseval relationship

∑
N�1

k¼1

gk
Jnþ1 jnk

� �

 !

hk
Jnþ1 jnk

� �

 !

¼ ∑
N�1

p¼1

Hp

Jnþ1 jnp

� 	

0

@

1

A
Gp

Jnþ1 jnp

� 	

0

@

1

A: (59)

In other words, under a DHT using the Y nN matrix, inner products of the scaled
functions are preserved but not the inner products of the functions themselves.

As a consequence of the orthogonality property of T nN, the T nN based DHT is
energy preserving, meaning that

F
T
F ¼ f

T
f : (60)

where the overbar indicates a conjugate transpose and the superscript T indicates a
transpose.
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For the formulation with Y nN as the transformation kernel, the equivalent
expression is

F
T
F ¼ Y nNf

� 	T
Y nNf ¼ f

T
Y nN
� �T

Y nNf : (61)

It is obvious from Eq. (59) that if we define the “scaled” vector

f Scaledk ¼
f k

Jnþ1 jnk
� � and FScaled

p ¼
Fp

Jnþ1 jnp

� 	 , (62)

then by straighforward substitution of scaled vectors and their conjugates, it follows
that

FScaled
� �T

FScaled ¼ fScaled
� 	T

fScaled: (63)

8. Transform rules

In keeping with the development of the well-known discrete Fourier transform,
we develop the standard toolkit of rules for the discrete Hankel transform. In the

following, Y nN is used but all expressions apply equally if Y nN is replaced with T nN .

8.1 Transform of Kronecker-Delta function

The discrete counterpart of the Dirac-delta function is the Kronecker-delta
function, δkk0 . We recall that the DHT as defined above is a matrix transform from a
N � 1 dimensional vector to another. The vector δkko is interpreted as the vector as
having zero entries everywhere except at position k ¼ k0 (k0 fixed so δkk0 is a
vector), or in other words, the k0th column of the N � 1 sized identity matrix. The
DHT of the Kronecker-delta can be found from the definition of the forward
transform via

H δkkoð Þ ¼ ∑
N�1

k¼1

Ym,kδkko ¼ Y nN
m,k0 (64)

The symbol H �ð Þ is used to denote the operation of taking the discrete Hankel
transform. This gives us our first DHT transform pair of order n dimension N � 1,
and we denote this relationship as

δkko⇔Yn,N
m,k0

(65)

Here, f k⇔ Fm denotes a transform pair and Y nN
m,k0 is k0th column of the matrix

Y nN .

8.2 Inverse transform of the Kronecker Delta function

From Eq. (65), we can deduce the vector f k that transforms to the Kronecker-
delta vector δmmo

function. Namely, we take the forward transform of

f k ¼ Yn,N
k,m0

: (66)
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As before, Y nN
k,m0

represents the m0th column of the transformation matrix Y nN .

From the forward definition of the transform, Eq. (50), the transform of Yn,N
k,m0

is

given by

Fm ¼ ∑
N�1

k¼1

Y nN
m,k f k ¼ ∑

N�1

k¼1

Y nN
m,kY

nN
k,m0

¼ δmm0 , (67)

where we have used the orthogonality relationship (40). This gives us another DHT
pair:

Yn,N
k,m0
⇔ δmmo

: (68)

8.3 The generalized shift operator

For a one-dimensional Fourier transform, one of the known transform rules is
the shift rule, which states that

f x� að Þ ¼ F
�1 e�iaω f̂ ωð Þ
n o

¼
1

2π

ð∞

�∞

e�iaω f̂ ωð Þ
n o

eiωtdω: (69)

In Eq. (69), f̂ ωð Þ is the Fourier transform of f xð Þ, F�1 denotes an inverse Fourier

transform and e�iaω is the kernel of the Fourier transform operator. Motivated by
this result, we define a generalized-shift operator by finding the inverse DHT of the
DHT of the function multiplied by the DHT kernel. This is a discretized version of
the definition of a generalized shift operator as proposed by Levitan [8] (he
suggested the complex conjugate of the Fourier operator, which for Fourier trans-
forms is the inverse transform operator). We thus propose the definition of the
generalized-shifted function to be given by

f
shift
k,ko

¼ ∑
N�1

p¼1
Y nN
k,p Y nN

p,koFp

n o

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

shift in Hankel
domain

, (70)

where 1≤ k, ko ≤N � 1 . For a single, fixed value of ko, then f
shift
k,ko

is another N � 1

vector, with the notation f
shift
k,ko

implying a k0-shifted version of f k. This generalizes

the notion of the shift, usually denoted f k�ko
, which inevitably encounters difficulty

when the subscript k� ko falls outside of the range 1;N � 1½ �. We note that if all

possible shifts ko are considered, then f
shift
k,ko

is a N � 1 square matrix (in other words,

a two dimensional structure), whereas the original un-shifted f k is an N � 1 vector.
For the discrete Fourier transform, when the shifted subscript k� ko falls outside
the range of the indices, is it usually interpreted modulo the size of the DFT.
However, the kernel of the Fourier transform is periodic so this does not create
difficulties for the DFT. The Bessel functions are not periodic so the same trick
cannot be used with the Hankel transform. In fact, this lack of periodicity and lack
of simple relationship between Jn x� yð Þ and Jn xð Þ is the reason that the continuous
Hankel transform does not have a convolution-multiplication rule [13]. Thus, the
notation f k�ko

would not make mathematical sense when used with the DHT. With

the definition given by Eq. (70), no such confusion arises since the definition is
unambiguous for all allowable values of k and ko.
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The shifted function f
shift
k,ko

can also be expressed in terms of the original un-

shifted function f k . Using the definition of Fm from Eq. (50) and a dummy change
of variable, then Eq. (70) becomes

f
shift
k,ko

¼ ∑
N�1

p¼1
Y nN
k,pY

nN
p,ko

Fp ¼ ∑
N�1

p¼1
Y nN
k,pY

nN
p,ko

∑
N�1

m¼1
Y nN
p,mfm: (71)

Changing the order of summation gives

f
shift
k,ko

¼ ∑
N�1

p¼1
Y nN
k,pY

nN
p,koFp ¼ ∑

N�1

m¼1
∑
N�1

p¼1
Y nN
k,pY

nN
p,koY

nN
p,m

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

shift operator

fm: (72)

As indicated in Eq. (72), the quantity in brackets can be considered to be a type of
shift operator acting on the original unshifted function. We can define this as

S nN
k,ko,m ¼ ∑

N�1

p¼1
Y nN
k,pY

nN
p,koY

nN
p,m: (73)

It then follows that Eq. (72) can be written as

f
shift
k,ko

¼ ∑
N�1

m¼1
S nN
k,ko,m fm: (74)

This triple-product shift operator is similar to previous definitions of shift operators
for multidimensional Fourier transforms that rely on Hankel transforms [1, 2] and
of generalized Hankel convolutions [14–16].

8.4 Transform of the generalized shift operator

We now consider the forward DHT transform of the shifted function f
shift
k,ko

. From

the definition, the DHT of the shifted function can be found from

∑
N�1

k¼1

Y nN
m,k f

shift
k,ko

¼ ∑
N�1

k¼1

Y nN
m,k ∑

N�1

p¼1
Y nN
k,pY

nN
p,ko

Fp: (75)

Changing the order of summation gives

∑
N�1

p¼1
∑
N�1

k¼1

Y nN
m,kY

nN
k,p

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼δmp

Y nN
p,koFp ¼ ∑

N�1

p¼1
δmpY

nN
p,koFp ¼ Y nN

m,koFm: (76)

This yields another transform pair and is the shift-modulation rule. This rule
analogous to the shift-modulation rule for regular Fourier transforms whereby a
shift in the spatial domain is equivalent to modulation in the frequency domain:

f
shift
k,ko
⇔Y nN

m,koFm: (77)

Note that Eq. (77) does not imply a summation over the m index. For a fixed value
of ko on the left hand side, the corresponding transformed value of Fm is multiplied

by the m; koð Þth entry of the Y nN matrix.

16

Fourier Transforms - Century of Digitalization and Increasing Expectations



8.5 Modulation

We consider the forward DHT of a function “modulated” in the space domain

f k ¼ Y nN
k,kogk. Here, the interpretation of f k ¼ Y nN

k,ko gk is that the kth entry of the

vector g is multiplied by the k; koð Þth entry of Y nN for a fixed value of ko. No

summation is implied so this is not a dot product; both f k and Y nN
k,ko

gk are N � 1

vectors. Again, we implement the definition of the forward transform

∑
N�1

k¼1

Y nN
m,k f k ¼ ∑

N�1

k¼1

Y nN
m,kY

nN
k,ko gk, (78)

and write gk in terms of its inverse transform

gk ¼ ∑
N�1

p¼1
Y nN
k,pGp: (79)

Then Eq. (78) becomes

∑
N�1

k¼1

Y nN
m,k f k ¼ ∑

N�1

k¼1

Y nN
m,kY

nN
k,kogk ¼ ∑

N�1

k¼1

Y nN
m,kY

nN
k,ko ∑

N�1

p¼1
Y nN
k,pGp: (80)

Interchanging the order of summation gives

∑
N�1

p¼1
∑
N�1

k¼1

Y nN
m,kY

nN
k,koY

nN
k,p

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

shift operator

Gp ¼ G
shift
m,ko

: (81)

By comparing Eq. (81) with Eqs. (72) and (73), we recognize the shift operator
as indicated in (81). This produces a modulation-shift rule as would be expected so
that the forward DHT of a modulated function is equivalent to a generalized shift in
the frequency domain. This yields another transform pair:

Y nN
k,ko

gk⇔G
shift
m,ko

: (82)

In other words, Eq. (82) says that modulation in the space domain is equivalent to
shift in the frequency domain, as would be expected for a (generalized) Fourier
transform.

8.6 Convolution

We consider the convolution using the generalized shifted function previously
defined. The convolution of two functions is defined as

f k ¼ g∗hð Þk ¼ ∑
N�1

k0¼1

gkoh
shift
k,ko

: (83)

The meaning of Eq. (83) follows from the traditional definition of a convolution:
multiply one of the functions by a shifted version of a second function and then sum
over all possible shifts.

Subsequently, from the definition of the inverse transforms, we obtain
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f k ¼ ∑
N�1

k0¼1

gkoh
shift
k,ko

¼ ∑
N�1

k0¼1

∑
N�1

q¼1
Y nN
ko,qGq

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gko

∑
N�1

p¼1
Y nN
k,pY

nN
p,koHp

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

h
shift

k,ko

¼ ∑
N�1

q¼1
∑
N�1

p¼1
∑
N�1

k0¼1

Y nN
p,ko

Y nN
ko,q

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼δpq

Y nN
k,pHpGq:

(84)

But from the orthogonality relationship (40), the summation over k0 gives the
Kronecker delta function, so that Eq. (84) becomes

g∗hð Þk ¼ ∑
N�1

k0¼1

gkoh
shift
k,ko

¼ ∑
N�1

q¼1
∑
N�1

p¼1
δpqY

nN
k,pHpGq

¼ ∑
N�1

p¼1
Y nN
k,p HpGp

� �
(85)

The right hand side of Eq. (85) is clearly the inverse transform of the product of the
transforms HpFp. This gives us another transform pair

g∗hð Þk ¼ ∑
N�1

k0¼1

gkoh
shift
k,ko
⇔HmGm: (86)

It follows from Eq. (85) that interchanging the roles of g and h will yield the same
result, meaning

∑
N�1

k0¼1

g
shift
k,ko

hko ¼ ∑
N�1

p¼1
Y nN
k,pGpHp: (87)

Therefore, it follows that

h∗gð Þk ¼ ∑
N�1

k0¼1

g
shift
k,ko

hko ¼ ∑
N�1

k0¼1

gkoh
shift
k,ko

¼ g∗hð Þk: (88)

8.7 Multiplication

We now consider the forward transform of a product in the space domain
f k ¼ gkhk so that

∑
N�1

k¼1

Y nN
m,k gkhk ¼ ∑

N�1

k¼1

Y nN
m,k ∑

N�1

q¼1
Y nN
k,qGq

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gk

  ∑
N�1

p¼1
Y nN
k,pHp

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

hk

: (89)

Rearranging gives

∑
N�1

k¼1

Y nN
m,kgkhk ¼ ∑

N�1

q¼1
Gq ∑

N�1

p¼1
∑
N�1

k¼1

Y nN
m,kY

nN
k,qY

nN
k,p

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

shift operator

Hp

¼ ∑
N�1

q¼1
GqH

shift
m,q ¼ G∗Hð Þm:

(90)
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This gives us yet another transform pair that says that multiplication in the
spatial domain is equivalent to convolution in the transform domain:

gkhk⇔ ∑
N�1

q¼1
GqH

shift
m,q ¼ G∗Hð Þm: (91)

Interchanging the roles of G and H in Eq. (91) demonstrates that convolution in the
transform domain also commutes:

G∗Hð Þm ¼ ∑
N�1

q¼1
GqH

shift
m,q ¼ ∑

N�1

q¼1
G shift

m,qHq ¼ H∗Gð Þm: (92)

9. Using the DHT to approximate the continuous transform

9.1 Approximation to the continuous transform

Eqs. (26) and (29) show how the DHT can be used to calculate the continuous
Hankel transform at finite points. From Eqs. (26) and (29), it is clear that given a
continuous function f rð Þ evaluated at the discrete points rnk (given by Eq. (31)) in
the space domain (1≤ k≤N � 1), its nth-order Hankel-transform function F ρð Þ
evaluated at the discrete points ρnm (given in Eq. (31)) in the frequency domain
(1≤m≤N � 1), can be approximately given by

F m½ � ¼ α ∑
N�1

k¼1

Y nN
m,k f k½ � ) F ¼ αY nNf (93)

where α is a scaling factor to be discussed below, and F m½ � ¼ F ρnmð Þ,
f k½ � ¼ f rnkð Þ.

Similarly, given a continuous function F ρð Þ evaluated at the discrete points ρnm
in the frequency domain (1≤m≤N � 1), its nth-order inverse Hankel transform
f rð Þ evaluated at the discrete points rnk (1≤ k≤N � 1), can be approximately
given by

f k½ � ¼
1

α
∑
N�1

m¼1
Y nN
m,kF m½ � ) f ¼

1

α
Y nNF (94)

For both the forward and inverse transforms, α is a scaling factor and α ¼ R2

j nN
or

equivalently α ¼
j nN
W2

ρ

, where R is the effective space limit andWρ is the effective band

limit (in m�1). The scaling factor α chosen for using the DHT to approximate the
CHT depends on whether information is known about the band-limit or space-limit.
We already introduced the idea of an effective limit in the previous sections, where a
function was defined as being “effectively limited in space by R” means that if r.R,
then f rð Þ≈0 for all r.R. In other words, the function can be made as close to zero as
desired by selecting an R that is large enough. The same idea can be applied to the
spatial frequency domain, where the effective domain is denoted by Wρ.

The relationshipWρR ¼ j nN, derived in the previous sections, holds between the
ranges in space and frequency. Choosing N determines the dimension (size) of the
DHT and determines j nN . The determination of j nN (via choosing N) determines the
range in one domain once the range in the other domain is chosen. In fact, any two
of R,Wρ, j nN can be chosen but the third must follow from WρR ¼ j nN . A similar
relationship applies when using the discrete Fourier transform, any two of the range
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in each domain and the size of the DFT can be chosen independently. In previous
sections, we showed that the size of the DHT required can be quickly approximated

from 2WR ¼
WρR
π

≈ N þ n
2

� �
.

9.2 Sampling points

In order to properly use the discrete transform to approximate the continuous
transform, a function has to be sampled at specific discretization points. For a finite
spatial range 0;R½ � and a Hankel transform of order n, these sampling points are
given in the space domain as rnk and frequency domain by ρnm, given in Eq. (31) and
repeated here for convenience

rnk ¼
jnk
Wρ

¼
jnkR

j nN
ρnm ¼

jnm
R

¼
jnmWρ

j nN
k,m ¼ 1…N � 1 (95)

It is important to note that as in the case of the computation of the transforma-

tion matrix Y nN, the first Bessel zero jn1 used in computing the discretization points
is the first non-zero value. Eq. (95) demonstrates that some of the ideas known for
the DFT also apply to the DHT. That is, making the spatial domain larger (larger R)
implies making the sampling density tighter in frequency (the ρnm get closer
together). Similarly, making the frequency domain larger (larger Wρ) implies a
tighter sampling density (smaller step size) in the spatial domain. Although jnm are
not equispaced, they are nearly so for higher values of m and for purposes of
developing quick intuitions on ideas such as sampling density, if is convenient to
approximately think of jnk ≈ kþ n

2

� �
π.

9.3 Implementation and availability of the software

The software used to calculate the DHT is based on the MATLAB programming
language. The software can be downloaded from

• http://dx.doi.org/10.6084/m9.figshare.1453205

• https://github.com/uchouinard/DiscreteHankelTransform

The implementation of the discrete Hankel transform is decomposed into distinct
functions. These functions consist of various steps that have to be performed in
order to properly execute the transform. These steps are as follows:

• Calculate N Bessel zeros of the Bessel function of order n

• Generate of N sample points (if using the DHT to approximate the continuous
transform)

• Sample the function (if needed)

• Create the Y nN transformation matrix

• Perform the matrix-function multiplication

The steps are the same regardless if the function is in the space or frequency

domain. Furthermore, the Y nN transformation matrix is used for both the forward
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and inverse transform. The second and third steps in the list above are only needed
if the function (vector) to be transformed is not already given as a set of discrete
points. In the case of a continuous function, it is important to evaluate the function
at the sampling points in Eq. (95). Failing to do so results in the function not being
properly transformed since there is a necessary relationship between the sampling

points and the transformation matrix Y nN . In order to perform the steps listed
above, several Matlab functions have been developed. These functions are shown in
Table 1.

Additionally, the matlab script GuidetoDHT.m is included to illustrate the
execution of the necessary computational steps.

9.4 Verification of the software

The software was tested by using the DHT to approximate the computation of
both the continuous Hankel forward and inverse transforms and comparing the
results with known (continuous) forward and inverse Hankel transform pairs.
Different transform orders n were evaluated.

For the purpose of testing the accuracy of the DHT and IDHT, the dynamic error
was used, defined as [12]

e vð Þ ¼ 20 log 10
f vð Þ � f ∗ νð Þj j

max f ∗ vð Þj j

� �

(96)

This error function compares the difference between the exact function values f vð Þ
(evaluated from the continuous function) and the function values estimated via the
discrete transform, f ∗ νð Þ, scaled with the maximum value of the discretely esti-
mated samples. The dynamic error uses the ratio of the absolute error to the
maximum amplitude of the function on a log scale. Therefore, negative decibel
errors imply an accurate discrete estimation of the true transform value. The trans-
form was also tested for accuracy on itself by performing consecutive forward and
then inverse transformation. This is done to verify that the transforms themselves

do not add errors. For this evaluation, the average absolute error 1
N∑N

i¼1 f i � f i
∗

�
�

�
�was

used. The methodology of the testing is given in further detail in [18] and also in the
theory paper [3].

10. Summary and conclusions

In this chapter, the theory of the discrete Hankel transform as a “standalone”
transform was motivated and presented. The standard operating rules for

Function name Calling sequence Description

besselzero besselzero

(n,k,kind)

Calculation of k Bessel zeros of the nth-order Bessel function

of kind—developed in [17]

freqSampler freqSampler

(R,zeros)

Creation of sample points in the frequency domain

(Eq. (95))

spaceSampler spaceSampler

(R,zeros)

Creation of sample points in the space domain (Eq. (95))

YmatrixAssembly YmatrixAssembly

(n,N,zeros)
Creation of Y nN matrix from the zeros

Table 1.

Set of available functions.
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multiplication, modulation, shift and convolution were also demonstrated. Sam-
pling and interpolation theorems were shown. The theory and numerical steps to
use the presented discrete theory for the purpose of approximating the continuous
Hankel transform was also shown. Links to the publicly available, open-source
numerical code were also included.
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