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Chapter

Nematicity in Electron-Doped
Iron-Pnictide Superconductors
Hong-Yi Chen

Abstract

The nature of the nematicity in iron pnictides is studied with a proposed mag-
netic fluctuation. The spin-driven order in the iron-based superconductor has been
realized in two categories: stripe SDW state and nematic state. The stripe SDW
order opens a gap in the band structure and causes a deformed Fermi surface. The
nematic order does not make any gap in the band structure and still deforms the
Fermi surface. The electronic mechanism of nematicity is discussed in an effective
model by solving the self-consistent Bogoliubov-de Gennes equations. The nematic
order can be visualized as crisscross horizontal and vertical stripes. Both stripes
have the same period with different magnitudes. The appearance of the ortho-
rhombic magnetic fluctuations generates two uneven pairs of peaks at �π;0ð Þ and
0;�πð Þ in its Fourier transformation. In addition, the nematic order breaks the
degeneracy of dxz and dyz orbitals and causes the elliptic Fermi surface near the Γ
point. The spatial image of the local density of states reveals a dx2-y2-symmetry form
factor density wave.

Keywords: magnetic fluctuation, stripe SDW, nematic order, two-orbital,
elliptic Fermi surface, LDOS maps

1. Introduction

The discovery of Fe-based superconductors with critical temperatures up to 55 K
has begun a new era of investigations of the unconventional superconductivity. In
common with copper-like superconductors (cuprate), the emergency of supercon-
ductivity in electron-doped Fe-pnictides such as Ba Fe1�xCoxAsð Þ2 is to suppress the
magnetic order and fluctuations originated in the parent compound with x ¼ 0 [1].
The intertwined phases between the superconductivity and stripe spin density wave
(SDW) order (ferromagnetic stripes along one Fe-Fe bond direction that is antifer-
romagnetically aligned along orthogonal Fe▬Fe bond) are of particular interests. In
both pnictides and cuprates, the experimentally observed nematicity exists in an
exotic phase between the superconductivity (SC) and the stripe SDW [2]. The
nematicity occurs in weakly doped iron pnictides with tetragonal-to-orthorhombic
structural transition [3–17], i.e., in a square unit cell, the point-group symmetry is
reduced from C4 (tetragonal) to C2 (orthorhombic).

At present, there are two scenarios for the development of nematic order
through the electronic configurations [18]. One scenario is the orbital fluctuations
[19–23]. The structural order is driven by orbital ordering. The orbital ordering
induces magnetic anisotropy and triggers the magnetic transition at a lower
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temperature. The other scenario is the spin fluctuation [24–27]. The magnetic
mechanism for the structural order is associated with the onset of SDW.

Recently, Lu et al. [28] reported that the low-energy spin fluctuation excitations in
underdoped sample BaFe1:915Ni0:085As2 change from C4 symmetry to C2 symmetry in
the nematic state. Zhang et al. [29] exhibited that the reduction of the spin-spin
correlation length at 0; πð Þ in BaFe1:935Ni0:065As2 happens just below Ts, suggesting
the strong effect of nematic order on low-energy spin fluctuations. Apparently, these
experiments above have provided a spin-driven nematicity picture.

The partial melting of SDW has been proposed as the mechanism to explain the
nematicity. The properties of the spin-driven nematic order have been studied in
Landau-Ginzburg-Wilson’s theory [18, 24–26]. Meanwhile, the lack of the realistic
microscopic model is responsible for the debates where the leading electronic
instability, i.e., the onset of SDW, causes the nematic order. Recently, an extended
random phase approximation (RPA) approach in a five-orbital Hubbard model
including Hund’s rule interaction has shown that the leading instability is the SDW-
driven nematic phase [30]. Although the establishment of the nematicity in the
normal state has attracted a lot of attentions, the microscopic description of the
nematic order and, particularly, the relation between SC and the nematic order are
still missing.

The magnetic mechanism for the structural order is usually referred to the Ising-
nematic phase where stripe SDW order can be along the x-axis or the y-axis. The
nematic phase is characterized by an underlying electronic order that the Z2 sym-
metry between the x- and y- directions is broken above and the O(3) spin-rotational
symmetry is preserved [25].

The magnetic configuration in FeSCs can be described in terms of two magnetic
order parameters ∆x and ∆y. Both order parameters conventionally defined in
momentum space are written as

∆ℓ ¼ ∑
k

c†kþQℓ,α
σαβck,β, (1)

where ℓ ¼ x or y. Here the wave vectors Qx ¼ π;0ð Þ and Qy ¼ 0; πð Þ correspond
to the spins parallel along the y-axis and antiparallel along the x-axis and the spins
parallel along the x-axis and antiparallel along the y-axis, respectively.

In the stripe SDW state, the order parameters are set to ∆xh i 6¼ 0 or ∆y

� �
6¼ 0,

i.e., ∆ℓh i 6¼ 0: This implies to choose an ordering vector either Qx or Qy. The Z2

symmetry indicating to the degenerate of spin stripes along the y-axis
(corresponding to Qx) or x-axis (corresponding to Qy) is broken. In addition, the O

(3) spin-rotational symmetry is also broken. In the real space configuration, the
magnetic ground state is an orthorhombic uniaxial stripe state. The stripe order
reduces the point-group symmetry of a unit cell from C4 (tetragonal) to C2 (ortho-

rhombic). In the nematic state, the order parameters are set to ∆xh i ¼ ∆y

� �
¼ 0 and

∆
2
x

� �
6¼ ∆

2
y

D E
. This implies that the magnetic fluctuations associated with one of the

ordering vectors are stronger than the other ∆
2
x

� �
> ∆

2
y

D E
or ∆

2
y

D E
> ∆

2
x

� �
. Therefore,

the Z2 symmetry is broken, but the O(3) spin-rotational symmetry is not. In the real
space configuration, the x- and y-directions of the magnetic fluctuations are
inequivalent.

Recently, the reentrant C4 symmetry magnetic orders have been reported in
hole-doped Fe-pnictide [27, 31, 32]. A double-Q order (choose both Qx and Qy) has

been proposed to change the ground state from striped to tetragonal [33, 34].
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Two stripe orders with the ordering vectors Qx and Qy are superposed to preserve

the tetragonal symmetry. As a matter of fact, the nematic phase is characterized by
an underlying electronic order that spontaneously breaks tetragonal symmetry.
Since the double-Q order does not break the C4 symmetry, it is not suitable to
explain the nematicity.

The magnetic fluctuations trigger a transition from the tetragonal-to-ortho-

rhombic phase. At very high temperature, T>TS, ∆xh i ¼ ∆y

� �
¼ 0, and the fluctua-

tions of all order parameters have equal strength, i.e., ∆
2
x

� �
¼ ∆

2
y

D E
. As the

temperature lowers, TN <T <TS, the thermodynamic average of order parameters

still remains ∆xh i ¼ ∆y

� �
¼ 0 but ∆

2
x

� �
6¼ ∆

2
y

D E
. The fluctuations of one of the

orders ∆x are on average different from the fluctuations of the other order ∆y

implying a broken Z2 symmetry and a preserved O(3) symmetry. When the tem-
perature is below TN, the magnetic ground state is a stripe SDW state, i.e., ∆xh i ¼ 0
or ∆y

� �
¼ 0.

In this chapter, we will exploit a two-orbital model to study the interplay
between SC and nematicity in a two-dimensional lattice. The two-orbital model has
been successfully used in many studies such as quasiparticle excitation, the density
of states near an impurity [35, 36] and the magnetic structure of a vortex core [37].

2. Model

Superconductivity in the iron-pnictide superconductors originates from the
FeAs layer. The Fe atoms form a square lattice, and the As atoms are alternatively
above and below the Fe-Fe plane. This leads to two sublattices of irons denoted by
sublattices A and B. Many tight-binding Hamiltonians have been proposed to
study the electronic band structure that includes five Fe 3d orbitals [38], three Fe
orbitals [39, 40], and simply two Fe bands [41–43]. Each of these models has its
own advantages and range of convenience for calculations. For example, the five-
orbital tight-binding model can capture all details of the DFT bands across the
Fermi energy in the first Brillouin zone. However, in practice, it becomes a formi-
dable task to solve the Hamiltonian with a large size of lattice in real space even in
the mean-field level. Several studies used five-orbital models in momentum space to
investigate the single-impurity problem for different iron-based compounds such as
LaFeAsO1�xFx, LiFeAs, and KxFe2�ySe2. These studies confirmed that the detail of

electronic bands strongly influences on the magnitude and location of the in-gap
resonant states generated by the scattering of quasiparticles from single
impurity [44–46].

On the other hand, the two-orbital models apparently have a numerical advan-
tage dealing with a large size of lattice while retaining some of the orbital characters
of the low-energy bands. Among the two-orbital (dxz and dyz) models, Zhang [47]
proposed a phenomenological approach to take into account the two Fe atoms per
unit cell and the asymmetry of the As atoms below and above of the Fe plane. Later
on, Tai and co-workers [48] improved Zhang’s model by a phenomenological two-
by-two-orbital model (two Fe sites with two orbitals each). The obtained low-
energy electronic dispersion agrees qualitatively well with DFT in LDA calculations
of the entire Brillouin zone of the 122 compounds.

The multi-orbital Hamiltonian of the iron-pnictide superconductors in a two-
dimensional square lattice is described as
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H ¼ ∑
ijuvα

tijuvc
†
iuαcjvα � μ∑

iuα
niuα þU∑

iu
niu↑niu↓ þ U0 � JH

2

� �
∑

i, u < v, αβ
niuαnivβ

� 2JH ∑
i, u < v

Siu � Siv þ J0 ∑
i,u 6¼v

c†iu↑c
†
iu↓civ↓civ↑,

(2)

where

niuα ¼ c†iuαciuα, (3)

Siu ¼
1

2
∑
αβ

c†iuασαβciuβ, (4)

with σαβ the Pauli matrices. The operators c†iuα (ciuα) create (annihilate) an ectron
with spin α, β ¼ ↑,↓ in the orbital u, v ¼ 1, 2 on the lattice site i; tijuv is the hopping

matrix element between the neighbor sites, and μ is the chemical potential. U (U0) is
the intraorbital (interorbital) on-site interaction. Hund’s rule coupling is JH and the
pair hopping energy is J0. The spin-rotation invariance gives U0 ¼ U � 2JH and
J0 ¼ JH [49]. Repulsion between electrons requires JH <U∕3.

Here, we adopt Tai’s phenomenological two-by-two-orbital model because it is
able to deal with a large size of lattice in many aspects and the details of low-energy
bands are similar to the results from DFT + LDA. In a two-orbital model, the
hopping amplitudes are chosen as shown in Figure 1 [48] to fit the band structure
from the first-principle calculations:

t1 ¼ ti, i�x yð Þ,u,u ¼ �1, (5)

Figure 1.
(color online) two-dimensional square lattice of the iron-based superconductors. There are two Fe atoms (green
and gray color) in a unit cell, and each atom has two orbitals. The bright color circle represents the first orbital,
and the faded color circle represents the second orbital. Solid lines indicate the hopping between the atoms in the
same orbital and dashed lines indicate the hopping between the atoms in the different orbitals.
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1þ �1ð Þxþyþu

2
t2 þ

1� �1ð Þxþyþu

2
t3 ¼ ti, i� xþyð Þ,u,u ¼ 0:08

1þ �1ð Þx�yþu

2
t3 þ

1� �1ð Þx�yþu

2
t2 ¼ ti, i� x�yð Þ,u,u ¼ 1:35

;

8
>>><
>>>:

(6)

t4 ¼ ti, i� x�yð Þ,u,v 6¼u ¼ �0:12, (7)

t5 ¼ ti, i�x yð Þ,u,v6¼u ¼ 0:09, (8)

t6 ¼ ti, i�2x 2yð Þ,u,u ¼ 0:25, (9)

where u 6¼ v indicates two different orbitals.
Figure 1 shows the hopping parameters between unit cells and orbitals. For the

same orbital, the hopping parameters t2 and t3 are chosen differently along the
mutually perpendicular directions. The C4 symmetry on the same orbital between
different sublattices is broken. However, t2 and t3 are twisted for the different Fe
atoms on the same sublattice which restore the C4 symmetry of the lattice structure.

In the mean-field level

H ¼ H0 þH∆ þHint, (10)

the Hamiltonian is self-consistently solved accompanied with sþ�-wave
superconducting order. The mean-field scheme is the same as Ref. [48]:

H0 ¼ ∑
ijuvα

tijuvc
†
iuαcjvα � μ∑

iuα
niuα, (11)

H∆ ¼ ∑
ijuαβ

∆ijuc
†
iuαc

†
juβ þ h:c:

� �
, (12)

Hint ¼ U ∑
iu, α6¼β

niuβ
� �

niuα þ U0 ∑
i, u < v, α6¼β

niuβ
� �

nivα þ U0 � JHð Þ ∑
i, u < v, α

niuαh inivα:

(13)

The next nearest-neighbor intraorbital attractive interaction V is responsible for
the superconducting order parameter Δijuu ¼ V ci↑cj↓

� �
[50–52]. According to the

literatures where U is chosen to be 3.2 or less [48, 52], the magnetic configuration is
a uniform SDW order. In order to make the stripe SDW order and the nematic order
by changing electron doping, i.e., the chemical potential μ, we choose the parame-
ters of interactions U ¼ 3:5, JH ¼ 0:4, and V ¼ 1:3 to induce a nematic order within
a small doping range.

In momentum space, the spin configuration is determined by the order param-
eters ∆x and ∆y. The combination of these order parameters lacks the visualization
of the magnetic structure in real space. Therefore, we choose the staggered magne-
tization Mi in a lattice to study the states driven by the magnetic mechanism. The
magnetic configuration is described as

Mi ¼ M1 cos qy � ri
� �

eiQx�ri þM2 sin qx � ri
� 	

eiQy�ri , (14)

where the wave vectors qx ¼ 2π=λ;0ð Þ and qy ¼ 0; 2π=λð Þ correspond to a

modulation along the x-axis and the y-axis with wavelength λ. M1 and M2 are the
amplitude of the modulation.

In the case of the absence of both qx and qy, Mi becomes
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Mi ¼ M1e
iQx�ri þM2e

iQy�ri : (15)

As M1 ¼ 0 or M2 ¼ 0 is chosen, i.e., choosing the ordering vector either Qx or
Qy, the state is a stripe SDW state. The existence of qx and qy does not affect the

stripe SDW state. As two values of M1 and M2 are arbitrarily chosen, the spin
configuration forms a stripe SDW along the 1; 1ð Þ direction. The existence of qx and
qy has a lot of influences on the nematic state.

In the nematic state, the presence of both Q and q ordering vectors is necessary.
Unlike the double-Q model, with the choice M1 6¼ M2, the magnitudes of the mod-
ulated antiparallel spins along the x-axis and the y-axis are different due to the
existence of q vectors. The magnetic configuration is attributed to two inequivalent
stripes interpenetrating each other and formed a checked pattern. The checked
pattern has the same period along the x- and y-directions. The period is determined
by the value of q in the periodic boundary conditions. The value of q, therefore,
cannot be arbitrary and must commensurate the lattice to stabilize the modulation
and lower the energy of the system. As two modulated stripes have no phase
difference, the checked patter shows a s-wave-like symmetry. In addition, as the
modulations have a phase shift of π=2, the checked pattern shows a d-wave-like
symmetry.

Figure 2 displays the Fermi surface and the band structure in the absence of
SDW at the normal state, i.e., the superconductivity is set to zero. In the absence of
SDW U ¼ 0ð Þ, the Hamiltonian in momentum space is

Ψ† ¼ c†A1kσ c†A2kσ c†B1kσ c†B2kσ
� 	

, (16)

H0 ¼ ∑
kσ

Ψ†

εA1 ε12 εAB εc

ε12 εA2 εc εAB

εAB εc εB1 ε12

εc εAB ε12 εB2

0
BBB@

1
CCCAΨ, (17)

where

εA1 ¼ �2t3 cos kx � 2t2 cos ky � 4t6 cos kx cos ky, (18)

εA2 ¼ �2t2 cos kx � 2t3 cos ky � 4t6 cos kx cos ky, (19)

εB1 ¼ �2t2 cos kx � 2t3 cos ky � 4t6 cos kx cos ky, (20)

Figure 2.
(color online) (a) and (b) are, respectively, the band structure and the Fermi surface without SDW. The Fermi
energy (red dashed line) corresponds to the electron filling n ¼ 2:1.
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εB2 ¼ �2t3 cos kx � 2t2 cos ky � 4t6 cos kx cos ky, (21)

ε12 ¼ t� 24 cos kx � 2t4 cos ky, (22)

εAB ¼ �4t1 cos
kx
2

cos
ky
2
, (23)

εc ¼ �4t5 cos
kx
2

cos
ky
2
: (24)

The eigenvalues are

E1,k ¼ εþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2� þ ε12 � εABð Þ2

q
� εc � μ, (25)

E2,k ¼ εþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2� þ ε12 � εABð Þ2

q
� εc � μ, (26)

E3,k ¼ εþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2� þ ε12 þ εABð Þ2

q
þ εc � μ, (27)

E4,k ¼ εþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2� þ ε12 þ εABð Þ2

q
þ εc � μ, (28)

where

ε� ¼ εA1 � εB1

2
: (29)

Figure 2(a) shows that two hole bands are around the Γ point and two electron
bands are around the M point. There is no gap in the band structure where the
superconductivity is able to open a gap. The nature of Fermi surface is revealed by
the line at the Fermi energy crossing the band dispersion through Γ� X�M� Γ

points. Figure 2(b) displays that the Fermi surface contains two hole pockets that
are centered at Γ point and two electron pockets that are centered at M points. In
addition, the Fermi surface also exhibits the C4 symmetry of the lattice structure.

In the stripe SDW state, the spin configuration is shown as Figure 3. The stripe
SDW order enlarges the two-Fe unit cell to four-Fe unit cell as denoted by the blue

Figure 3.
(color online) the schematic lattice structure of the Fe layer in the stripe SDW state. Blue dashed square denotes
the four-Fe unit cell in the stripe SDW state.
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dashed square in Figure 3. The antiferromagnetic order is along the X0-axis and
the ferromagnetic order is along the Y0-axis. The magnetic unit cell (four-Fe unit

cell) with lattice spacing
ffiffiffi
2

p
a is oriented at a 45° angle with respect to the non-

magnetic unit cell (two-Fe unit cell). The magnetic Brillouin zone is a square
oriented at a 45° angle with respect to the crystal Brillouin zone. The size of the
magnetic unit cell is twice of the nonmagnetic unit cell, and the size of the magnetic
Brillouin zone is half of the crystal Brillouin zone. The Hamiltonian in momentum
space is

eΨ†

k ¼ c†
A

1ð Þ
1 k

c†
A

2ð Þ
1 k

c†
B

1ð Þ
1 k

c†
B

2ð Þ
1 k

c†
B

1ð Þ
2 k

c†
B

2ð Þ
2 k

c†
A

1ð Þ
2 k

c†
A

2ð Þ
2 k

� �
, (30)

H ¼ ∑
k

eΨ†

k � h � eΨk, (31)

h ¼

εA1
1

0 εtx1 εtx5 εty1
εty5

εt23 εt4

0 εA2
1

εtx5 εtx1 εty5
εty1

εt4 εt32

εtx1 εtx5 εB1
1

0 εt32 εt4 εty1
εty5

εtx5 εtx1 0 εB2
1

εt4 εt23 εty5
εty1

εty1
εty5

εt32 εt4 εB1
2

0 εtx1 εtx5
εty5

εty1
εt4 εt23 0 εB2

2
εtx5 εtx1

εt23 εt4 εty1
εty5

εtx1 εtx5 εA1
2

0

εt4 εt32 εty5
εty1

εtx5 εtx1 0 εA2
2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

, (32)

where

εtx1 ¼ �2t1 cos kx ¼ �2t1 cos
kx0ffiffiffi
2

p
� �

, (33)

εty1
¼ �2t1 cos ky ¼ �2t1 cos

ky0ffiffiffi
2

p
� �

, (34)

εtx5 ¼ �2t5 cos kx ¼ �2t5 cos
kx0ffiffiffi
2

p
� �

, (35)

εty5
¼ �2t5 cos ky ¼ �2t5 cos

ky0ffiffiffi
2

p
� �

, (36)

εt23 ¼ �2t2 cos kx þ ky
� 	

� 2t3 cos kx � ky
� 	

¼ �2t2 cos
kx0ffiffiffi
2

p þ ky0ffiffiffi
2

p
� �

� 2t3 cos
kx0ffiffiffi
2

p � ky0ffiffiffi
2

p
� �

, (37)

εt32 ¼ �2t3 cos kx þ ky
� 	

� 2t2 cos kx � ky
� 	

¼ �2t3 cos
kx0 þ ky0ffiffiffi

2
p

� �
� 2t2 cos

kx0 � ky0ffiffiffi
2

p
� �

, (38)

εt4 ¼ �2t4 cos kx þ ky
� 	

� 2t4 cos kx � ky
� 	

¼ �4t4 cos
kx0ffiffiffi
2

p cos
ky0ffiffiffi
2

p , (39)

εt6 ¼ �2t6 cos 2kx � 2t6 cos 2ky ¼ �2t6 cos
ffiffiffi
2

p
kx0 � 2t6 cos

ffiffiffi
2

p
ky0 (40)

εA1
1
¼ εt6 þ U nA1

1k↓

D E
þU0 nA2

1k↓

D E
þ U0 � JHð Þ nA2

1k↑

D E
� μ, (41)

εA2
1
¼ εt6 þ U nA2

1k↓

D E
þU0 nA1

1k↓

D E
þ U0 � JHð Þ nA1

1k↑

D E
� μ, (42)

εB1
1
¼ εt6 þU nB1

1k↓

D E
þ U0 nB2

1k↓

D E
þ U0 � JHð Þ nB2

1k↑

D E
� μ, (43)
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εB2
1
¼ εt6 þU nB2

1k↓

D E
þU0 nB1

1k↓

D E
þ U0 � JHð Þ nB1

1k↑

D E
� μ: (44)

According to the itinerant picture, the interactions between two sets of pockets
give rise to a SDW order at the wave vector connecting them with Qx ¼ π;0ð Þ or
Qy ¼ 0; πð Þ. For example, as choosing the ordering vector Qx, the spin configura-

tion has antiparallel spins along the X0-direction and parallel spins along the Y0-
direction [35]. The antiferromagnetism causes the gapless structure along the X0-
direction, and the ferromagnetism opens a gap along the Y0-direction, as shown in
Figure 4(a). There are four pockets centered at the Γ point, and two pockets along
the Γ� Y0 direction are inequivalent to other two pockets along the Γ� X0 direc-
tion. The C2 symmetry of the Fermi surface resulting from the SDW gap is shown in
Figure 4(b).

In the nematic state, the antiparallel spins are along both the X
0 0
and Y

0 0
direc-

tions. The nematic unit cell is oriented at a 45° with respect to the nonmagnetic unit
cell. The nematic Brillouin zone is also a square oriented at a 45° angle with respect

to the crystal Brillouin zone. Since the antiferromagnetism is along both the X
0 0
and

Y
0 0
directions, there is no gap in the band structure. In addition, as M1 <M2, the bands

along the Y
0 0
direction are lifted higher and cause the bands to be asymmetric with

respect to the Γ point. The asymmetric bands result in deformed Fermi surfaces
near the Γ point. As shown in Figure 5(a), the blue curve in the band structure
forms an elliptic hole-pocket Fermi surface. Furthermore, the elliptic Fermi surface
results from the unequal contribution of two orbitals dxz and dyz. The mechanism
behind the fluctuations of dxz and dyz orbitals can be understood from an extended
RPA approach where dxz, dyz, and dxy orbitals equally contribute to the SDW
instability, and in particular the dxy orbital plays a strong role in the nematic
instability [30]. The nematic instability breaks the degeneracy of two orbitals dxz
and dyz and causes the unequal charge distributions nxz kð Þ and nyz kð Þ. The C2-
symmetry of the Fermi surface results from the broken degeneracy of two orbitals
dxz and dyz (blue and red curves in Figure 5(b)).

Recently, Qureshi et al. [53], Wang et al. [54], Steffens et al. [55], and Luo et al.
[56] pointed out that in-plane spin excitations exhibit a large gap and indicating that
the spin anisotropy is caused by the contribution of itinerant electrons and the
topology of Fermi surface. These experiments indicate that the elliptic spin fluctu-
ations at low energy in iron pnictides are mostly caused by the anisotropic damping

Figure 4.
(color online) (a) and (b) are, respectively, the band structure and the Fermi surface in the stripe SDW state.
The Fermi energy (red dashed line) corresponds to the electron filling n ¼ 2:04. X0 and Y 0indicate the magnetic
Brillouin zone of the stripe SDW state.
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of spin waves within FeAs plane and the topology of Fermi surface. The degeneracy
of orbitals will introduce the single-ion anisotropy in spin fluctuations.

3. Visualize nematicity in a lattice

To visualize the nematicity in a lattice, we self-consistently solve the
Bogoliubov-de Gennes (BdG) equations for the nematic state in a two-dimensional
square lattice:

∑
jv

hijuv↑ ∆ijuv

∆
∗
ijuv h∗ijuv↓

 !
unjv↑
vnjv↓

 !
¼ En↑

uniu↑
vniu↓

 !
, (45)

where

hijuα ¼ tijuα þ �μþ U niuβ

� �
þU0 nivαh i þ U0 � JHð Þ nivβ

� �� �
δij, (46)

and U0 ¼ U � 2JH. The self-consistency conditions are

niu↑h i ¼ ∑
n

uniu↑


 

2f Enð Þ, (47)

niu↓h i ¼ ∑
n

vniu↓


 

2f 1� Enð Þ, (48)

Δijuu ¼
V

2
∑
n
uniu↑v

n∗
iu↓tanh

βEn

2

� �
: (49)

Here, f Enð Þ is the Fermi distribution function.
In Figure 6, we show the magnetic configuration in the coexisting state of the

nematic order and SC. To view the detail of the structure, the slided profile along
the peaks along the x- or y-direction is made (as shown on the sides of Mi in
Figure 6). There are two sinusoidally modulated magnetizations on each panel.
The warm color and cold color modulations represent the spin-up modulation and
the spin-down modulation, respectively. The amplitude of each modulation on
the left and right panels corresponds to the value of M1 and M2. On the left panel,

Figure 5.
(color online) (a) and (b) are, respectively, the band structure and the Fermi surface in the nematic state. The
asymmetric band (blue color) is responsible for the elliptic Fermi surface around the Γ point. The blue and red
solid curves represent the major contributions from the orbitals dxz and dyz, respectively. The chemical potential

is chosen as the electron filling n ¼ 2:1. X
0 0
, and Y

0 0
indicate the magnetic Brillouin zone of the nematic state.
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we have M1 cos qy � ri
� �

¼ 0:04 cos 2πri
28a

� 	
, and on the right panel, we have

M2 cos qx � ri
� 	

¼ 0:06 sin 2πri
28a

� 	
. Both modulations have the same period 28a. Since

M1 <M2, the configuration is orthorhombic and breaks the 90° rotational symmetry.
Figure 7 shows the Fourier transformation of the spatial configuration of the

nematic fluctuations. Two peaks appearing at �π;0ð Þ correspond to the ordering
vector Qx and two peaks exhibiting at 0;�πð Þ correspond to the ordering vector Qy.

We found that the intensities of peaks associated with the ordering vector Qx are
greater than peaks associated with the ordering vector Qy, which is due to the

unequal value ofM1 andM2. The intensities of two peaks along the kx ky
� 	

-direction

have the same magnitude indicating ∆xh i ¼ ∆y

� �
¼ 0. Moreover, the

Figure 6.
(color online) the real space configurations of the magnetizationMi are plotted on a 56� 56 square lattice. The
left and the right panels are the sliced profile along the peaks along the y- and x-directions, respectively. Two
curves are shown in both panels. The upper and lower curves represent the spin-up and spin-down
configurations, respectively.

Figure 7.
(color online) the Fourier transformation of the 56� 56 spatial magnetic configuration.
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nonequivalence of the intensities between the kx- and ky-directions indicates

∆
2
y

D E
> ∆

2
x

� �
. Therefore, the modulated antiparallel spin configuration is the nematic

state. These features are preserved even as the SC order is equal to zero. This result
is in agreement with the neutron scattering experiments [3, 10].

We further illustrate the electronic charge density ni ¼ ni↑ þ ni↓ð Þ and the sþ�-
wave SC order parameter Δi as shown in Figure 8(a), (b). Particularly, the
nematicity of the spin order induces a modulated charge density wave (CDW)
which does not occur in the stripe SDW state. The CDW consists of crisscrossed
horizontal and vertical stripes. The amplitudes of the vertical stripes are larger than
the horizontal stripes. Therefore, the CDW forms a checked pattern, instead of a
checkerboard pattern. The stripes on both x- and y- directions have the same period
14a which is the half period of the magnetization.

Moreover, although the checked pattern of the CDW is twofold symmetry, the
CDW exhibits a dx2�y2-symmetry, instead of a dxy-symmetry (diagonal stripes

crisscrossed pattern), form factor density wave. The space configuration of the SC
order parameter Δi shows the same features as the CDW order, as shown in
Figure 8(b).

Figure 8.
(color online) (a) the spatial configuration of the electronic charge density ni. (b) the spatial configuration of
the sþ�-wave superconducting order parameter Δi.
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4. The local density of states

The local density of states (LDOS) proportional to the differential tunneling
conductance as measured by STM is expressed as

ρi Eð Þ ¼ � 1

NxNy
∑
nu

uniu↑


 

2f 0 En � Eð Þ þ vniu↓



 

2f 0 En þ Eð Þ
h i

, (50)

where Nx �Ny ¼ 24� 24 is the size of supercells.
In the striped SDW state, spins are parallel in the y-direction and antiparallel in

the x-direction and cause the gap and gapless features in the band structure,
respectively. The SDW gap shifts toward negative energy, and the coherence peak
at the negative energy is pushed outside the SDW gap and enhanced. The coherence
peak at the positive energy is moved inside the SDW gap and suppressed. This
is a prominent feature caused by the magnetic SDW order that the intensities
of superconducting coherence peaks are obvious asymmetry (as shown in
Figure 9(a)) [57].

Figure 9.
(color online) the LDOS in the (a) stripe SDW state and (b) nematic state. The dashed (blue) line represents
the LDOS without magnetization (Mi ¼ 0).

Figure 10.
(Color online) The LDOS map at E ¼ 0:14 with Mi 6¼ 0.
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In the nematic state, spins are antiparallel in the x- and y-directions leading to a
gapless feature in the band structure. The superconducting gap is the only gap that
appears in the LDOS. Moreover, comparing to the state without SDW, the compe-
tition between the nematic order and the superconducting order causes the slightly
suppression of the coherence peaks. The feature of the suppression results in a dip
at the negative energy outside the coherence peaks (as shown in Figure 9(b)).

Furthermore, Figure 10 displays a spatial distribution of LDOS, also known as
LDOS map, at E ¼ 0:14. The LDOS map shows the same features as the charge
density distribution at the energy within the coherence peaks. The LDOS map
exhibits a checked pattern, twofold symmetric configuration, and dx2�y2-symmetry

form factor density wave. These features have not yet been reported by STM
experiments.

It is worth to note that STM measurements by Chuang et al. [5] and Allan [58]
reported that the dimension of the electronic nanostructure is around 8a and the
nanostructure aligns in a unidirectional fashion. The highly twofold symmetric
structure of the QPI patterns is represented by using the Fourier transformation of
the STS imaging. Moreover, in cuprate, the more advanced measurement of the
atomic-scale electronic structure has shown a d-wavelike symmetry form factor
density wave [59, 60]. There are four peaks that appear around the center of the
momentum space in the QPI patterns. Such an atomic-scale feature in cuprates has
not yet been reported in iron pnictides and in the nematic state.

5. Phase diagram

To further verify the spin configuration of the nematic order, a phase diagram is
presented in Figure 11. In the phase diagram, the stripe SDW order, nematic order,
and sþ�-wave superconducting order as a function of doping are obtained from the
self-consistent calculation to solve the BdG equations.

In the hole-doped region, the magnetization exhibits the stripe SDW order and
drops dramatically around n ¼ 1:85 and vanishes at n ¼ 1:80. In the meantime, the
sþ�-wave superconducting order reaches its maximal value at n ¼ 1:85 and then
gradually decreases.

In the electron-doped region, the stripe SDW order (green curve) has its maxi-
mal value at n ¼ 2:00, then rapidly diminishes in a small region of doping, and
finally reaches zero at n ¼ 2:09. The superconductivity (blue curve) swiftly
increases in a small region from n ¼ 2:02 to n ¼ 2:04, then reaches its maximal

Figure 11.
(color online) the phase diagram of the stripe SDW order (blue), nematic order (green), and superconducting
order (red) as a function of doping.
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value at n ¼ 2:10, and finally gradually decreases to almost zero around n ¼ 2:40.
The nematic state (red region) is in a small region next to the stripe SDWwhere the
nematic transition line (red dashed curve) tracks closely the stripe SDW transition
line. The nematic order is favored to appear in the electron-doped regime, but not
the hole-doped regime.

There are two regions where the stripe SDW coexist with the SC and the nematic
order coexists with the SC. In the region where the stripe SDW coexist with the SC,
the magnetic structure is an orthorhombic uniaxial stripe state. The ordering vector
is either Qx or Qy implying ∆xh i ¼ 0 or ∆y

� �
¼ 0. In the region where the nematic

order coexists with the SC, the magnetic structure is a crisscrossed stripe state with
twofold symmetry. The ordering vectors are Qx and Qy associated with two modu-

lating vectors qx and qy implying ∆xh i ¼ ∆y

� �
¼ 0 and ∆

2
x � ∆

2
y

D E
6¼ 0 [61].

It is worth to note that the phase diagram of the electron-doped region is
consistent with Figure 1.3 of Kuo’s thesis on Ba Fe1�xCoxAsð Þ2 [62]. Both figures
show the same behavior of the nematic phase. Near the optimally doped region
under the superconducting dome, it is mentioned that the long-range nematic order
coexists with the superconductivity. However, such results still have not been
reported from experiments. In addition, the magnetoresistivity of Ba0:5K0:5Fe2As2
reported a nematic superconducting state recently and suggested that the hole-
doped superconductor is the mixture of s-wave and d-wave superconducting orders
[63]. These results provide a different path to further researches to understand the
mechanism of the nematic state in the superconductivity.

6. Conclusions

The two-orbital Hamiltonian used in the iron-based superconductors has always
been questioned for its validity. Many studies have approved that a lot of phenom-
ena are attributed to dxz and dyz orbitals. In particular, dxz and dyz orbitals are
responsible for the SDW instability.

The stripe SDW order opens a gap in the band structure and deforms the Fermi
surface. However, the band structure of the nematic order is gapless, and the Fermi
surface is deformed to an ellipse. The mechanism can be understood from the
instability of SDW. The nematic order has visualized as a checked pattern formed
by a crisscrossed modulated horizontal and vertical stripes. The inequivalent
strengths of the horizontal and vertical stripes break the degeneracy of two orbitals
dxz and dyz and cause an elliptic Fermi surface. The Fourier transformation of the
orthorhombic structure of the magnetization shows two uneven pairs of peaks at
(�π,0) and (0,�π). Moreover, the LDOS map shows a dx2-y2-symmetry form factor
density wave.

Finally, the nematic order is favored to exist in the electron-doped regime, but
not the hole-doped regime.
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