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Chapter

Possible Role of Gap Junction 
Channels and Non-Junctional 
Channels in the Infection Caused 
by Trypanosoma cruzi
José Luis Vega, Camilo Juyumaya, Luis Rodríguez, Juan Güiza, 

Camila Gutíerrez, Iván Barría and Juan C. Sáez

Abstract

Chagas disease affects low-income nations with health consequences that impact 
the economy of those countries. Interestingly, inhibitors of channels formed by 
proteins of the gap junction family, such as suramin and boldine, exhibit trypanocidal 
activity. Gap junction proteins are integral membrane proteins present in both ver-
tebrates and invertebrates that participate in cellular communication. These proteins 
form gap junction channels, which connect the cytoplasm of neighboring cells or 
non-junctional channels that connect the intra- and extracellular milieu. Interestingly, 
Trypanosoma cruzi modulates the expression of proteins of the gap junction family or 
modify the activity of the channels formed by these proteins in host cells. Moreover, 
Lucifer yellow microinjected into fibroblast was incorporated into associated trypano-
somes of Trypanosoma musculi, suggesting the possibility of direct communication 
via gap junction channels between them. In this chapter, we summarized the current 
knowledge about the possible roles of gap junction family proteins in Chagas disease.
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1. Introduction

Chagas disease affects low-income nations with health consequences that 
impact the economy of these countries [1]. Research aimed at understanding their 
biology and identification of potential targets for drug development is the high-
est priority [1]. Interestingly, inhibitors of channels formed by proteins of the 
gap junction family such as suramin and boldine have trypanocidal activity and 
some of them are currently used for treatment of parasitic diseases such Human 
African Trypanosomiasis [2–5]. Also, studies have shown that infections caused by 
Trypanosoma cruzi (T. cruzi) modulate the expression of proteins of the gap junc-
tion family or modify the activity of the channels formed by these proteins in host 
cells [6–11]. Moreover, previous studies have shown gap junction type structures in 
Trypanosoma musculi [12]. In this chapter, we summarized the current knowledge 
about the role of gap junction family proteins in Chagas disease.
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2. Gap junction proteins

Gap junction proteins are present in both vertebrates and invertebrates from 
mesozoa to mammals [13]. The protein families include connexins (Cxs), innexins 
(Inxs) and pannexins (Panxs) [14, 15]. They are integral membrane proteins that 
participate in cellular communication playing a relevant role in several physiological 
processes [15]. In vertebrates, Cxs and Panxs are present, while in invertebrates, 
only Inxs are present [15]. In humans, 21 and 3 genes encode Cx and Panx proteins, 
respectively [14]. Most Cx genes contain two exons and an intron of variable length 
[14]. The Panx1 and Panx2 genes contain 5 exons, while the Panx3 gene contains 4 
exons [16]. Moreover, Inx genes have been found in the phylum Arthropoda [17–20], 
Nematoda [21], Chordata [22], Annelida [23], Platyhelminthes [24], Cnidaria [25], 
and Mollusca [26]. In Drosophila melanogaster, the Inx genes have the potential to 
be differentially spliced [18], while in C. elegans, 15% of genes are found in operons 
and three pairs of the innexins are polycistronic such as inx-12 and inx-13, inx-16 
and inx-17, and inx-21 and inx-22 [27]. Regarding the structure of the protein 
topology, hydropathy plots of several Inx, Cx and Panx proteins have predicted the 
presence of four hydrophobic domains with transmembrane spanning regions and 
the extracellular loops with several highly conserved residues [28]. In contrast, the 
cytoplasmic loop and the carboxy terminus vary extensively in length and amino 
acid composition [28].

2.1 Gap junction channels

Cx and Inx proteins form gap junction channels, which connect the cytoplasm 
of neighboring cells [14, 15]. Moreover, Cx, Panx and Inx proteins form non-junc-
tional channels that connect the intra- and extracellular milieu [14]. Gap junction 
plaques are formed by a variable number of homo- and/or heterotypic gap junction 
channels with distinct biophysical characteristics [29]. Structurally, they are formed 
by oligomers of Cx, Inx, or Panx proteins, which co-oligomerize into the same 
(homomeric) or mixed (heteromeric) channels [30]. Gap junction channels are 
essential in several physiologic functions such as electrical conduction between car-
diomyocytes [31], development and regeneration of skeletal muscle [32], endocrine 
gland secretion [33], and ovarian folliculogenesis [34]. Also, they are implicated in 
pathophysiological conditions such as hereditary deafness [35], cataract [36], and 
tumorigenesis [37].

Gap junction proteins can also form non-junctional channels, which play impor-
tant roles as autocrine/paracrine cellular communication pathways [14]. They are 
permeable to ions and several metabolic and signaling molecules such as glucose, glu-
tamate, glutathione, adenosine, NAD+ (superindice) and ATP among others [14]. It 
has been proposed that Panxs do not form gap junctions, however, they form plasma 
membrane channels (named pannexons) with some properties similar to those of the 
non-junctional channels formed by Inxs or Cxs also called hemichannels [15].

The pannexons are permeable to ATP when are activated with certain stimuli 
such a low oxygen, mechanical stress, and elevated extracellular potassium ion 
concentration [38]. Otherwise, the Panx1 channel is selective for chloride ions and 
exhibits no ATP permeability when stimulated simply by depolarization to positive 
potentials or the C-terminal is cleaved by proteolysis [38]. Since we found increased 
Panx1 channel activity and increase in ATP release in cells infected with T. cruzi 
[11], it suggested that under this condition the Panx1 channel does not undergo 
proteolysis and adopt the large channel configuration [11, 38]. In addition, it has 
been described that Panx1-based channels are regulated by mechanical stress [39]. 
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Inx-based hemichannels are activated by increased extracellular potassium ion 
concentration and by membrane depolarization [40]. Furthermore, Panx1- and 
Inx-based channels are inhibited by low concentration of carbenoxolone (<5 μM) or 
high probenecid concentrations (>500 μM) [41, 42].

Moreover, Cx-based hemichannels are regulated by intracellular acidification 
[43], intracellular Ca2+ [44], intracellular Na+ [45], pro-inflammatory cytokines [46], 
positive membrane potentials [47], phosphorylation [48], and S-nitrosylation [49]. 
They are inhibited by lanthanum chloride, carbenoxolone (>50 μM), and Cx mimetic 
peptides GAP16, GAP27, and GAP19 [15].

3. Gap junction and Chagas

3.1 Connexins

In 1992, Spray’s group showed for the first time that gap junctions were 
altered between rat neonatal cardiomyocytes infected with the Tulahuen 
strain of T. cruzi (Table 1) [6]. They showed that junctional conductance and 
intercellular transfer of Lucifer yellow was reduced between cardiomyocytes 
infected with T. cruzi (Figure 1) [6]. In 1998, the same group described that 
Tulahuen strain of T. cruzi reduced gap junction communication between rat 
astrocytes and between rat leptomeningeal cells as well [7]. Also, these authors 
demonstrated through immunocytochemistry studies that Cx43 reactivity was 
significantly reduced in whole brains from rats acutely infected with T. cruzi [7]. 
In 2008, in vitro studies showed that Y strain of T. cruzi increased the amount of 
Cx43 at 1 hour postinfection and reduced it at 72 hour postinfection in mouse 
cardiomyocytes (Figure 1) [8]. Moreover, they demonstrated through immunob-
lotting analysis that the amount of Cx43 was significantly reduced in heart atria 
and ventricles from mice infected with Y strain of T. cruzi at 11 days postinfec-
tion [8]. In 2009, Waghabi and collaborators demonstrated that the number and 
length of Cx43 plaques were reduced in heart biopsies of human chronic chagasic 
patients [9]. In 2013, we described that CL Brener strain of T. cruzi increased the 
Cx43 hemichannel activity in HeLa cells stably transfected with Cx43 (Figure 1)  
[15]. Also, we observed that the number of amastigotes was 3 times higher in 

Table 1. 
Summary of the studies that describe the effect of T. cruzi on gap junction protein family.
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HeLa-Cx43 as compared to HeLa parental cells at 48 hours postinfection [15]. In 
2014, Burke and collaborators demonstrated that Brazil strain of T. cruzi reduced 
the amount of Cx43 in brown adipose tissue at 30 and 90 days postinfection 
(Figure 1) [10]. Moreover, T. cruzi infection caused an increased the amount of 
Cx43 protein in white adipose tissue at 30 and 90 days postinfection [10].

3.2 Pannexins

In 2018, we found that H510 strain of T. cruzi increased the Panx1 chan-
nel activity in rat neonatal cardiomyocytes at 1 hour postinfection [11]. 
Interestingly, the increased pannexon activity induced by the parasite was 
directly related to an elevated ATP release [11]. This is relevant because ATP 
has been proposed as a key molecule in T. cruzi host cell invasion [11, 50]. For 
example, blockade of P2Y1 receptors with a MRS2179, a selective P2Y1 antagonist, 
reduced T. cruzi-evoked Ca2+ transients in rat cardiomyocytes [11]. Moreover, 
inhibition of mitochondrial ATP production by treating parasites with rotenone 
plus antimycin A reduced the infectivity of the parasites [50]. Also, pre-treat-
ment with pannexon activity-blocking drugs significantly reduced the number 
of intracellular parasites in cardiomyocytes infected with H510 strain of T. 
cruzi [11]. For instance, cells exposed to 100 μM 10Panx1 or 400 μM probenecid 
showed a 114 ± 2 and 71 ± 2 parasites/500 cells, respectively, versus 5001 ± 2 
parasites/500 cells in control condition [11]. Interestingly, scanning and trans-
mission electron microscopy studies have demonstrated the presence of reminis-
cent gap junction at physical interactions between Trypanosoma musculi and mice 
spleen-derived adherent fibroblasts [12]. Also, Lucifer yellow microinjected into 
fibroblast was incorporated into associated trypanosomes, suggesting that those 
gap junctions were functional [12].

Figure 1. 
Model that summarizes the main effects of the Trypanosoma cruzi on cellular communications mediated by gap 
junction channels. Parasites release a virulence factor that opens Panx1 channels allowing the release of ATP to 
the extracellular milieu [11]. Also, the parasite causes a reduction of intercellular communications mediated 
by gap junctions [6]. Contrarily, the parasite increases the activity of the hemichannels present in the plasma 
membrane of the infected cells [15].
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4. Gap junction channel blocking compounds as antiparasitic drugs

Interestingly, several drugs that block the activity of gap junction channels 
have been described as potent anti-parasitic agents. Among them are: probenecid, 
boldine and suramin, among others (Table 2) [2–4].

4.1 Probenecid

Human clinical trials have shown that probenecid, an inhibitor of a non-junc-
tional channel formed by Panx1 has an antimalarial effect [2]. The authors described 
that 50 μM probenecid caused an increase in the sensitivity of highly resistant V1S 
strain of Plasmodium falciparum to pyrimethamine, sulfadoxine, chlorcycloguanil, 
and dapsone by seven-, five-, three-, and three-folds, respectively [2].

4.2 Suramin

Suramin, a general antagonist of purinergic receptors (P2Y and P2X) [51] and 
blocker of Panx1 channels [52], exhibits anti-parasitic properties [3]. Culture of 
LLC-MK2 cells treated with suramin (500 μM) during the intracellular develop-
ment of T. cruzi, caused morphological changes in the parasites; increase in parasite 
width, and partial or complete detachment between flagella and cell body [3]. 
Interestingly, suramin is one of the 5 approved drugs for treatment of sleeping 
sickness [5].

4.3 Boldine

Boldine, an alkaloid obtained from Boldo tree, which blocks the activity of 
Cx43-formed hemichannels, and Panx1 hemichannels exhibit, an anti-parasitic 
activity [53, 54]. Boldine at concentrations above 500 μM reduces the epimastigotes 
growth of Tulahuen, LQ and DM28c strains of T. cruzi [4]. Since the active com-
pound also inhibited cell respiration, it was suggested that these drugs may block 
the mitochondrial electron transport [4].

Table 2. 
Antiparasitic drugs and channel blocker drugs.
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5. Conclusions

Chagas diseases affect predominantly underprivileged areas of Latin 
America, but attention has been increasing lately due to the rise in people 
migration habits, intercontinental travels, and immune suppressed patients [1]. 
Unfortunately, current therapeutic options include only two compounds (nifur-
timox and benznidazole) with considerable toxicity and side effects, so the new 
drug development is of the highest priority [1]. Hemichannels are involved in the 
regulation of plasma membrane permeability in ischemic insults or metabolic 
inhibition [55, 56]. Moreover, alterations of plasma membrane is a common 
phenomenon in parasite-induced infections such malaria and T. cruzi, among 
others [57, 58]. Thus, hemichannels could be key players in parasite-induced 
plasma membrane permeabilization. All the above data support the importance 
of studying the possible role of hemichannels in parasitic infections. They could 
be potential targets for the development of new compounds to limit parasite 
infections or tissue/organ damage induced by their presence.
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