
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Exact Nonlinear Dynamics  
in Spinor Bose-Einstein Condensates 

Jun’ichi Ieda1 and Miki Wadati2  
1Institute for Materials Research, Tohoku University, 
2Department of Physics, Tokyo University of Science 

Japan 

1. Introduction 

Bose–Einstein Condensation (BEC) of atomic gases has attracted a renewed theoretical and 
experimental interest in quantum many-body systems at extremely low temperatures 
(Pethick & Smith; 2002). This excitement stems from two favorable features: (1) by applying 
magnetic fields and lasers, most of the system parameters, such as the shape, 
dimensionality, internal states of the condensates, and even the strength of the interatomic 
interactions, are controllable; (2) due to the diluteness, the mean-field theory explains 
experiments quite well. In particular, the Gross–Pitaevskii (GP) equation demonstrates its 
validity as a basic equation for the condensate dynamics. The GP equation is the counterpart 
of the nonlinear Schrödinger (NLS) equation in nonlinear optics. Thus, a study based on 
nonlinear analysis is possible and important. 
In nonlinear physics, a soliton is remarkable object not only for the fact that exact solutions 
can be obtained but also for its usefulness as a communications tool due to its robustness. In 
general, solitons are formed under the balance between nonlinearity and dispersion. For 
atomic condensates, the former is attributed to the interatomic interactions, while the latter 
comes from the kinetic energy. Either dark or bright solitons are allowable depending on the 
positive or negative sign of the interatomic coupling constants g, respectively, and indeed 
have been observed in a quasione-dimensional (q1D) optically constructed waveguide 
(Strecker et al.; 2002) (Khaykovich et al.; 2002). Such matter-wave solitons are expected in 
atom optics for applications in atom laser, atom interferometry, and coherent atom transport 
(Meystre; 2002). In this chapter, we extend the analysis of the matter-wave solitons to a 
multicomponent case by considering the so-called spinor condensate (Stenger et al.; 1998) 
whose spin degrees of freedom are liberated under optical traps. Based on theoretical and 
experimental results, we introduce a new integrable model which describes the dynamical 
properties of the matter-wave soliton of spinor condensates (Ieda et al.; 2004a). We employ 
the inverse scattering method to solve this model exactly. As a result, we predict the 
occurrence of undiscovered physical phenomena such as macroscopic spin precession and 
spin switching. 
The chapter is organized as follows. In Sec. 2, the mean field theory of condensate is briefly 
reviewed. Section 3 introduces an effective interatomic coupling in a q1D condensate. Using 
these results, we consider a spinor condensate in q1D regime in Sec. 4. Then, in Sec. 5, we 
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show an integrable condition of the coupled nonlinear equations for spinor condensates in 
which the exact soliton solutions are derived. In Sec. 6 and 7, we analyze the spin properties 
of one-soliton and two-soliton, respectively. Finally we summarize our findings and remark 
some current progresses on this topic in Sec. 8. 

2. Mean field theory 

The dynamics of BEC wave function can be described by an effective mean-field equation 
known as the Gross-Pitaevskii (GP) equation. This is a classical nonlinear equation that takes 
into account the effects of interatomic interactions through an effective mean field. 
In this section, we derive the GP equation for a single component condensate and discuss 
the theoretical background of it for later extension to a low dimensional case and a spinor 
case. 

2.1 Hamiltonian 
In order to derive the mean-field equation for atomic BECs, we start with the second 
quantized Hamiltonian. The Hamiltonian for the system of N interacting bosons with the 
mass m in a trap potential Utrap(r) can be written as 

                                          (1) 

 
(2) 

       
(3) 

where v(r – r′) expresses the two-body interaction and the bosonic field operators satisfy the 
equal-time commutation relations: 

 (4) 

In most of the experiments, the trap is well approximated by a harmonic oscillator potential, 

 
(5) 

Condensates are pancake-shape for ωz � ωx,y whereas cigar-shape for ωx,y �  ωz. For other 
choice of trap potentials, say a linear or a 4-th order potential, the thermodynamic properties 
can be changed (Ieda et al.; 2001). The discussion about non-harmonic potentials will be 
given in a later section in connection with an implementation of quasi-one dimensional 
system. 
The atom-atom interaction v(r – r′) in a dilute and ultracold system can be approximated by 

 (6) 

 
(7) 
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where a is the s-wave scattering length. The scattering length is the controllable parameter 
which determines the properties of the low energy scattering between cold atoms. The 
positive (negative) sign of a corresponds to the effectively repulsive (attractive) interaction. 

2.2 Bogoliubov theory 
The mean-field theory for weakly interacting dilute Bose gases (WIDBG) was proposed in 
Bogoliubov’s 1947 work (Pethick & Smith; 2002). The main idea of his approach consists in 
separating out the condensate contribution from the bosonic field operator: 

 (8) 

where n0 = N0/Ω is a uniform condensate density (c-number) with N0 the number of the 
condensed atoms, Ω the volume of the system, and the quantum part  is assumed to be a 
small perturbation. Taking  and  terms up to quadratic, Bogoliubov built the “first-oder” 
theory of uniform Bose gas. 
This idea can be extended to non-uniform gases in trap potentials. If we introduce the r 

dependence of the condensate part, the field operator is expressed as 

 (9) 

The scalar function Φ(r, t) is called the condensate wave function, which is normalized to be 
the number of the condensed atoms, 

 
(10)

In the case of BEC, the number of the condensed atoms becomes macroscopic, i.e., 

 (11)

In this sense, the “macroscopic” wave function Φ(r, t) is related to the first quantized N-
body wave function ΦN(r1, . . . , rN; t) as 

 (12)

which obviously satisfies the symmetry under exchanges of two bosons. 
Following the Bogoliubov prescription, we substitute (9) into (1) and retain  and  terms 
up to quadratic; 

 (13)

 
(14)

 
(15)
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(16)

Equation (14) is called the Gross-Pitaevskii energy functional. The statistical and dynamical 
properties of the condensate are determined through a variation of EΦ while the low-lying 
excitations from the ground state can be analyzed by diagonalizing . In the ground state, 

 part vanishes identically. 

2.3 Gross-Pitaevskii equation 
Even at the zero temperature, interactions may cause quantum correlation which gives rise 
to occupation in the excited states. The assumption that the quantum fluctuation part  (r, t) 
gives a small contribution to the condensate is valid for a dilute system. In particular, if we 
consider a dilute limit: 

 (17)

where na3 is the gas parameter with n the particle number density, neglecting  parts 
provides an appropriate description of the condensate wave function at zero temperature. 
By a variational principle, 

 
(18)

we obtain the Gross-Pitaevskii (GP) equation: 

 
(19)

This equation has been derived independently by Gross and Pitaevskii (Pethick & Smith; 
2002) to deal with the superfluidity of 4He-II. The GP equation is a classical field equation 
for a scalar (complex) function Φ but contains ¥ explicitly. In this sense, the description of 
the condensate in terms of Φ is a manifestation of the macroscopic de Broglie wave, where 
the corpuscular aspect of matter dose not play a role. Now the modulus and gradient of 
phase of Φ = |Φ|exp(iϕ) have a clear physical meaning, 

 
(20)

where n and v denote number density and velocity of the condensate, respectively. 

3. Confinement induced resonance 

In this section, we derive an effective one-dimensional (1D) Hamiltonian for bosons 
confined in an elongated trap. The interactions between atoms in the experiments are 
always three-dimensional (3D) even when the kinetic motion of the atoms in such a tight 
radial confinement is 1D like. Therefore, the trap-induced corrections to the strength of the 
atomic interactions should be taken into account properly. 
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This problem was first solved by Olshanii (Olshanii; 1998) within the pseudopotential 
approximation, yielding a new type of tuning mechanism for the scattering amplitude, now 
called confinement induced resonance (CIR). In what follows, we show a detailed account of a 
renormalization of the 3D interaction into an effective 1D interaction, which produces the 
CIR. This technique plays a crucial role in Sec. 5 in order to realize an integrable condition 
for spinor GP equations. 

3.1 Model Hamiltonian 
We start with the following model: 
1. The trap potential is composed by an axially symmetric 2D harmonic potential of a 

frequency ω⊥ in the x-y plane. 
2. Atomic motion for the z direction is free. 
3. Interatomic interaction potential is represented by the Fermi-Huang pseudopotential: 

 
(21)

where the coupling strength g is expressed by the 3D s-wave scattering length a as eq. 
(7) (Meystre; 2002). 

4. The energy of atoms for both transverse and longitudinal motions is well below the 
transverse vibrational energy ¥ω⊥. 

In the harmonic potential we can separate the center of mass and relative motion. Then we 
consider the Schrödinger equation for the relative motion, 

 
(22)

where the reduced mass mr = m/2, the relative coordinate r = r1 – r2, and the transverse 
Hamiltonian: 

 
(23)

From the above condition 4, we assume that the incident wave is factorized as 
, where  is the transverse ground state  The 

longitudinal kinetic energy is smaller than the energy separation between the ground state 
and the first axially symmetric excited state: 

 
(24)

where  is the energy spectrum of 2D harmonic oscillator with n = 0, 1, 2, . 
. . the principal quantum number, and mz the angular momentum around the z axis, which 
takes on values mz = 0, 2, 4, . . . ,n (1, 3, 5, . . . ,n) for even (odd) n. 

3.2 One-dimensional scattering amplitude 
The asymptotic form of the scattering wave function is given by 
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(25)

where feven and fodd denote the one-dimensional scattering amplitudes for the even and odd 
partial waves, respectively. While the transverse state (n = mz = 0) remains unchanged under 
the assumption of low energy scattering considered above, the scattering amplitudes feven,odd 
are affected by a virtual excited state of the axially symmetric modes (n > 0,mz = 0) during 
the collision. 
To calculate the one-dimensional scattering amplitude we expand the solution, 

 
(26)

where  is the (axially symmetric) eigenstate of the transverse Hamiltonian (23), and 

substitute this expansion into eq. (22) with the eigenvalue . Operating 

 
(27)

to both side of the Schrödinger equation and taking the limit, in sequence, → 0+, z → ∞, 
along with the asymptotic form (25), we can obtain  and the following expression 
for the scattering amplitudes: 

 
(28)

Here we have used the normalization condition: 

 
(29)

and the r→0 limit of the regular (free of the 1/r divergence) part of the solution Ψ, 

 
(30)

We note that the regularization operator (r·) that removes the 1/r divergence from the 
scattered wave plays an important role in this derivation. All the expansion coefficients An 
(n = 2, 4, . . . ) in eq. (26) can be obtained in the same procedure for each mode n,0(r⊥) with 
the corresponding imaginary wave number: 

 

(31)

the normalization condition of n,0(r⊥) and a simple relation: . Here a⊥ is 
the oscillator length of the (relative) transverse motion, 

 
(32)
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Recall that due to the condition (24) the value inside the parentheses in eq. (31) is positive 
definite. Thus, the expression for the wave function along the z axis reads 

 
(33)

where the function Λ is defined as 

 
(34)

the sum over s′= n/2 originates from the sum appearing in eq. (26). We have chosen the 
value 0,0(0) to be real and positive. By subtracting and adding a sum, 

 
(35)

to the function Λ, and then, collecting  term from the Taylor series of exp  and 
 with respect to , one can show an expansion, 

 
(36)

Here the zero-order term of the expansion has a form, 

 (37)

with 

 
(38)

and 

 
(39)

Substituting eq. (33) with eq. (36) into eq. (30), we get Ψreg in an explicit form.  
We then write the final expression of the one-dimensional scattering amplitudes (25) as 

 

(40)

with the 1D scattering length: 

 
(41)
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3.3 Effective one-dimensional coupling strength 
The expression (40) is an exact result for the potential (21) with arbitrary strength of the 
transverse confinement a⊥. For atoms with the low kinetic energy, we can drop  
term in the denominator of the scattering amplitudes (40), obtaining a one-dimensional 
contact potential, 

 (42)

were the coupling strength: 

 
(43)

Note that a simple average of the three-dimensional coupling g = 4π¥2a/m over the 
transverse ground state only reproduces the coefficient of (43), 

 
(44)

The resonance factor 1/[1 – C(a/a⊥)] implies a possibility to control the strength of 
atomatom scattering via tuning a confinement potential a⊥. The physical origin of the CIR is 
attributed to a zero-energy Feshbach resonance in which the transverse modes of the 
confining potential assume the roles of “open” and “closed” scattering channels. 

4. Spinor Bose–Einstein condensate 

In this section, we extend the model of a single component condensate discussed in Sec. 2 to 
that of a multicomponent condensate with the spin degrees of freedom, which we call a 
spinor condensate for short (Pethick & Smith; 2002). In terms of “spin”, we mean the 
hyperfine spin of atoms in this chapter. 

4.1 Hamiltonian 
The hyperfine spin f is defined by f = s + i, where s and i denote the electronic and nuclear 
spins of the atoms. For simplicity, we consider bosons with the hyperfine spin f = 1. This 
includes alkalis with nuclear spin i = 3/2 such as 7Li, 87Rb, and 23Na. Alkali bosons with f > 1 
such as 85Rb (with i = 5/2), and 133Cs (with i = 7/2) may have even richer structures. 
Atoms in the f = 1 state are characterized by a vectorial field operator with the components 
subject to the hyperfine spin manifold. The three-component field , 
where the superscript T denotes the transpose, satisfies the bosonic commutation relations: 

 (45)

In order to discuss the properties of spinor Bose gases, we start with the following second 
quantized Hamiltonian, 

 (46)

 
(47)
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(48)

 
(49)

where Utrap(r) is the external trap potential, v(r – r′) expresses the two-body interaction and 
subscripts {α, β,α ′, β ′ = 1, 0,–1} denote the components of the spin. The last term in eq. (46), 

, is the response to an external magnetic field p (the linear Zeeman effect). This response 
to the magnetic field necessarily selects one of several possible ground states, or the so-
called weak field seeking state, mf = –1 for f = 1 case where the spin degrees of freedom are 
“frozen”. We set p = 0 throughout this chapter. 
Due to the Bose–Einstein statistics, the total spin F = f1 + f2 of any two bosons whose relative 
orbital angular momentum is zero should be restricted to even, F = 2 f , 2 f –2, . . . , 0. Thus, 
the interatomic interaction (r – r′) can be divided into several sectors labeled by F as 

 
(50)

where  is the projection operator and gF characterizes the strength of the binary interaction 
between bosonic atoms with the total spin F. This coupling constant gF is related to the 
corresponding s-wave scattering length aF as 

 
(51)

For f = 1 bosons, since F takes only on values 0 and 2, we can rewrite the potential (r – r′) in 
a simple form using the following two properties of the projection operators  the 
completeness of the operators, 

 (52)

where  is an identity operator, and the product of the angular momentum operators, 

 
(53)

where a hat “ˆ” on f means an operator as projection. Solving these equations (52), (53) for 
 and , we obtain the form of the interaction in terms of the angular momentum 

operators, 

 (54)

In this expression, 

 
(55)

which are the magnitude of the density-density interaction and of the spin-spin interaction, 
respectively. Thus, the interaction Hamiltonian is rewritten as 
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(56)

where we may use the following expressions of spin-1 matrices f = (fx, fy, fz) as 

 

(57)

A construction of the interaction Hamiltonian for a general hyperfine spin f can be found in 
(Ueda & Koashi; 2002). 

4.2 f = 1 spinor condensate in quasi 1D regime 

From now on, we assume that the system is quasi-one dimensional: the trapping potential is 
suitably anisotropic such that the transverse spatial degrees of freedom (y-z plain) is 
factorized from the longitudinal (x axis) and all the hyperfine states are in transverse ground 
state. 
As derived in Sec. 2, in the mean-field theory of the spinor BEC, the assembly of atoms in 
the f = 1 state is characterized by a vectorial order parameter: 

 (58)

where the subscripts {1, 0,–1} denote the magnetic quantum numbers with the components 
subject to the hyperfine spin space. The normalization is imposed as 

 
(59)

where NT is the total number of atoms. 
According to the discussion in Sec. 3, the effective 1D couplings  and are represented by 

 
(60)

where aF is the 3D s-wave scattering length of the total hyperfine spin F = 0, 2 channels, 
respectively, and a⊥ is the size of the ground state in the (relative) transverse motion. 
Thus, the Gross-Pitaevskii energy functional of this system is given by 

 
(61)

with the particle number and spin densities, respectively, defined by 

 (62)
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The coupling constants  and  are connected to those in eqs. (60) (cf. eq. (43)) as 

 
(63)

The time-evolution of spinor condensate wave function Φ(x, t) can be derived from 

 
(64)

Substituting eq. (61) into eq. (64), we get a set of equations for the longitudinal wave 
functions of the spinor condensate: 

 

(65a)

 

(65b) 

 

(65c)

5. Integrable model 

To analyze the dynamical properties of the coupled system (65), we propose an integrable 
model as follows (Ieda et al.; 2004a,b). We consider the system with the coupling constants, 

 (66)

This situation corresponds to attractive mean-field interaction  < 0 and ferromagnetic spin-
exchange interaction  < 0. Note that in preceding investigations of spinor condensates 
(Pethick & Smith; 2002), mean-field interaction is assumed to be repulsive c0 > 0 and far 
exceeding spin-exchange interaction in the magnitude c0 � |c1| in line with experimental 
data. Thus, the parameter regime (66) was not been explored in detail. 
The effective interactions between atoms in a BEC have been tuned with a Feshbach 
resonance (Pethick & Smith; 2002). In spinor BECs, however, we should extend this to 
alternative techniques such as an optically induced Feshbach resonance or a confinement 
induced resonance (Olshanii; 1998), which do not affect the rotational symmetry of the 
internal spin states. In the latter, the above condition is surely obtained by setting 

 
(67)

in eq. (60) when 
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 (68)

It is worth noting that the integrable property itself is independent of the sign of  ( ) as 
far as their magnitudes are equal to each other. The opposite sign case, i.e., = ≡c > 0, can 
be analyzed in the same manner (Uchiyama et al.; 2006). 
In the dimensionless form: 

 (69)

where time and length are measured in units of 

 
(70)

respectively, we rewrite eqs. (65) as follows, (we omit the arguments (x, t) hereafter.) 

 (71a)

 (71b) 

 (71c)

Now we find that these coupled equations (71) are equivalent to a 2×2 matrix version of 
nonlinear Schrödinger (NLS) equation: 

 (72)

with an identification, 

 
(73)

Since the matrix NLS equation (72) is completely integrable (Tsuchida & Wadati; 1998), the 
integrability of the reduced equations (71) are proved automatically (Ieda et al.; 2004a). 
Remark that the general M× L matrix NLS equation is also integrable. It is worthy to search 
other integrable models for higher spin case (Uchiyama et al.; 2007). 

5.1 Soliton solution 
We summarize an explicit formula for the soliton solution of the 2 × 2 matrix version of NLS 
equation (72) with eq. (73) by considering a reduction of a general formula obtained in 
(Tsuchida & Wadati; 1998). 
Under the vanishing boundary condition, one can apply the inverse scattering method (ISM) 
to the nonlinear time evolution equation (72) associated with the generalized Zakharov-
Shabat eigenvalue problem: 

 
(74)

www.intechopen.com



Exact Nonlinear Dynamics in Spinor Bose-Einstein Condensates  

 

43 

Here Ψ1 and Ψ2 take their values in 2 × 2 matrices. The complex number k is the spectral 
parameter. I is the 2 × 2 unit matrix. The 2 × 2 matrix Q plays a role as a potential function in 
this linear system. According to (Tsuchida & Wadati; 1998), N-soliton solution of eq. (72) 
with eq. (73) is expressed as 

 

(75)

where the 2N × 2N matrix S is given by 

 
(76)

Here we have introduced the following parameterizations: 

 
(77)

 (78)

The 2 × 2 matrices Πj  normalized to unity in a sense of the square norm, 

 
(79)

must take the same form as Q from their definition. We call them “polarization matrices,” 
which determine both the populations of three components {1, 0, –1} within each soliton and 
the relative phases between them. The complex constants kj denote discrete eigenvalues, 
each of which determines a bound state by the potential Q. εj are real constants which can be 

used to tune the initial displacements of solitons. It is worth noting that all x and t 

dependence is only through the variables χj(x, t). As we shall see in Sec. 6, the real part of 
χj(x, t) represents the coordinate for observing soliton-j’s envelope while the imaginary part 
of it represents the coordinate for observing soliton-j’s carrier waves. 
The same procedure can be performed for nonvanishing boundary conditions (Ieda et al.; 
2007) which is relevant to formation of spinor dark solitons (Uchiyama et al.; 2006). 
Equation (72) is a completely integrable system whose initial value problems can be solved 
via, for example, the ISM (Tsuchida & Wadati; 1998) (Ieda et al.; 2007). The existence of the  
r-matrix for this system guarantees the existence of an infinite number of conservation laws 
which restrict the dynamics of the system in an essential way. Here we show explicit forms 
of some conserved quantities, i.e., total number, total spin (magnetization), total momentum 
and total energy. 

      
(80)

 (81)
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(82)

   (83)

            
(84)

                    (85)

  
(86)

 
(87)

Here tr{·} denotes the matrix trace and σ = (σ x,σ y,σ z)T are the Pauli matrices, 

 
(88)

6. Spin property of one-soliton solution 

In this section, we discuss one-soliton solutions and classify them by their spin states. If we 
set N = 1 in the formula (75) we obtain the one-soliton solution: 

 
(89)

where 

 
(90)

 (91)

We have omitted the subscripts of the soliton number. Here and hereafter, the subscripts R 
and I denote real and imaginary parts, respectively. Throughout this section, we set kR >0 
without loss of generality. We remark the significance of each parameter/coordinate as 
follows, 

 
We use the term “amplitude” to indicate the peak(s) height of soliton’s envelope. Actual 
amplitude should be represented as kR multiplied by a factor from 1 to  which is 

www.intechopen.com



Exact Nonlinear Dynamics in Spinor Bose-Einstein Condensates  

 

45 

determined by the type of polarization matrices. The explicit form will be shown later. As 
mentioned before, soliton’s motion depends on both x and t via variables χR and χI, from 
which we can see the meaning of velocity of soliton. 
From a total spin conservation, one-soliton solution can be classified by the spin states. We 
shall show that the only two spin states are allowable, 

 (92a)

 (92b) 

Substituting eqs. (89)–(91) into eq. (83), we obtain the local spin density of the one-soliton 
solution: 

 
(93)

We also give the explicit form of the number density: 

 
(94)

To clarify the physical meaning of detΠ, we define here another important local density as 

 (95)

This quantity measures the formation of singlet pairs. Note that these “pairs” are 
distinguished from Cooper pairs of electrons or those of 3He owing to the different statistical 
properties of ingredient particles. Since Θ(x, t) does not contribute to the magnetization of 
the soliton, it is invariant under any spin rotation. As far as ground state properties are 
concerned, it is not necessary to introduce Θ(x, t) for a system of spin-1 bosons, while a 
counterpart to eq. (95) plays a crucial role for spin-2 case (Ueda & Koashi; 2002). As we shall 
show later, however, it is useful to characterize solitons within energy degenerated states. 
In the case of the one-soliton solution (89), the singlet pair density is proportional to the 
determinant of the polarization matrix Π, 

 
(96)

This suggests that detΠ represents the magnitude of the singlet pairs. For the general  
N-soliton case, this singlet pair density can vary after each collision of solitons and is not the 
conserved density. The detail will be discussed at the end of this section. 
In what follows, we classify spin states of the one-soliton solution based on the values of 
detΠ. 

6.1 Ferromagnetic state 

Let detΠ = 0, then eq. (89) becomes a simple form: 

 (97)
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Now all of mF = 0, ±1 components share the same wave function. Their distribution in the 
internal state reflects directly the elements of the polarization matrix Π. One can see the 
meaning of each parameter listed above. By definition, the singlet pair density (96) vanishes 
everywhere. Thus, this type of soliton belongs to the ferromagnetic state and will be referred 
to as a ferromagnetic soliton. The total number of atoms is given by integrating eq. (94) as 

 (98)

The total magnetization (82) becomes 

 
(99)

with the modulus, . Equation (99) is connected to  through a 
gauge transformation and a spin rotation. 
Next, we calculate the total momentum and the total energy of the ferromagnetic soliton. 
Substituting eq. (97) into eqs. (84), (86) and using detΠ = 0, we obtain 

 
(100)

respectively. In infinite homogeneous 1D space as considered here, it can be shown that a 
single component GP equation for BEC with attractive interactions, i.e., the self-focusing 
NLS equation possesses the one-soliton solution that minimizes the total energy for fixed 
number of particles and total momentum. This remains true for the spinor GP equations 
(71). As we will see later, for given number of NT, the stationary (kI = 0) one-soliton solution 
in the ferromagnetic state is the ground state of this system. On the other hand, in finite 1D 
space case, the ground state is subject to a quantum phase transition between uniform and 
soliton states (Kanamoto et al.; 2002). 

6.2 Polar state 

If detΠ ≠ 0, the local spin density has one node, i.e., f(x0, t) = 0 at a point: 

 
(101)

for each moment t. Setting x′= x – x0 and A–1
 ≡ 2|detΠ|, we get 

 

(102)

Since each component of the local spin density is an odd function of x′, its average value is 
zero, 

 
(103)
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This implies that this type of soliton, on the average, belongs to the polar state (Pethick & 
Smith; 2002). Let us also rewrite the number density (94) as 

 
(104)

To elaborate on this type of soliton, we further divide into two cases. 
(i) A–1

  = 2|detΠ| = 1 (αβ∗ + α∗γ=0). 
Under this constraint, we find the local spin (102) vanishes everywhere. Solitons in this state 
possess the symmetry of polar state locally. We, therefore, refer to only those solitons as 
polar solitons. Considering eq. (89) with the above condition, we recover a normal sech-type 
soliton solution: 

 (105)

Note that the amplitude of soliton is different from that of the ferromagnetic soliton, which 
leads to a relation between the total number and the spectral parameter as 

 (106)

The total momentum and the total energy are given by 

 
(107)

respectively. The difference between ferromagnetic soliton energy and polar soliton energy 
with the same number of atoms NT is 

 
(108)

which is a natural consequence of the ferromagnetic interaction, i.e.,  = –c < 0. 
(ii) A–1

  = 2|detΠ|< 1. 
In this case, the local spin retains nonzero value, although the average spin amounts to be 
zero. The density profile (104) has the following structure. When A > 2, a peak of the density 
splits into two (Fig. 1) due to different density profiles of mF = 0, ±1 components. 
For a large value of A, namely, when detΠ gets close to zero, such twin peaks separate 
away. In consequence, they behave as if a pair of two distinct ferromagnetic solitons with 
antiparallel spins, traveling in parallel with the same velocity and the amplitudes half as 
much as that of the polar soliton (A = 1) in the density profile [see the inset of Fig. 1(a) and 
Fig. 1 (b)]. 
Hence, solitons of this type will be referred to as split solitons. The total number is the same 
as the case (i), 

 (109)

The total momentum and the total energy are the same values as those in the case (i): 

 
(110)
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                                      (a)                                                                                (b) 

Fig. 1. The density profiles of eq. (104). (a)We set kR = 0.5, and A = 1 (solid line), 2 (dashed 
line), 5 (dash-dot line), 20 (dotted line). The inset shows a split soliton for A = 104, consisting 
of two ferromagnetic like solitons with the same velocity. (b) The density profiles of eq. (104) 
(solid line) for kR = 0.5 and A = 104, and the three components, mF = 0 (dashed line), mF = 1 
(dotted line) and mF = –1 (dash-dot line) are shown simultaneously. 

This degeneracy is ascribed to the integrable condition for the coupling constants, i.e.,  
 = . Comparing case (i) with case (ii), we find that a variety of dissimilar shaped solitons 

are degenerated in the polar state. To characterize them, we can use, instead of A, a physical 
quantity defined as 

 

(111)

which is a monotone decreasing function of A ∈ [1, ∞); the maximum value, NT, at A = 1 
(polar soliton) and limiting to 0 at A → ∞ (ferromagnetic soliton). In this sense, S has the 
meaning as the “total singlet pairs” of the whole system. As noted above, S is not the 
conserved quantity in general (N ≥ 2); all the conserved densities should be expressed by the 
matrix trace of products of Q†, Q and their derivatives (Tsuchida & Wadati; 1998) as eqs. 
(81), (83), (85), and (87) while |Θ(x, t)| is not. Nevertheless, S can be used to label solitons in 
the polar state because it dose not change in the meanwhile prior to the subsequent collision. 

7. Two-soliton collision and spin dynamics 

In this section, we analyze two-soliton collisions in the spinor model. The two-soliton 
solutions can be obtained by setting N = 2 in eq. (75). The derivation is straightforward but 
rather lengthy. An explicit expression of the two-soliton solution is given in Appendix of 
(Ieda et al.; 2004b) and, here, compute asymptotic forms of specific two-soliton solutions as  
t → ∓ ∞, which define the collision properties of two-soliton in the spinor model.  
For simplicity, we restrict the spectral parameters to regions: 

 (112a)
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Under the conditions, we calculate the asymptotic forms in the final state (t→∞) from those 
in the initial state (t→–∞). Since each soliton’s envelope is located around x 0 2kjIt, soliton-1 
and soliton-2 are initially isolated at x → ±∞, and then, travel to the opposite directions at a 
velocity of 2k1I and 2k2I, respectively. After a head-on collision, they pass through without 
changing their velocities and arrive at x→ ∓ ∞ in the final state. Collisional effects appear not 
only as usual phase shifts of solitons but also as a rotation of their polarization. 
According to the classification of one-soliton solutions in the previous section, we choose the 
following three cases: i) Polar-polar solitons collision, ii) Polar-ferromagnetic solitons 
collision, iii) Ferromagnetic-ferromagnetic solitons collision. As we shall see later, the polar 
soliton dose not affect the polarization of the other solitons apart from the total phase factor. 
On the other hand, ferromagnetic solitons can ‘rotate’ their partners’ polarization, which 
allows for switching among the internal states. 

7.1 Polar-polar solitons collision 

We first deal with a collision between two polar solitons defined by kj and Πj (j = 1, 2) with 
the conditions (112) and

 
, equivalently, 

 
(113)

In the asymptotic regions, we can consider each soliton separately. Thus, the initial state is 
given by the sum of two polar solitons as 

 (114)

where the asymptotic form of soliton-j (j = 1, 2) is 

 (115a)

These can be proved by taking the limit χ2R → –∞ with keeping χ1R finite and, vice versa,  
χ1R →–∞ with χ2R fixed. Phase factors which come from the values of |detΠj| are absorbed 
by the arbitrary constants  inside χjR. In the final state, the opposite limit χ2R → ∞ with 
keeping χ1R finite and χ1R →∞ with |χ2R| < ∞ yields 

 (116)

where 

 
(117)

with 

 
(118)

 
(119)
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                                               (a)                                                                              (b) 

Fig. 2. Density plots of | 0|2
 (a) and | ±1|2

 (b) for a polar-polar collision. Soliton 1 (left 
mover) carries only 0 component and soliton 2 (right mover) consists of ±1 components.  
The parameters used here are k1 = 0.25 – 0.25i, k2 = –0.5 + 0.25i, α1 = 1/ , β1 = γ1 = 0, α2 = 0,  
β2 = γ2 = 1/ . 

Equations (115) and (117) are the same form as polar one-soliton solution (105). Collisional 
effects appear only in the position shift (118) and the phase shifts (119). In Figs. 2, we show 
the polar-polar collision with α1 = 1/ , β1 = γ1 = 0 and α2 = 0, β2 = γ2 = 1/ . Thus, the 
partial number Nj, magnetization Fj, momentum Pj, and energy Ej are defined for the 
asymptotic form of soliton-j and calculated in the same manner as the previous section. The 
integrals of motion are represented by the sum of those quantities for each soliton. 
Moreover, we can prove that 

 (120)

which are by themselves conserved through the collision. In this sense, the polar-polar 
collision is basically the same as that of the single-component NLS equation. 

7.2 Polar-ferromagnetic solitons collision 
Under the condition (112), we set soliton 1 to be polar soliton and soliton 2 to be 
ferromagnetic soliton: 

 (121)

Then, the initial state is represented by eq. (114) with 

 (122a)

 (122b) 

The final state is given by eq. (116) with 
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(123a)

 (123b) 

Here we have defined 

 
(124)

 
(125)

and also used eqs. (118), (119). Normalization of the new polarization matrix (125) turns out 
to be unity, 

 
(126)

The determinant of it becomes 

 
(127)

We can see clearly that the initial polar soliton breaks into a split type,  
after the collision with a ferromagnetic one. Only when  where the spinor 
part of wave function of two initial solitons is orthogonal to each other, we have . 
Then, eqs. (123) are reduced to 

 (128a)

 (128b) 

which means that the polar soliton keeps its shape against the collision and shows no 
mixing among the internal states except for the total phase shift. On the other hand, because 
of the total spin conservation, the ferromagnetic soliton always retains its polarization 
matrix and shows only the position and phase shifts similar to those of the polar-polar case. 
In Fig. 3, we have density plots of a polar-ferromagnetic collision with the parameters 
shown in the caption. These pictures correspond to each component of the exact two-soliton 
solution for one collisional run. For simplicity, we choose the parameters to have  
| 1| = | –1|. The polar soliton (soliton 1) initially prepared in mF = ±1 are switched into a 
soliton with a large population in mF = 0 and the remnant of mF = ±1 after the collision. 
Through the collision, the ferromagnetic soliton (soliton 2) plays only a switcher, showing 
no mixing in the internal state of itself outside the collisional region, as clearly seen in eq. 
(123b). In general, this kind of a drastic internal shift of polar soliton is likely observed for 
large values of  which appears in eqs. (124), (125). Although all the conserved 
quantities such as the number of particles and the averaged spin of individual solitons are 
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                                                 (a)                                                                             (b) 

Fig. 3. Density plots of | 0|2
 (a) and | ±1|2

 (b) for a polar-ferromagnetic collision. Soliton 1 
(left mover) is a polar soliton and soliton 2 (right mover) is a ferromagnetic soliton.  
The parameters used here are k1 = 0.25 – 0.25i, k2 = –0.5 + 0.25i, α1 = 0, β1 = γ1 = 1/ ,  
α2 = β2 = γ2 = 1/2. 

invariant during this type of collision, the fraction of each component can vary not only in 
each soliton level but also in the total after the collision. This contrasts to an intensity 
coupled multicomponent NLS equation in which the total distribution among all 
components is invariant throughout soliton collisions while a switching phenomenon 
similar to Fig. 3 can be observed (Radhakrishnan et al.; 1997). 

7.3 Ferromagnetic-ferromagnetic solitons collision 
Finally, we discuss the collision between two ferromagnetic solitons, 

 (129)

The asymptotic forms are obtained for the initial state,  where 

 (130)

and for the final state,  where 

 
(131a)

Here we have defined 

 
(132)

and, for (j, l) = (1,2) or (2,1), 

 

(133)
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which are shown to be normalized in unity, 

 
(134)

Each polarization matrix Πj of a ferromagnetic soliton can be expressed by three real 
variables τj, θj, ϕj as 

 

(135)

In this expression, the polarization matrices in the initial state Πj and in the final state  are 
given by 

 (136)

where, with (j, l) = (1,2), (2,1), 

 
(137)

This defines the collision property for the ferromagnetic-ferromagnetic soliton collision. 
We can gain a better understanding of the collision between two ferromagnetic solitons by 
recasting it in terms of the spin dynamics. The total spin conservation restricts the motion of 
the spin of each soliton on a circumference around the total spin axis [Fig. 4(a)]. It will be 
interpreted as a spin precession around the total magnetization. 
We calculate the magnetization for each soliton to investigate their collision. In the initial 
state, following eq. (99), we have the spin of soliton-j as 

 
(138)

Thanks to the scattering property (137), the final state spins can be obtained through F1,2 by 

(139)

where 

 
(140)

The conserved total spin,  is given by 

 

(141)
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Considering spin rotation around the total spin FT, we can find ‘rotated spin’ as 

 (142)

where 

 

(143)

with 

 
(144)

The rotation angle ω is determined by setting  through eqs. (139) and (142), 

 
(145)

For the case that the magnitudes of the amplitude and velocity for each ferromagnetic 
soliton are, respectively, identical with each other, |k1R| = |k2R| ≡ NT/4, |k1I| = |k2I| ≡ kI, 
the final state magnetizations (139) are given by 

 
(146)

where (j, l) = (1,2), (2,1). The rotation angle ω depends only on the ratio kI/kR and the 
magnitude of the normalized total magnetization, F ≡ |FT|/NT, as 

 

(147)

The principal value should be taken for the arccosine function: 0 ≤ arccos x ≤ π. 
Setting kI �  kR in eq. (147), one gets the small rotation angle, ω 0 0. In the opposite case, kI 

� kR, each spin of two colliding solitons almost reverses its orientation, ω 0 π. Recall that kI 

is the speed of soliton. We can understand these phenomena since a slower soliton spends 
the longer time inside the collisional region. Figure 4 shows the velocity dependence of the 
rotation angle for various initial normalized spins. When F = 1, which corresponds to the 
case of antiparallel spin collision, the spin precession can not occur as shown by the dotted 
line in Fig. 4(b). 
In Fig. 5–Fig. 7, we give examples of this type of collisions for different kI, with the other 
conditions fixed, to illustrate the velocity dependence. The initial normalized spin for the 
parameter set given in the captions is F = 0.5. The rotation angles are ω 0 0.2π, 0.5π and 
0.9π for Fig. 5, Fig. 6 and Fig. 7, respectively. The internal shift 1 → –1, and vice versa, 
gradually increase by slowing down the velocity of the solitons. 
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                                   (a)                                                                  (b) 

Fig. 4. (a) Schematic of spin precession of two colliding ferromagnetic solitons. (b) Velocity 
dependence of the rotational angle in spin precession for the different initial relative angles, 
F = 1 (solid line), 0.5 (dashed line), 0.0157π (dash-dot line) and 0 (dotted line). 

 

Fig. 5. Density plots of (a) | 0|2, (b) | 1|2
 and (c) | –1|2

 for a fast ferromagnetic-
ferromagnetic collision. The parameters used here are k1 = 0.5 – 0.75i, k2 = –0.5 + 0.75i, α1 = 
4/17, β1 = 16/17, γ1 = 1/17, α2 = 4/17, β2 = 1/17, γ2 = 16/17. 

 

Fig. 6. Density plots of (a) | 0|2, (b) | 1|2
 and (c) | –1|2

  for a medium speed 
ferromagnetic-ferromagnetic collision. The parameters are the same as those of Fig. 5 except 
for k1I = –0.25, k2I = 0.25. 
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Fig. 7. Density plots of (a) | 0|2, (b) | 1|2
 and (c) | –1|2

  for a slow ferromagnetic-
ferromagnetic collision. The parameters are the same as those of Fig. 5 except for k1I = –0.05, 
k2I = 0.05. 

8. Concluding remarks 

The soliton properties in spinor Bose–Einstein condensates have been investigated. 
Considering two experimental achievements in atomic condensates, the matter-wave soliton 
and the spinor condensate, at the same time, we have predicted some new phenomena. 
Based on the results provided in Sec. 2–4, in Sec. 5 we have introduced the new integrable 
model which describes the dynamics of the multicomponent matter-wave soliton. The key 
idea is finding the integrable condition of the original coupled nonlinear equations, i.e., the 
spinor GP equations derived in Sec. 4. The integrable condition expressed by the coupling 
constants, which is accessible via the confinement induced resonance explained in Sec. 3. 
In Sec. 6, we classify the one-soliton solution. There exist two distinct spin states: 
ferromagnetic, |FT| = NT and polar, |FT| = 0. In the ferromagnetic state, the spatial part and 
the spinor part of the soliton are factorized (ferromagnetic soliton). In the polar state, 
dissimilar shaped solitons which we call polar soliton for f(x) = 0 and split soliton otherwise 
are energetically degenerate. The polar soliton has one peak and the space-spinor 
factorization holds. On the other hand, a split soliton consists of twin peaks and the three 
components show different profiles. Changing the polarization parameters one may control 
the peak distance continuously. 
In Sec. 7, we have analyzed two-soliton solutions which rule collisional phenomena of the 
multiple solitons. Specifying the initial conditions, we have demonstrated two-soliton 
collisions in three characteristic cases: polar-polar, polar-ferromagnetic, ferromagnetic-
ferromagnetic. In their collisions, the polar soliton is always “passive” which means that it 
does not rotate its partner’s polarization while the ferromagnetic soliton does. Thus, in the 
polar-ferromagnetic collision, one can use the polar soliton as a signal and ferromagnetic 
soliton as a switch to realize a coherent matter-wave switching device. Collision of two 
ferromagnetic solitons can be interpreted as the spin precession around the total spin. The 
rotation angle depends on the total spin, amplitude and velocity of the solitons. Only 
varying the velocity induces drastic change of the population shifts among the components. 
Stability of spinor solitons has been investigated numerically and perturbatively (Li et al.; 
2005) (Dabrowska-Wüster et al.; 2007) (Doktorov et al.; 2008). It is also interesting to pursue 
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the soliton dynamics of spinor condensates under longitudinal harmonic trap (Zhang et al.; 
2007). Recently, the integrability of the spinor GP equation has been studied in detail 
(Gerdjikov et al.; 2009). The behavior of spinor solitons shows a variety of nonlinear 
dynamics and it is worth exploring them experimentally. 
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