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Chapter

Possible Role of Gap Junction
Channels and Non-Junctional
Channels in the Infection Caused
by Trypanosoma cruzi

José Luis Vega, Camilo Juyumaya, Luis Rodriguez, Juan Giiiza,
Camila Gutierrez, Ivdn Barria and Juan C. Sdez

Abstract

Chagas disease affects low-income nations with health consequences that impact
the economy of those countries. Interestingly, inhibitors of channels formed by
proteins of the gap junction family, such as suramin and boldine, exhibit trypanocidal
activity. Gap junction proteins are integral membrane proteins present in both ver-
tebrates and invertebrates that participate in cellular communication. These proteins
form gap junction channels, which connect the cytoplasm of neighboring cells or
non-junctional channels that connect the intra- and extracellular milieu. Interestingly,
Trypanosoma cruzi modulates the expression of proteins of the gap junction family or
modify the activity of the channels formed by these proteins in host cells. Moreover,
Lucifer yellow microinjected into fibroblast was incorporated into associated trypano-
somes of Trypanosoma musculi, suggesting the possibility of direct communication
via gap junction channels between them. In this chapter, we summarized the current
knowledge about the possible roles of gap junction family proteins in Chagas disease.
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1. Introduction

Chagas disease affects low-income nations with health consequences that
impact the economy of these countries [1]. Research aimed at understanding their
biology and identification of potential targets for drug development is the high-
est priority [1]. Interestingly, inhibitors of channels formed by proteins of the
gap junction family such as suramin and boldine have trypanocidal activity and
some of them are currently used for treatment of parasitic diseases such Human
African Trypanosomiasis [2-5]. Also, studies have shown that infections caused by
Trypanosoma cruzi (T cruzi) modulate the expression of proteins of the gap junc-
tion family or modify the activity of the channels formed by these proteins in host
cells [6-11]. Moreover, previous studies have shown gap junction type structures in
Trypanosoma musculi [12]. In this chapter, we summarized the current knowledge
about the role of gap junction family proteins in Chagas disease.
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2. Gap junction proteins

Gap junction proteins are present in both vertebrates and invertebrates from
mesozoa to mammals [13]. The protein families include connexins (Cxs), innexins
(Inxs) and pannexins (Panxs) [14, 15]. They are integral membrane proteins that
participate in cellular communication playing a relevant role in several physiological
processes [15]. In vertebrates, Cxs and Panxs are present, while in invertebrates,
only Inxs are present [15]. In humans, 21 and 3 genes encode Cx and Panx proteins,
respectively [14]. Most Cx genes contain two exons and an intron of variable length
[14]. The Panx1 and Panx2 genes contain 5 exons, while the Panx3 gene contains 4
exons [16]. Moreover, Inx genes have been found in the phylum Arthropoda [17-20],
Nematoda [21], Chordata [22], Annelida [23], Platyhelminthes [24], Cnidaria [25],
and Mollusca [26]. In Drosophila melanogaster, the Inx genes have the potential to
be differentially spliced [18], while in C. elegans, 15% of genes are found in operons
and three pairs of the innexins are polycistronic such as inx-12 and inx-13, inx-16
and inx-17, and inx-21 and inx-22 [27]. Regarding the structure of the protein
topology, hydropathy plots of several Inx, Cx and Panx proteins have predicted the
presence of four hydrophobic domains with transmembrane spanning regions and
the extracellular loops with several highly conserved residues [28]. In contrast, the
cytoplasmic loop and the carboxy terminus vary extensively in length and amino
acid composition [28].

2.1 Gap junction channels

Cx and Inx proteins form gap junction channels, which connect the cytoplasm
of neighboring cells [14, 15]. Moreover, Cx, Panx and Inx proteins form non-junc-
tional channels that connect the intra- and extracellular milieu [14]. Gap junction
plaques are formed by a variable number of homo- and/or heterotypic gap junction
channels with distinct biophysical characteristics [29]. Structurally, they are formed
by oligomers of Cx, Inx, or Panx proteins, which co-oligomerize into the same
(homomeric) or mixed (heteromeric) channels [30]. Gap junction channels are
essential in several physiologic functions such as electrical conduction between car-
diomyocytes [31], development and regeneration of skeletal muscle [32], endocrine
gland secretion [33], and ovarian folliculogenesis [34]. Also, they are implicated in
pathophysiological conditions such as hereditary deafness [35], cataract [36], and
tumorigenesis [37].

Gap junction proteins can also form non-junctional channels, which play impor-
tant roles as autocrine/paracrine cellular communication pathways [14]. They are
permeable to ions and several metabolic and signaling molecules such as glucose, glu-
tamate, glutathione, adenosine, NAD+ (superindice) and ATP among others [14]. It
has been proposed that Panxs do not form gap junctions, however, they form plasma
membrane channels (named pannexons) with some properties similar to those of the
non-junctional channels formed by Inxs or Cxs also called hemichannels [15].

The pannexons are permeable to ATP when are activated with certain stimuli
such a low oxygen, mechanical stress, and elevated extracellular potassium ion
concentration [38]. Otherwise, the Panx1 channel is selective for chloride ions and
exhibits no ATP permeability when stimulated simply by depolarization to positive
potentials or the C-terminal is cleaved by proteolysis [38]. Since we found increased
Panx1 channel activity and increase in ATP release in cells infected with T cruzi
[11], it suggested that under this condition the Panx1 channel does not undergo
proteolysis and adopt the large channel configuration [11, 38]. In addition, it has
been described that Panx1-based channels are regulated by mechanical stress [39].
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Inx-based hemichannels are activated by increased extracellular potassium ion
concentration and by membrane depolarization [40]. Furthermore, Panx1- and
Inx-based channels are inhibited by low concentration of carbenoxolone (<5 pM) or
high probenecid concentrations (>500 uM) [41, 42].

Moreover, Cx-based hemichannels are regulated by intracellular acidification
[43], intracellular Ca** [44], intracellular Na* [45], pro-inflammatory cytokines [46],
positive membrane potentials [47], phosphorylation [48], and S-nitrosylation [49].
They are inhibited by lanthanum chloride, carbenoxolone (>50 pM), and Cx mimetic
peptides GAP16, GAP27, and GAP19 [15].

3. Gap junction and Chagas
3.1 Connexins

In 1992, Spray’s group showed for the first time that gap junctions were
altered between rat neonatal cardiomyocytes infected with the Tulahuen
strain of T. cruzi (Table 1) [6]. They showed that junctional conductance and
intercellular transfer of Lucifer yellow was reduced between cardiomyocytes
infected with T. cruzi (Figure 1) [6]. In 1998, the same group described that
Tulahuen strain of T. cruzi reduced gap junction communication between rat
astrocytes and between rat leptomeningeal cells as well [7]. Also, these authors
demonstrated through immunocytochemistry studies that Cx43 reactivity was
significantly reduced in whole brains from rats acutely infected with T. cruzi [7].
In 2008, in vitro studies showed that Y strain of T. cruzi increased the amount of
Cx43 at 1 hour postinfection and reduced it at 72 hour postinfection in mouse
cardiomyocytes (Figure 1) [8]. Moreover, they demonstrated through immunob-
lotting analysis that the amount of Cx43 was significantly reduced in heart atria
and ventricles from mice infected with Y strain of T. cruzi at 11 days postinfec-
tion [8]. In 2009, Waghabi and collaborators demonstrated that the number and
length of Cx43 plaques were reduced in heart biopsies of human chronic chagasic
patients [9]. In 2013, we described that CL Brener strain of T cruzi increased the
Cx43 hemichannel activity in HeLa cells stably transfected with Cx43 (Figure 1)
[15]. Also, we observed that the number of amastigotes was 3 times higher in

Year Strain Cell type Effect Ref.

1992  Tulahuén  Cardiomyocytes Decrease gap junction channels activity [6]

1998  Tulahuén  Astrocytes Decrease gap junction channels activity  [7]

1998  Tulahuén Leptomeningeal Decrease gap junction channels activity  [7]
cells

2008 Y Cardiomyocytes Increase Cx43 amount at 1 h p.i. [8]

2008 Y Cardiomyocytes  Decrease Cx43 amount at 72 h p.1. [8]

2009 nd. Heart biopsies Decrease Cx43 levels at 11 days p.i. (9]

2013 CL Brener Hela-Cx43 Increase Cx43-hemichannel activity [15]

2014  Brazil White adipose Increase Cx43 amount at 30 and 90 [10]
tissue days p.i.

2014  Brazil Brown adipose Decrease Cx43 amount at 30 and 90 [10]
tissue days p.i.

2018 HS510 Cardiomyocytes Increase Panx1 channel activity [11]

n.d.: not determinated; p.i.: post-infection.

Table 1.
Summary of the studies that describe the effect of T. cruzi on gap junction protein family.
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Figure 1.

Model that summarizges the main effects of the Trypanosoma cruzi on cellular communications mediated by gap
Junction channels. Pavasites release a virulence factor that opens Panx1 channels allowing the release of ATP to
the extracellular milieu [11]. Also, the pavasite causes a veduction of intercellular communications mediated

by gap junctions [6]. Contrarily, the parasite increases the activity of the hemichannels present in the plasma
membrane of the infected cells [15].

HeLa-Cx43 as compared to HeLa parental cells at 48 hours postinfection [15]. In
2014, Burke and collaborators demonstrated that Brazil strain of T. cruzi reduced
the amount of Cx43 in brown adipose tissue at 30 and 90 days postinfection
(Figure 1) [10]. Moreover, T. crugi infection caused an increased the amount of
Cx43 protein in white adipose tissue at 30 and 90 days postinfection [10].

3.2 Pannexins

In 2018, we found that H510 strain of T. cruzi increased the Panx1 chan-
nel activity in rat neonatal cardiomyocytes at 1 hour postinfection [11].
Interestingly, the increased pannexon activity induced by the parasite was
directly related to an elevated ATP release [11]. This is relevant because ATP
has been proposed as a key molecule in T. cruzi host cell invasion [11, 50]. For
example, blockade of P2Y; receptors with a MRS2179, a selective P2Y; antagonist,
reduced T. crugi-evoked Ca®* transients in rat cardiomyocytes [11]. Moreover,
inhibition of mitochondrial ATP production by treating parasites with rotenone
plus antimycin A reduced the infectivity of the parasites [50]. Also, pre-treat-
ment with pannexon activity-blocking drugs significantly reduced the number
of intracellular parasites in cardiomyocytes infected with H510 strain of T.
cruzi [11]. For instance, cells exposed to 100 pM Panx1 or 400 pM probenecid
showed a 114 + 2 and 71 + 2 parasites/500 cells, respectively, versus 5001 + 2
parasites/500 cells in control condition [11]. Interestingly, scanning and trans-
mission electron microscopy studies have demonstrated the presence of reminis-
cent gap junction at physical interactions between Trypanosoma musculi and mice
spleen-derived adherent fibroblasts [12]. Also, Lucifer yellow microinjected into
fibroblast was incorporated into associated trypanosomes, suggesting that those
gap junctions were functional [12].
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4. Gap junction channel blocking compounds as antiparasitic drugs

Interestingly, several drugs that block the activity of gap junction channels
have been described as potent anti-parasitic agents. Among them are: probenecid,
boldine and suramin, among others (Table 2) [2-4].

4.1 Probenecid

Human clinical trials have shown that probenecid, an inhibitor of a non-junc-
tional channel formed by Panx1 has an antimalarial effect [2]. The authors described
that 50 pM probenecid caused an increase in the sensitivity of highly resistant V1S
strain of Plasmodium falciparum to pyrimethamine, sulfadoxine, chlorcycloguanil,
and dapsone by seven-, five-, three-, and three-folds, respectively [2].

4.2 Suramin

Suramin, a general antagonist of purinergic receptors (P2Y and P2X) [51] and
blocker of Panx1 channels [52], exhibits anti-parasitic properties [3]. Culture of
LLC-MK2 cells treated with suramin (500 pM) during the intracellular develop-
ment of T. cruzi, caused morphological changes in the parasites; increase in parasite
width, and partial or complete detachment between flagella and cell body [3].
Interestingly, suramin is one of the 5 approved drugs for treatment of sleeping
sickness [5].

4.3 Boldine

Boldine, an alkaloid obtained from Boldo tree, which blocks the activity of
Cx43-formed hemichannels, and Panx1 hemichannels exhibit, an anti-parasitic
activity [53, 54]. Boldine at concentrations above 500 pM reduces the epimastigotes
growth of Tulahuen, LQ and DM28c strains of T cruzi [4]. Since the active com-
pound also inhibited cell respiration, it was suggested that these drugs may block
the mitochondrial electron transport [4].

Agent Chemical Class Diseases Target
Formula

Antiparisitic drugs

Suramin C51H40N6023SG Acid HAT Cx43

Nifurtimox C0H3N305S Nitrofurans Chagas n.d.
derivates

Benznidazol C1oH1oN4O3 Nitroimidazole  Chagas n.d.
derivates

Pentamidine C9H24N4O, Amidine HAT n.d.

Melarsoprol C2H5AsNgOS,  Arsenical HAT n.d.

Channel blocker drugs

Probenecid Ci3H19NO4S Sulfoamida Malaria Panx1

Carbenoxolone C34H5004 Terpenes n.d. Panx1, Cx43, Inxs

Oleamide Ci3H3sNO Amide n.d. Panx|1

Mefloquine C7H 6FsN.O Quinolines n.d. Panx1

Boldine C19H2NOy Alkaloid n.d. Panx1, Cx43

HAT: Human African Trypanosomiasis; n.d.: not determined.

Table 2.
Antiparasitic drugs and channel blocker drugs.
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5. Conclusions

Chagas diseases affect predominantly underprivileged areas of Latin
America, but attention has been increasing lately due to the rise in people
migration habits, intercontinental travels, and immune suppressed patients [1].
Unfortunately, current therapeutic options include only two compounds (nifur-
timox and benznidazole) with considerable toxicity and side effects, so the new
drug development is of the highest priority [1]. Hemichannels are involved in the
regulation of plasma membrane permeability in ischemic insults or metabolic
inhibition [55, 56]. Moreover, alterations of plasma membrane is a common
phenomenon in parasite-induced infections such malaria and T cruzi, among
others [57, 58]. Thus, hemichannels could be key players in parasite-induced
plasma membrane permeabilization. All the above data support the importance
of studying the possible role of hemichannels in parasitic infections. They could
be potential targets for the development of new compounds to limit parasite
infections or tissue/organ damage induced by their presence.
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