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Chapter

Trypanosoma cruzi Infection: 
Mechanisms of Evasion of 
Immune Response
Alondra Cruz Reyes and José Luis Rosales Encina

Abstract

Trypanosoma cruzi has a complex life cycle that involves a vertebrate as well as an 
invertebrate host. In this, last two stages are present: trypomastigotes, the flagel-
lated and infective stage and the amastigote, which is the replicative stage. T. cruzi 
is considered one of the most successful intracellular parasites, because it cannot be 
eliminated by the immune system and has the capacity of invading, surviving, and 
replicating inside the host cells. The effects that the infection has over the immune 
system have been widely studied at the molecular and cellular level. However, 
understanding the mechanisms that the parasite uses to evade the immune system 
to persist in the infected individual is necessary for the effective development 
of drugs and/or vaccines. In this chapter, a compilation of the already described 
mechanisms will be carried out.

Keywords: Trypanosoma cruzi, immune system, T. cruzi immune evasion, immune 
modulation

1. Introduction

Chagas disease or American trypanosomiasis is a potentially life-threatening 
illness caused by the protozoan parasite, Trypanosoma cruzi. It is found mainly in 21 
Latin American countries, where it is a mostly vector borne. An estimated 8 million 
people are infected worldwide, mostly in Latin America. Chagas disease has spread 
to the other continents over the last century mainly because of enhanced means of 
travel and global population movement to and from Latin America. It is estimated 
that over 10,000 people die every year from clinical manifestations of Chagas 
disease and more than 25 million people risk acquiring the disease [1].

Chagas disease is characterized by two stages, the initial phase is known as acute 
phase and lasts a few weeks and is characterized by an elevated parasitemia associated 
with fever, headache, nausea, that is rarely lethal and a severe hepatomegaly. The acute 
phase is followed by a chronic phase, which remains asymptomatic for many years. The 
parasites are then difficult to observe in the blood, and the other symptoms are also less 
severe. Most patients remain in this indeterminate stage for life (absence of any symp-
tom), 5–10% of the people will develop anatomical and functional abnormalities at 
their esophagus and their colon, while 20–40% starts presenting a symptomatic chronic 
phase characterized by a progressive and debilitating Chagasic cardiomyopathy and 
sometimes mega syndromes. Arrhythmias increasing severely lead to congestive cardiac 
failure and death of the patients usually 10–30 years after the initial infection [2, 3].
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The recognition of T. cruzi by the immune system relies on the activation of 
innate immunity and adaptative immunity. In this activation process, the recogni-
tion of pathogen-associated molecular patterns (PAMP) by Toll-like receptors of B 
and T cells is very important as a bridge between both types of immunity [4]. The 
innate and acquired immune responses are characterized by the recruitment of den-
dritic cells, macrophages, natural killer (NK), and B and T lymphocytes, as well as 
their secretion of soluble factors (cytokines and chemokines) [5]. IFN-γ plays a key 
role during T. cruzi infection, increasing the production of nitric oxide by macro-
phages, which inhibits the development of the intracellular from T. cruzi [6]. CD4+ 
Th1 lymphocyte that produces the cytokines interleukin-2 (IL-2) and IFN-γ can 
stimulate the expansion of cytotoxic CD8+ T lymphocytes, a central mechanism for 
systemic protection against T. cruzi infection [5, 7]. Recent studies have confirmed 
that CD8+ T cells act both indirectly by secreting IFN-γ to activate macrophages and 
directly through the production of perforin and their concomitant cytotoxic activ-
ity [8]. Thus, there is now a growing consensus that protective immune response 
against T. cruzi requires the activation of a Th1 immune profile, with the stimulation 
of CD8+ T cells, while antibodies may play a rather secondary role [9].

Although the immune response generated with Trypanosoma cruzi infection is 
potent and active, it fails to clear parasite infection, leading to the chronic phase 
of the Chagas disease. The parasite has developed sophisticated strategies to evade 
host immune responses. The Trypanosoma cruzi immune evasion is mainly based 
on altering the complement system and inhibitory effects on the mononuclear 
phagocyte system lifestyle [10–12], and therefore, this chapter summarizes the 
mechanism employed by Trypanosoma cruzi to escape the host’s deleterious immune 
responses and enter into the host cells and establish persistent infection.

2. Immune evasion during the acute phase

2.1 Escape of the parasitophorous vacuole

Invading the host cell is a complex process that starts with parasite attachment 
to plasmatic membrane and then the compartment is formed called parasitopho-
rous vacuole (VP), which fuses to lysosomes forming the phagolysosome (PLM). 
Acidification of the VP allows trypomastigotes escape from PLM to the cytoplasm, 
where it differentiates into amastigote forms. In the cytoplasm of infected cells, the 
amastigotes multiply by binary fission, they accumulate and transform to blood-
form trypomastigotes, which are released in the bloodstream through the rupture of 
the host cell membrane to find new cells to invade [13–17].

Parasite escape from PLM occurs because the growth and development of 
T. cruzi cannot be maintained within it. Therefore, the trypomastigotes exit to the 
cytoplasm, and after a short period of time, they differentiate into amastigotes, and 
the rupture of this structure is activated by acidic pH generated by the fusion of the 
lysosomes [18].

To survive the acid medium into the phagolysosome, the trypomastigotes 
activate trans-sialidases/neuraminidase, and these enzymes transfer sialic acid 
from the sialyl-glycoconjugates in the membrane of the PLM to the β-galactoses of 
acceptor molecules (GPI-mucins) on the surface of the parasite [19, 20]. More spe-
cifically, the membrane of the phagolysosome is covered on the inner side with two 
important proteins known as lysosomes-associated membrane proteins (LAMP1 Y 
LAMP2), and these proteins are highly sialylated [21, 22]. The terminal sialylation 
of these proteins contributes to maintaining parasitophorous vacuole membrane 
integrity, whereby the removal of sialic acid residues sensitizes the membrane to the 
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action of a transmembrane protein forming pore secreted by the parasite (Tc-TOX) 
[23, 24]. When the phagolysosome is broken, the trypomastigotes are released into 
the cytoplasm.

2.2 Evasion of the oxidative response

Previously, it was mentioned that T. cruzi not only invades phagocytic cells 
via classic phagocytosis but also can actively invade mammalian nonprofessional 
phagocytic cells by induced phagocytosis [25]. The main host cells targeted by  
T. cruzi are resident macrophages at the site of infection and dendritic cells, both of 
which play a main role in the response of the immune system as they are specialized 
antigen presenting cells [11].

Macrophages have two roles; on the one hand, they are important effector cells 
for the control and killing of the intracellular form of the parasite by oxidative and 
nonoxidative mechanism. On the other hand, macrophages may also serve as long-
term host cells that facilitate the replication and survival of the pathogens [26]. 
Macrophage membrane-associated NADPH oxidase is activated during phagocyto-
sis of trypomastigotes, resulting in a stable superoxide radical anion (O2˙

−) which 
can be transformed to H2O2 by superoxide dismutase (SOD) [6, 27, 28].

IFN-γ and TNF synthesized during T. cruzi acute infection stimulate infected 
macrophages to produce high amounts of nitric oxide (˙NO) derived by the enzy-
matic activity of inducible nitric oxide synthase (iNOS). The nitric oxide generated 
reacts with O2˙

− and produces peroxynitrite (ONOO−), a potent oxidant and cyto-
toxic effector molecule against T. cruzi [29–33]. Trypanosoma cruzi has five antioxi-
dant enzymes such as peroxidases and four iron superoxide dismutases (FeSODs) 
that are located at different subcellular compartments of the parasite, which reduce 
equivalents from NADPH and defend the parasite against host oxidative stress of 
the host (Tables 1 and 2) [27, 34].

2.3 Complement evasion

Trypomastigotes after being released in the bloodstream become a targeted of 
the preexisting soluble factors that potentially recognize and destroy them by dif-
ferent effectors [11]. Serum components, such as the complement system, consist 
of 35 or more soluble protein and cell surface receptors/regulators that interact with 
pathogen structures and activate a cascade of proteases that eliminate invading 
parasites, and this system comprises the first line of defense [16, 43–45].

Peroxidase Subcellular 

location

Function

Tryparedoxin peroxidase 

(TcCPX)

Cytosol Detoxify ONOO−, H2O2 and small-chain 

organic hydroperoxides [34–37]

Tryparedoxin peroxidase 

(TcMPX)

Mitochondria

Glutathione peroxidase I 

(TcGPXI)

Cytosol glycosome Hydroperoxidases [38, 39]

Glutathione peroxidase II 

(TcGPXII)

Endoplasmic 

reticulum

Lipid hydroperoxidases [34, 38, 39]

Ascorbate-dependent heme 

peroxidase (TcAPX)

Endoplasmic 

reticulum

Resistance H2O2 [34, 40]

Table 1. 
Peroxidases of Trypanosoma cruzi.
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Briefly, the action of the classical pathway is mediated by the antibodies 
binding to pathogen antigens, then the antibodies interact with the complement 
C1 protein, and it cleaves C2 and C4 to generate C2a and C4b, which join to the 
pathogen surface and form the C3 convertase C4b2a [16, 46]. Lectin complement 
pathway is the first to recognize T. cruzi; this is active by the binding of ficolins to 
the carbohydrates on the parasite surface and also mannan-binding lectins (MBLs) 
to the mannan on the surface of the parasite; then cysteine proteases bound to these 
molecules and cleave C2 and C4 and; this event also generates the C3 convertase 
C4b2a [47–49]. Finally, the alternative pathway is activated by the spontaneously 
hydrolyzed C3 or C3b originating from the other complement pathways; C3b 
interacts with factor B, and the latter in then cut into Bb by factor D, forming the C3 
convertase C3bBb [50]. The three pathways differ in the initial steps of activation, 
but all three converge to produce a C3 convertase and then a C5 convertase, allow-
ing the formation of the membrane attack complex (MAC) which is responsible for 
membrane lysis and subsequent pathogen elimination [16].

Trypanosoma cruzi trypomastigotes are normally resistant to the lytic effects of 
complement from vertebrate hosts susceptible to infection. This resistance of the 
trypomastigotes to direct lysis by the complement system facilitates parasite survival 
and infectivity but during the course of chronic infections; however, the vertebrate 
hosts produce antibodies that render the trypomastigotes sensitive to lysis, primarily 
via the alternative complement cascade and amplified by the classical pathway, and 
this resistance is a developmentally regulated phenomenon because the parasite is 
susceptible to complement lysis when it is in epimastigote form [51].

Complement activity present in normal human serum has been reported to lyse 
circulating forms of T. cruzi following activation by specific host antibodies bound 
to the surface of the parasites [52]. Incubation of trypomastigotes with human 
complement does not lead to lysis when the trypomastigotes do not have immu-
noglobulins on their surfaces. However, if such trypomastigotes are preincubates 
with sera obtained from chronically infected hosts, IgG immunoglobulins bind to 
their surface, and the parasites become sensitive to lysis by fresh human sera as a 
source of C5, thus lysis required antibodies and complement in mammals [53, 54], 
and on the other hand, birds, amphibians, and reptiles are naturally refractory to 
T. cruzi infection, due to complement-mediated lysis and macrophage-induced 
killing of the parasites [52, 55, 56]. Sera of the birds is capable of lysing infective 
forms of the parasite which as mentioned above are resistant to lysis by human 
serum, and this normal lytic activity of chicken serum seems to be independent 
of antibody, because it has been observed that the lytic activity of serum in vitro 
was not impaired in chickens that had been immunosuppressed by four different 
procedures, and the lysis occurs even in the absence of antibodies (e.g., bursecto-
mized chickens are refractory to T. cruzi infections) in which chicken complement 
is probably activated through the alternative pathway [52, 57–59]. The details of the 
mechanisms of resistance of birds to T. cruzi infection need further investigation, 

Iron superoxide dismutase 

(FeSODs)

Subcellular 

location

Specificity

TcSODB1 Cytosol Detoxify O2˙
− and hence the formation of ONOO− 

[41, 42]
TcSODB1-2 Glycosome

TcSODA Mitochondria

TcSODB Mitochondria

Table 2. 
Iron superoxide dismutase of Trypanosoma cruzi.
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since it could improve our understanding of the host-parasite interactions and favor 
the establishment of the innate mechanism of resistance and/or susceptibility of 
vertebrate hosts to T. cruzi.

2.3.1 Molecules of Trypanosoma cruzi that interfere with complement pathways

T. cruzi relies a variety of molecules that block or disrupt different steps of the 
complement pathways to evade complement lysis [44, 60, 61]. Below are some 
molecules of T. cruzi that it uses to get rid the action of the complement pathways.

a. Calreticulin (TcCRT): This protein is expressed in trypomastigotes, and it is 
mainly located in the endoplasmic reticulum (RE), but it has also been found 
in the Golgi, reservosomes, flagellar pocket, cell surface, cytosol, nucleus, and 
kinetoplast. After the infection, calreticulin moves from RE to the emerging 
area of the flagellum on the plasma membrane surface [62–64]. Calreticulin is 
a 45 kDa calcium-binding protein that binds to host mannose-binding lectin 
collagenous tails, preventing their interaction with parasite mannan and also 
interacts directly with L-ficolin preventing C4 conversion to C4b. TcCRT also 
interacts with C1q collagen-like domain, and therefore TcCRT inhibits both the 
classical and lectin pathway activation [65–67].

b. Trypanosoma cruzi complement regulatory protein (TcCRP) Gp160: The 
protein TcCRP, also called Gp160, which is GPI-anchored on the surface of 
trypomastigotes, can bind to C3b and C4b, thus inhibiting the formation of the 
classical and alternative complement C3 convertase [10, 68, 69].

c. Trypanosoma cruzi complement C2 receptor inhibition trispanning (TcCRIT): 
TcCRIT is a 32 kDa transmembrane protein mainly expressed in trypomastig-
otes. TcCRIT has amino acid sequence homology with the C4 beta-chain, the 
binding site of C2. Thus, it blocks C2 cleavage by C1s or MASP-2 into C2a and 
prevents C3 convertase formation, thus regulating the activation of the lectin 
and classical complement pathway [70–72].

d. Trypomastigote decay-accelerating factor (T-DAF): T-DAF is an 87–93 kDa 
glycoprotein expressed on the surface of metacyclic, bloodstream, and tissue-
culture-derived trypomastigotes of T. cruzi. T-DAF mimics the activity of 
the complement regulatory protein DAF and regulates the activation of the 
alternative, classical, and probably the lectins pathways of the complement. 
In summary, T-DAF activity either accelerates the dissociation or assembly 
efficiency of C3 convertases [73, 74].

e. Glycoprotein 58/68: Gp58/68 is a glycoprotein expressed on the surface or 
released by trypomastigotes. This protein is part of a fibronectin/collagen 
receptor of T. cruzi, and for this reason, it plays an important role in the 
interaction of T. cruzi with mammalian cells. Gp58/68 allows the parasite to 
evade alternative pathway complement activation because it is able to inhibit 
the formation of cell-bound C3 convertase (decay-accelerating activity) by 
preventing the initial association of FB to surface fixed C3b [44, 75, 76].

On the other hand, it has been reported that T. cruzi metacyclic trypo-
mastigote induces the release of membrane-derived vesicles (microvesicles) 
from host cells, such as lymphocytes, monocytes, and macrophages, in a Ca2+ 
dependent process. These vesicles inhibit the classical and lectin pathways of 
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the complement by binding to C3 convertase C4b2a on the T. cruzi surface and 
inhibit its catalytic activity [44, 77].

3. Immunoregulatory effects by Trypanosoma cruzi

In the early stages of T. cruzi invasion, the host’s resistance to the infection is medi-
ated by innate immunity, which acts as the first immunological barrier. Macrophages, 
NK cells, and dendritic cells are the cells from the innate immune system and produce 
cytokines (IL-12, TNF-α, and IFN-γ) and effector molecules that control parasite 
replication. Dendritic cells are the connecting cells between the innate and acquired 
immunity, generating cytokines (IL-12) necessary for the differentiation and clonal 
expansion of T helper 1 (Th1) CD4+ as well as CD8+ T cells and plasma B cells. 
CD4+ Th1 or CD8+ T cells synthesize IFN-γ, which activates effector mechanisms in 
macrophages to eliminate both amastigotes and phagocytosed trypomastigotes, while 
cytotoxic activity by B cells lyse the extracellular trypomastigote form or facilitate 
the phagocytosis of parasites opsonized with IgG [3, 78, 79]. However, T. cruzi uses 
different mechanisms to modulate this action of the host immune response and then 
the parasite spreads to many tissues during the acute phase to finally reach the chronic 
stage of the Chagas disease [16]. In the acute phase, T. cruzi infection can induce 
immunosuppression [80], involving the decrease and clonal deletion of the T cells, 
together with strong polyclonal B cell stimulation, which ultimately restricts the 
development of antigen-specific lymphocytes [78, 81].

In the early steps of a primary T. cruzi infection, there is no activation of various 
host defense mechanisms, leading to silent entry [82]. There are three events that 
could contribute to this silent entry: the relatively slow kinetics of T. cruzi intracel-
lular cycle, the parasite escape from the phagolysosome (which was previously 
explained), and the immunoregulatory response mediated by toll-like receptor 
(TLR) activation in dendritic cells [83]. A TLR-dependent activation of dendritic 
cells is required to induce their maturation and migration to regional lymph nodes 
and to activate naïve T cells [84].

Toll-like receptors (TLRs), members of a family of pattern recognition recep-
tors, are responsible for the recognition of pathogens because they can distinguish 
between host molecules and molecules of the pathogens referred to as pathogen-
associated molecular patterns (PAMPs). These receptors are expressed on the cell 
surface or in the lumen of intracellular vesicles (endosomes or lysosomes) of the 
antigen presenting cells (macrophages and dendritic cells), cells of the adaptive 
immunity (T y B lymphocytes), and nonimmune cells (epithelial and endothelial 
cells and fibroblasts) [84–88]. Twelve TLRs family members have been identified in 
mice and 10 in humans. The TLRs 1–9 are conserved in both species, whereas TLRs 
11–13 is only expressed in mice and TLR10 in humans [87, 89]. TLR4 and TLR9 are 
homodimers, whereas TLR2 and TLR6 form heterodimers [90, 91]. Activation of 
the TLRs induces production of proinflammatory cytokines (MyD88-dependent 
signaling cascade, except TLR3) and chemokines, and therefore, these receptors 
are important because that activate innate immunity and molding the subsequent 
acquired immune responses [3, 92–94].

Infection with T. cruzi activates the synthesis of several inflammatory genes 
by different TLR pathways [87]. The parasite has molecules that can activate TLRs 
such as the surface molecules, glycoinositolphospholipids (GIPLs), and anchor 
glycoproteins and polysaccharides that contain identical GPI structures [95]. 
Glycosylphosphatidylinositol anchors derived from mucin-like glycoproteins (GPI-
mucin) are TLR2/6 activators in dendritic cells and macrophages, and this leads to the 
production of the TNF-α, IL-12, and NO. On the other hand, GIPLs activate TLR4 of 
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macrophages to increase IL-2 production. The IL-2 increase activates NK cells and B 
cells to secrete immunoglobulins during infection [3, 96]. T. cruzi genomic DNA (CpG 
DNA motifs) active TLR9 and TLR7 is involved in parasite RNA recognition, and this 
activation results in the production of IL-12 [97, 98]. CpG DNA motifs are concen-
trated in genomic regions encoding large gene families of surface proteins, such as 
mucins, trans-sialidases, and mucin-associated surface proteins (MASPs) [98]. These 
genes are involved in parasite immune evasion mechanisms [4].

TLR7 and TLR9 are expressed in the membrane of phagolysosome, and they are 
active when the parasite is lysed, but as mentioned above, parasite escapes from 
the lysosome, thus the activation of these receptors is reduced. On the other hand, 
TLR2 appeared to act as immunoregulator in the early stage of infection [99].

T. cruzi in addition to evade its destruction also has the capacity to modulate the pat-
tern of secreted cytokines, and examples of this are T. cruzi membrane GPI-anchored 
mucin (AgC10), which can bind to the macrophage surface and induce the secretion of 
IL-1Β but not of IL-12 or TNF-α, which are essential in a protective response. Inhibition 
of TNF-α and IL-12 by T. cruzi could be involved in the evasion of the immune response 
by this parasite [12, 100]. The parasite also promotes the production of IL-10 and TGF-β 
in infected macrophages, which inhibit the induction and effects of IL-12. A cysteine 
protease (cruzain) prevents macrophage activation by blocking the NF-κB P65 pathway 
and downregulated the expression of the proinflammatory cytokine, IL-12. Therefore, 
the infection of the macrophages favors the secretion of anti-inflammatory cytokines 
such as IL-10 and TGF-β that affect the development of protective immune response 
and favors the spread of infection [101, 102].

Trypanosoma cruzi induces the production of both Th1 and Th2 cytokines in 
infected individuals, and high expression levels have been reported for Th1 cyto-
kines IFN-γ and IL-2, as well as for Th2 cytokines IL-4 and IL-10 [103]. The ability 
of T. cruzi to infect a host and to survive and develop and cause Chagas´ disease 
depends on a complex balance Th1 and Th2 cytokine production, as the display 
antagonistic effects, the former being protective for the host and the latter for the 
parasite [11].

In addition to the TLR’s roles in the modulation of innate immunity, TLRs 
participate in the induction of the adaptive immune response [89]. This happens 
mainly by their action on antigen-presenting cells (APCs), either by promoting 
cross-presentation for CD8+ T-cell activation or by increasing the levels of costimu-
latory molecules and by stimulating the secretion of lineage-specific cytokines such 
as IL-12, IL-16, IL-1β, IL-18, and IL-23 by APCs and thus promoting Th1 and Th17 
differentiation [86].

More specifically, the activation of dendritic cells by T. cruzi PAMPs (DNA and 
RNA) will lead to their maturation and production of IL-12, favoring the differentia-
tion of Th cell precursors toward the Th1 phenotype and IFN-γ production [98, 104].

4. Polyclonal activation of B cells

During early stages of the T. cruzi infection, B cells are fundamental to trig-
ger T-cell functions related to the Th1 pathway that favors the control of parasite 
growth [105]. B cells are known to play a key role in the humoral adaptive immune 
response by producing and secreting antibodies [106]. The majority B cells acti-
vated by T. cruzi infection are not specific for parasite antigens [107]. The infection 
with T. cruzi induces polyclonal B cell activation and hypergammaglobulinemia 
based on parasite-derived B cell mitogen. These antibodies are parasite-specific and 
bind to the trypomastigote surface interfering with the binding of IgG inhibitory 
antibodies and consequently preventing the elimination of the parasite [12, 108].
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4.1 Factors causing antibody deficiency

4.1.1 Antigenic variability

T. cruzi expresses a variety of antigens on its surface such as mucins, trans-
sialidases, and MASPs, all of them are encoded by highly polymorphic multigene 
families. This high variety of molecules with coordinate expression delays the 
activation of specific B cells and also consequently delays the production and 
maturation of high-affinity antibodies with neutralizing capacity and the priming 
of effective T-CD8+ cells, and this mechanism is known as a smoke screen [16, 19, 
109, 110]. Another important point to mention is that the presence of a broad range 
of antigenic motifs may also be a mechanism to drive the antibody response away 
from catalytic sites of key parasite surface proteins which causes a weak antibody 
response [111].

4.1.2 Reduction of immature B cells in the bone marrow

Immature B cells are reduced because of an increase in the rate of apoptosis. 
Apoptosis is a common process caused by pathogens on host cells, and it probably 
happens as a consequence of the host immune response or by a direct effect of the 
pathogen [112]. Apoptosis of lymphocytes is necessary to preserve a healthy and 
balanced immune system, but if this occurs prior to pathogen elimination, it could 
reduce the effectiveness of the effector mechanisms [113, 114]. This effect may be 
more important if apoptosis happens in the early stages of lymphocyte development 
[115]. Thus, the effect of the infection with T. cruzi is the induction of a marked loss 
of immature B cells in the bone marrow and also compromises recently emigrated B 
cells in the periphery [116]. It has been shown that the apoptosis caused by T. cruzi 
infection occurs in addition to Fas/FasL pathway by the participation of CD11b+ 
myeloid cells that secrete a product of the cyclooxygenase pathway, and this event 
depletes immature B cells in the bone marrow [116, 117]. It is possible that the 
parasite takes advantage of the host cell apoptosis; moreover, it has been shown 
that cell apoptosis may have an additional negative effect because the elimination 
of apoptotic bodies by T. cruzi infected macrophages promotes parasite replication, 
favoring the chronic establishment of the parasite in the host [118], so the induction 
of the host cell apoptosis is another mechanisms to evade the immune response.

4.1.3 Polyclonal activation of non-specific B cells

Polyclonal activation of B cells that normally contributes to the generation of 
specific antibodies for conserved structures presents in pathogens but in the case 
of T. cruzi infection can be a mechanism by which parasite-specific antibodies are 
reduced and irrelevant antibody are increased [115]. Presentation of multiple-
related sequences on the surface of the trypomastigotes or extracellular amastigotes 
could alter the B-cell response by inducing anergy in specific CD4+ lymphocytes 
and/or reduction of affinity of antibodies [109, 119]. Another consequence of 
polyclonal activation can be the generation of antibodies specific of the self-and/
or non-related antigens [107]. Some parasite molecules such as glycoinositol-
phospholipids (GIPLs) generate hypergammaglobulinemia [16, 108, 120]. In the 
acute infection, expansion of total antibodies is slow and starts with IgM and IgA, 
followed by IgG (IgG1, IgG2a, IgG2b, and IgG3) with specificities not related to T. 
cruzi antigens, while the humoral response in the chronic stage shows preferential 
IgG2a production [121–123]. In addition to the high variability of parasite surface 
antigens, parasite-derived B cell mitogens also cause polyclonal B cell activation 
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and hypergammaglobulinemia which results in a delayed parasite-specific anti-
body response [108, 124, 125]. Glutamate dehydrogenase (TcGDH) [126], proline 
racemase [127], and trans-sialidase (TcTS) [128] are among the parasitic proteins 
identifying as polyclonal B cell mitogens [129].

5. Immunomodulation of T cell

Expression of identical antigenic variants on the surface of the majority of 
parasite population is the characteristic of the antigenic variation, with only a small 
subgroup expressing different variants [130, 131].

Trypanosoma cruzi releases antigen in the intracellular host cell environ-
ment, and they are accessible for presentation by the major histocompatibility 
complex class I [3]. The presentation of the antigens promotes the priming of a 
robust but delayes T. cruzi-specific CD8+ T-cell responses. This event is evident 
5–6 days postinfection, after the first round of intracellular replication of the 
parasite [110]. The early immunosuppression of the CD8+ T-cell response may be 
associated with the density of parasites in the cytosol, because during the initial 
infection, previous to the first cycle of replication, low concentration of antigens 
is produced by amastigotes, and on the other hand, because a large repertoire of 
highly polymorphic and immunogenic surface protein that are coexpressed by 
the parasite [110, 132–134].

The parasite has developed strategies to interfere with antigen presentation, and 
this strategy is related with hyperpolarization of the presented antigen repertoire, 
which means that the repertory of CD8+ T-cells is dramatically restricted, and this 
phenomenon is known as immunodominance and prevents complete pathogen 
elimination by host cells by antigen-specific cytotoxic T-cell response [135, 136].

GPI-anchored surface proteins particularly trans-sialidase proteins are among the 
major known CD8+ T cell immunodominant targets in T. cruzi infection [110, 137], due 
to high expression in the infective forms and repetitive/antigenic content [137, 138].

Trans-sialidases are a polymorphic protein subfamily of the GPI-mucin super-
family and are expressed on the parasite surface and released into the extracellular 
medium. These proteins are coded by a multi-copy gene family, comprised by more 
than 1400 genes [19, 139, 140]. These enzymes remove and efficiently transfer 
sialic acid from host-derived glycoconjugates to parasite mucin-like glycoproteins, 
which are the most abundant surface components of infective forms [141]. TcTS has 
several potential immunogenic candidates that can generate an unfocused response. 
The trans-sialidase immune response is focused on a relatively small number of 
epitopes encoded by multiple genes, and this protein is a prominent target of T. 
cruzi-specific CD8+ T cells [19, 110, 142].

Immunodominance may occur by different mechanisms including the forma-
tion of stable MHC-I peptide complexes on the surface of APCs, higher amounts or 
higher affinity T cell precursors or competition of T cells for APCs [135]. CD8+ T 
cells that recognize TS-derived epitopes remain highly competent throughout the 
chronic infection, despite persistent antigen exposure [137, 143, 144].

The immunodominance of TS-derived epitopes predictably results in the out-
competition of other epitope-specific CD8+ T cell populations. However, the sig-
nificance of the tight focusing of the CD8+ T cell response on only a few vast arrays 
of possible parasite-derived epitopes is not known [138]. The immune response 
targets the parasites expressing the common TcTS variants, whereas failing to 
identify parasites that express rare variants of the antigen [145]; thus the immuno-
dominance seems to be an important way by which the parasite escapes from the 
effector mechanisms of the CD8+ T cells and persists until the chronic stage.
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6. Conclusions

Trypanosoma cruzi is a parasite that has a complex life cycle that goes from the 
passage through an invertebrate host to different mammals displaying different devel-
opmental stages during its life cycle. Furthermore, T. cruzi includes several lineages 
that have distinct morphology, infectivity, virulence, and pathogenicity [146]. The 
disease reaches the symptomatic chronic stage in only 30% of patients who acquire 
the infection, whereas 70% shown no clinical symptoms [147]. The above charac-
teristics suggest that during infection may occur a complex interaction between the 
host and the parasite, and although for more than 100 years, since the Chagas disease 
was described, the immunological mechanisms of resistance or susceptibility to the 
parasite have been studied, and it has not been possible to determine exactly which are 
those that effectively can eliminate the parasite. Recently, there is a growing consensus 
that the protective immune response against T. cruzi requires the activation of a Th1 
immune profile, with the stimulation of CD8+ T cells, but as it is detailed in the present 
review, the mechanisms of evasion to the immune response by T. cruzi are diverse and 
quite effective. So not withstanding this large amount of information available, it still 
impossible to predict what will happen in an individual infected with this pathogen. 
Considering the importance of Chagas disease in the world in which there are an 
estimated to be around 8–10 million of infected people and that currently there are no 
vaccines which prevent the parasite infection, it is necessary to look for a better and 
complete understanding of the mechanisms of immune evasion of Trypanosoma cruzi.
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