We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Femtosecond Transient Bragg
Gratings

Avishay Shamir, Aviran Halstuch and Amiel A. Ishaaya

Abstract

Fiber Bragg gratings (FBGs) have found numerous applications in fiber lasers,
sensors, telecommunication, and many other fields. Traditionally, they are fabri-
cated using UV laser sources and a phase mask or other interferometric techniques.
In the past two decades, FBGs have been fabricated with femtosecond lasers in
either the point-by-point method or by using a phase mask, in a similar configura-
tion as with UV laser sources. In the following, we briefly review the advantages of
femtosecond fabrication of fiber Bragg gratings. We then focus on transient FBGs;
these are FBGs that exist for a short duration only, for the purpose of all-optical, in-
fiber switching and modulation and the possible mechanism to implement them
with a high-power femtosecond laser. The theory behind transient grating
switching is outlined, and we discuss related experimental results achieved by our
group on both permanent grating inscription and the generation of transient
(dynamic) fiber Braggs gratings.

Keywords: femtosecond fiber Bragg gratings, transient fiber Bragg gratings,
dynamic fiber Bragg grating, all-optical switching and modulation

1. Introduction

Femtosecond laser micromachining and inscription have attracted significant
attention in the past decade, not only for material processing applications, such as
cutting or drilling [1, 2], but also for the fabrication of 3D photonic devices in
transparent materials. When focusing a high-power femtosecond pulse inside a
transparent dielectric material, the intensity at the focal region is high enough to
initiate multiphoton ionization, which eventually leads to structural changes and
permanent refractive index changes [3-7]. This technique has some advantages
over current photonic device fabrication methods: (i) the nonlinear nature of the
laser-matter interaction confines any induced index change to the focal volume,
enabling 3D fabrication of photonic devices in a relatively short time compared to
planar semiconductor-based fabrication methods; (ii) the nonlinear absorption
process does not require any photosensitivity of the material, facilitating fabrication
in glasses, crystals, polymers, and practically any optical material. Although
preprocessing of the materials to be inscribed is not necessary, it can be helpful.
Hydrogen loading, for example, can enhance the sensitivity to inscription of fiber
Bragg gratings [8, 9].

Different categories of index change have been defined in the literature, mostly
with respect to grating fabrication. Type I index changes happen for pulse energies
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close to the nonlinear ionization threshold (10> W/cm?) and cause an accumulative
change in the refractive index of the order of 10~ (in silica glass). The change in the
refractive index is isotropic and is mostly attributed to localized material melting
and rapid resolidification [10, 11], although other explanations (such as color center
formations) are also considered [12]. This type of index change is most useful for
the fabrication of waveguides [13], couplers [14], and FBGs [15].

Type II interaction happens at intensities beyond the damage threshold, which
can lead to the formation of voids [16]. Voids are submicron features, micro-
explosions in matter, or air bubbles, with larger refractive index contrast compared
to their surroundings. They are achieved by extremely tight focusing with power
densities of the order of 10 W/cm?. Voids attract interest mainly due to their
potential as permanent highly dense 3D optical data storage materials. In such
schemes, each void represents a bit, which can be read with transmitted or scattered
light. It was found that voids can also be seized, moved, and merged by femtosec-
ond laser radiation [17]. Type II FBGs, also termed “damage” gratings, have been
shown to withstand higher temperatures and can be used as harsh environment
sensors [18].

On applying intensities between the above regimes, an anisotropic, polarization-
dependent, index change is induced, and the glass material becomes birefringent
[19, 20]. The magnitude of the reported index change is the same as for type I
changes, but it is not isotropic. The intensity boundaries for this interaction are not
well defined, as they depend on the laser source, the focusing lens, and the material
itself. The anisotropy of the refractive index change is believed to originate from the
nanogratings observed inside the focal volume. The planes of these gratings are per-
pendicular to the light polarization and behave as negative uniaxial crystals [21-24].

In the following we will focus on fabrication of FBGs using femtosecond laser.
Section 2 briefly describes methods of fabrications using femtosecond laser and
references to a more detailed work on the subject. Section 3 introduces the main
concept of this chapter—transient fiber Bragg gratings for optical switching. The
theory of transient grating is outlined, and an overview of various works on the
subject is described. Section 4 provides experimental results achieved by our group
on generation and characterization of transient FBGs. Finally, we summarize and
discuss possible future research direction of transient Bragg grating switching.

2. Femtosecond inscription of fiber Bragg gratings

FBG fabricated with femtosecond laser was first demonstrated by the point-by-
point (PbP) method [25, 26]. In this method, the beam is tightly focused into the
fiber core to a spot size radius smaller than half of the desired grating period. To
achieve this, a microscope objective with a high numerical aperture must be used, as
well as pulse energies just above the inscription threshold. The induced index
change happens on the pulse peak intensity only, which can be smaller than the
diffraction limit of the focusing objective lens. To fabricate the grating, the fiber is
aligned and translated in the focal plane at constant velocity. The scan velocity
matches the grating period to the laser pulse rate, so that each pulse inscribes a
single grating “plane.”

The PbP method requires tight control on all-optical and mechanical parameters
of the system. The optical system must be carefully aligned to avoid aberrations and
achieve the smallest spot size. The pulse width and energy should be controlled as
well, since they affect the actual spot size. For this reason, most PbP systems use
800 nm femtosecond laser, rather than its harmonics, to avoid dispersions [27].
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From a mechanical perspective, the fiber core must be maintained in the focal plane
through the entire fabrication process. This requires high-end air-bearing transla-
tion stages. An extension of the PbP method to reduce the mechanical complexity is
the line-by-line method, in which the beam is scanned across the fiber axis and
forms a rectangular “snake” pattern [28], or plane-by-plane method in which the
beam is focused to an elliptic sheet, creating 2D index change [29].

The PbP method offers the highest flexibility in grating fabrication. Uniform
gratings, phase-shifted gratings [30], apodization [31], and more [32] have been
demonstrated. The tight focusing condition also enables inscription through the
fiber jacket without damage [33]. The same inscription system can be used for the
fabrication of waveguides and long-period gratings as well [34-36]. Gratings fabri-
cated by this method have been shown to have superior thermal properties [37]
than UV gratings and better performance as fiber laser mirrors [38-40].

In 2003, Mihailov et al. demonstrated the fabrication of FBGs with a femtosec-
ond laser and a phase mask [41, 42]. The optical configuration is similar to its UV
counterpart. The beam is focused on the fiber core using a cylindrical lens and
through a phase mask. The mask period defines the Bragg grating period. In the
phase mask configuration, the grating is inscribed as a whole rather than plane by
plane. It is robust, repeatable, and typically stationary. As the period is defined by
the phase mask, relatively long-focus lenses can be used, which greatly eases align-
ment and makes this configuration suitable for large core fibers as well. With this
technique, grating inscription has been demonstrated in various types of fibers
[43-46]. The main drawback of this configuration is the lack of flexibility, as the
period is predetermined by the phase mask. Nevertheless, it is possible to tune the
Bragg wavelength by introducing defocusing and other aberrations into the
inscribing beam. Shifts of more than 300 nm, as well as chirp gratings, have been
demonstrated with this method [47, 48]. Inscription through the coating is also
feasible in this method with “of the shelf” high-NA cylinder lenses [49-51].

Both methods have been used for fabrication of fiber Bragg grating with superior
properties than grating fabrication with UV sources. Femtosecond laser can be used
to fabricate gratings in any type of fibers and can withstand higher temperature
than UV gratings. The most notable feature is the ability to inscribe grating through
the fiber coating, thus maintaining its mechanical strength, and avoid handling
issues such as stripping, cleaning, and recoating [52-54].

3. Transient fiber Bragg grating optical switching

All-optical switching has been investigated for a long time by the optical com-
munity, in particular for optical communication applications. If successful, it will
dramatically increase the throughput in optical links and will enable data switching
at speeds and rates far beyond the capabilities of current electronic devices.

Recently, there has been a growing interest in FBGs for optical switching appli-
cations. Several works reported implementations of an optical switch by tuning a
pre-inscribed grating by means of heat, stress, and other relatively slow processes
[55-58]. These methods are based on permanent FBGs, in which any change in the
refractive index (heat, cross-phase modulation) or period (induced stress) will shift
the grating resonance from the signal wavelength. Such switching mechanisms have
several drawbacks due to the inherent physical properties of their operation, which
limits their applicability and performance. In the wider context, there have been
several reports on the switching of various photonic crystal structures, both for
fundamental and for applicative purposes (see, e.g., [59, 60] for some recent
reviews).
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Transient Bragg gratings (TBGs) can overcome these limitations. These are
Bragg gratings of finite duration. In the case of femtosecond gratings in materials,
they are expected to be formed at intensities below the threshold for permanent
index modification and to exist for the inscribing pulse duration only. Transient
gratings in fibers or waveguides are expected to act as a fast switch or modulator by
implementing a Bragg mirror with (ultra-) fast decay time.

Several mechanisms are available to implement transient Bragg gratings: the
optical Kerr effect, free-carrier recombination in semiconductor materials, and
diffusion of thermal gratings. The different mechanisms differ from one to another
by the rise and decay time of the switch and by the extinction ratio, i.e., the contrast
between on and off states. Such transient gratings can be turned on/off by modu-
lating the illumination beam.

The Kerr effect describes the refractive index change in the presence of high
intensities, such as those that are available from high-power femtosecond lasers
[61]. The refractive index changes by an amount of 7,1, where 7, is the material
nonlinear index and I is the intensity. The response of the material is instantaneous.
For silica fibers, n, ~ 3 - 107 cm?/W; thus, for an intensity of I = 10 W/cm?, the
refractive index change is of the order of 10™. Stronger index change is feasible for
materials with higher Kerr nonlinearity, such as Chalcogenide or Bismuth fibers
[43, 62]. The Kerr grating has a periodic pattern, with the index modulation as
described above. A Kerr grating switch is expected to be weak yet with a femtosec-
ond time scale response. Several publications reported on transient Kerr gratings in
gas for the purpose of spectroscopy and in bulk semiconductors for studying free-
carrier recombination rates [63]. An optical grating based on the nonlinear Kerr
effect has been used in the past for parametric wavelength conversion [64] and for
chemical spectroscopy [65]. An optical switch based on an optical Kerr grating has
only been investigated numerically until now [66-68].

Free-carriers in semiconductor materials are formed upon pulse irradiation
followed by excessive charge concentrations. In this case, the refractive index
changes due to different charge densities are much higher than due to the Kerr
effect. The transient index change of the semiconductor is described by the Drude
model of excited free-carriers [69-71] reaching values as high as én/n ~ 101
[59, 60]. Unlike the Kerr effect, which is instantaneous, the FC excitation is “turned
on” fast but typically persists for a time scale of several tens of picosecond to several
ns depending on the recombination rate of the generated electron-hole pairs and the
diffusion length [63, 72-74]. An optical switch-based free-carrier transient Bragg
grating is expected to have better contrast and stronger reflection but on a much
shorter switching time. As the reflection is very sensitive to the grating period
(typically 1 pm), extremely small diffusion is sufficient to wash out the grating and
its reflection. Sivan et al. showed theoretically that when exciting a transient grating
based on FC, the turn-off times are very fast (<ps) due to diffusion of the excited
FCs that erases the grating structure [75]. This is a key point that will allow for
switching times several orders of magnitude faster than in bulk FC switching
configurations, thus potentially revolutionizing switching technology. Such an
optical switch is expected to have a better extinction ratio than a Kerr grating and
slower (picosecond) time scale switching.

The same principle can be applied for transient thermal gratings, in which the
index changes as a response to localized heat or increased temperature and the
diffusion length is determined by the material properties. Transient thermal grat-
ings are used as a method for measuring the diffusion coefficient of materials and
were implemented in opaque materials with linear absorption at the laser wave-
length [76-78]. Optical materials are mostly transparent to NIR femtosecond lasers
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(800 nm); therefore, a transient thermal grating may only be realized through
nonlinear absorption.

Another mechanism is to form dynamic population gratings in active fibers. This
was implemented via counter propagating waves and resulted in millisecond time
responses [79].

TBGs of a few centimeter lengths were implemented using 193 nm, nanosecond,
excimer laser pulses, and a phase mask in phosphosilicate fibers without hydrogen
loading. In passive fibers, extremely slow reflection of tens of seconds’ duration was
demonstrated [80], while in active fibers, the grating was based on population
inversion, and the time response was estimated to be milliseconds long [81]. In both
cases the expected rise time of such switching mechanism cannot be shorter than
the ns pulse length.

Transient grating-based switching was suggested numerically by coupling light
from the fundamental mode to high-order modes [82]. Nanosecond switching was
implemented using the Kerr effect with a highly nonlinear polymer layer deposited
close to the core of a polished fiber [83]. It was suggested, theoretically, that a TBG
would result in an ultrafast switching response [84]. Thermal phenomena are typ-
ically associated with relatively long (microsecond) time scales. Recently, it was
suggested, theoretically, that picosecond scale switching is achievable with thermal
gratings, using metal nanoparticles in waveguides [85]. Nanosecond switching of a
permanent FBG was demonstrated by introducing electrodes into a special two-hole
fiber [86]; however, this device suffers from nanosecond rise time and a millisecond
time scale to return to its original state.

TBGs essentially enable pulse extraction from CW source. This can lead to
several photonic applications such as all-optical switching and modulator at any
wavelength, all-fiber Q-switching mechanism, and sub-ns pulse sources.

In the following, we will shortly describe the theory of transient Bragg grating. A
detailed derivation of the suitable coupled mode equations, and their numerical
solution can be found in literature. Here, we begin our discussion from the coupled
mode equations and limit the discussion to specific case where analytical solution is
possible to gain physical insight. Next, we will describe our group experimental
work on transient Bragg gratings in silica fibers. We will show the dynamic of
permanent grating switching and describe an immunization technique that enable,
for the first time to our knowledge, thermal grating-based nonlinear absorption.

The theory of transient Bragg gratings is fully developed and described in the
literature [87, 88] starting from the wave equation. Here, we provide a short
description of the theory starting from its derived coupled mode equation for
transient grating. The analysis begins from the well-known coupled mode equations
for forward and backward propagating waves in grating media, adapted to the case
of transient grating:

d d . . —2idxz
%Af + vg%Af + 2 ivgkq(z)m(t)Ar = iCuvekq (2)m(t)e~2x2) A, (1)

%Ab — 0, %Ah + 2 ivgkq(z)m(t)Ap = —iCuv,kq(z)m(t) exp (Z’SKZ)Af (2)
Here, Ar and A, represent the envelopes of the forward and backward pulses,
respectively, v, is the group velocity, g(z) is the spatial shape of the inscribed Bragg
grating, and m(t) is its temporal profile. C is the grating contrast, and 6k = dw /v, is
the detuning of the incident pulse from the center of the spectral gap. The forward-

backward mode coupling coefficient, k = konoAn/4n,.y, is a product of the free

space wavevector ko, the waveguide material refractive index 7y, and its maximal
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modulation amplitude Az, divided by the effective mode index 7,.5. These equa-
tions are similar to those obtained in [87]; however, they account for non-zero
mean index modulations, absorption, imperfect grating contrast, and nonuniform
pumping (via q(2)).

An exact solution of Egs. (1) and (2) is possible only numerically. However, if
one assumes uniform pump spot (g = 1) and ignores the spatial derivatives (justi-
fied for short modulations during which the pulse is nearly stationary), Eqgs. (1) and
(2) can be solved analytically—this yields the well-known Rabi solution (see, e.g.,
[87, 89]). This was shown to give a reasonable accuracy in measurements with spin
waves [87], at least in this limit, and to lead to envelope reversal [90-92].

Alternatively, Egs. (1) and (2) can also be solved analytically in the low conver-
sion efficiency limit, without neglecting the spatial derivatives. In this case, the
efficiency of the backward pulse generation is given approximately by a convolu-
tion of the incoming pulse with m.g(t), where M(t) is an effective modulation, and
the forward wave is (nearly) monochromatic (e.g., for a CW or nanosecond source
—Ap(t) — 1):

Ay (z,t) = iCogkq(z)m(t)e ™ Mg (1) (3)

M (2) = q(z) *m(t) is the convolution of the (transverse) spatial and temporal
profiles of the pump pulse. These equations can be solved analytically assuming

symmetric Gaussian shape for the pump pulse: ¢(z) = e(-#/1%)" and
Wl(t) — e(_t/Tmod)z.

The complex analytical solution for the backward reflected pulse depends on
two time scales: (i) the modulation time T,,;, which, for a Kerr grating, is the pump
pulse duration, and (ii) the grating pass time T}, = L/v,, where L is the grating
length and has the form:

(et }
145(t,2)] ~ v/aC 5 Ana, 3o T2 @)
n

Significant physical insight is achieved under the assumption that T},0a<T pag-
The solution for the reflected wave is then

v2T2

(Z-H)gt)z}
Ay (t,2)] ~ ﬁC$Anonmode{ s 5)
eff

This reveals unique spatial-temporal dependency. The reflected wave has the
temporal duration of the longer time scale, and the power is scaled as the shorter
time scale. This occurs because the reflections occur from within the grating rather
than outside of it. Note that the grating length only influences the temporal dura-
tion and not the power efficiency. The reflected efficiency can be approximated to

3 2
be ~ (% AncoTp> )

For a 10~ * index change and a 50-fs pump duration with a 1500-nm signal
wavelength, we get an efficiency of ~ 4 - 10°. Since v, T, ~ 10 pum, then the mini-
mal length of the grating for this limit to hold is about 0.1 mm. The backward pulse
is then at least 500 fs long.

In the opposite case of a very short grating, Tpoq > Tpass, as is feasible in semi-
conductors, the reflected pulse power is
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(52
7o v2T2
|Ab (t,Z)l ~ \/ECW A?’lwo Tpasse & mod (6)
of

Thus, the reflected wave duration and spectrum follow that of the pump pulse.

The above approximations are valid for low reflection efficiency, i.e., un-
depleted pump. Transient Kerr grating is expected to have a very low efficiency,
and an order of magnitude difference between T, and T4 is expected to corre-
spond to the above solutions.

In silica fibers, there is also the possibility for thermal gratings. In this case the
index modulation time varies on the microsecond and nanosecond time scales,
which is considerably longer than the passage time for a typical 5-mm grating
(~25 ps). The expected reflectivity should behave as in the first case above with the
exception of non-Gaussian response.

The results indicate that with the Kerr mechanism high reflection efficiencies are
feasible for Chalcogenide fibers and semiconductor waveguides; however, silica
fibers are more challenging. Furthermore, as the reflection from transient Bragg
gratings is dependent on the pumping configuration, e.g., grating length and pump
pulse duration, and it is possible to control the signal modulation. In the theory,
generation pulses on time scale such as tens of ps, currently not available from fiber
lasers, are possible. Other interesting applications such as in-fiber Q-switching are
also feasible.

In the next sections, we will describe experimental results achieved by our group
on the subject of transient Bragg gratings in standard silica fibers for switching and
modulation applications. We will describe methods to generate them and their
results.

4. Experimental results of femtosecond transient FBGs
4.1 Experimental setup

The experimental setup is standard for FBG inscription with the phase mask
technique and is shown schematically below (Figure 1). A femtosecond laser
(800 nm, 35 fs, 1 KHz) is focused on the fiber core, through a phase mask. The mask
period is 2.14 pm, suitable for second-order Bragg gratings at 1550 nm. The fiber to
be inscribed is connected to a probe signal source and an Optical Spectrum Analyzer
(OSA) to monitor the FBG spectrum or to a fast photodiode (Thorlabs DETO8CFC)
to monitor the dynamic effects. The signal source can be a broadband ASE source
when characterize permanent FBG inscription or an amplified DFB laser when
observing transient, dynamic effect. The probe laser mostly operated in CW mode
providing 1 W output power and was operated in pulse mode for Kerr grating
experiments.

4.2 Transient Kerr grating

We tried to observe a transient Kerr grating with pulse energies below the
inscription threshold in standard SMFs. In these experiments, we monitor the
reflection from the grating with a photodiode. We found the permanent inscription
threshold to be 160 pJ; thus, our pulse energy is limited below this value. For 100 pJ
pulse energy, we expect grating index modulation of 8 - 107, which will exist for
35 fs only. The expected reflection from such a grating is extremely weak; the



Fiber Optic Sensing - Principle, Measurement and Applications

IR Femtosecond
Radiation
eyincer 4111111
Lens ( )
Phase Mask
_ FNNNNyL
Circulator A A
£y oA
hd g ) ' FBG
L1l J
/ 1\ \
/ -y \
/ ! \ \
¥ v« ¥ v

-1% Order 1% Order

Fast
Detector

Figure 1.
Schematic of the optical setup.

coupling coefficient, calculated according to the theory outlined in Section 3 is

Kk~ 8-1077 Lﬁ}, four orders of magnitude lower than typical permanent gratings.

Therefore, we drive our probe laser with 50 ns pulses at a 20 KHz pulse rate. In this
mode, the laser outputs 1 KW peak power, tuned to the Bragg wavelength. The
reflected efficiency expected for such index modulation is ~ 107.

Unfortunately, we could not detect any Kerr grating reflections with our detec-
tor or with a lock-in amplifier. Furthermore, we noticed an increase in the detector
DC level, and a photodiode was able to measure a weak (nW) but slowly growing
reflected power signal indicating permanent inscription. We repeated the experi-
ment with 50 pJ pulse energy to find again permanent inscription.

The reflected power was extremely weak and could not be detected with a
standard ASE source. The permanent inscription may be the result of tunneling
ionization rather than multiphoton ionization, which is a much slower process that
is expected for relative low intensities by the Keldysh theory [93]. Further investi-
gation is required in order to produce Kerr grating, most likely in a different
material with higher nonlinearity. In the following we will present different
methods to observe transient gratings based on thermal effects in silica fibers.

4.3 Permanent grating switching

In this configuration, we first fabricate a high-quality (>25 dB) grating and
observed light transmitted through it, i.e., we measure the transmission loss of the
grating rather than its reflections. To modulate the grating, we block half of the
beam and illuminate only half of the permanent grating through the phase mask.
Due to the induced heat of each pulse, the refractive index is elevated, causing half
the grating to shift to a higher Bragg wavelength, leaving the other half intact. This
opens a transmission gap in the grating, allowing a signal, at wavelength matching
the grating Bragg wavelength to be detected by the photodiode. Essentially, we
temporarily transform a uniform grating into a phase-shifted grating. Figure 2
shows the time profile of the transmitted signal through the shifted grating.

The switching mechanism is based on induced heat, as if the gratings were
placed on a temperature-controlled controller. However, here the switching is done
with an ultrafast laser that provides ultrafast rise time. As can be seen in Figure 2,
the switching time here is about 8 ps, which makes it suitable for Q-switching
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Figure 2.
Pulse measuved out of a modulated permanent grating as a function of pulse energy.

applications. We can reduce the switching time to less than 2 ps at the cost of
extinction ratio by setting the signal wavelength slightly away from the grating
resonance.

While this is a very slow modulation time, it shows the natural response of the
induced grating by femtosecond laser pulse at different pulse energies above the
inscription threshold. Note that two different regimes are noticeable: for low pulse
energies, a fast decay of the signal followed by a long ps tail. When increasing the
pulse energy, the fast decay disappears. This indicates the formation of permanent
index modification. We will show that the long ps tail can be cut off by performing
immunization.

4.4 Immunization to femtosecond inscription

The ability of femtosecond lasers to modify the material refractive index of
practically any optical material is a keystone in photonic device fabrication. How-
ever, when one wants to observe transient grating effects, it is a drawback, as it
limits the applied pulse energy to energies below the multiphoton ionization
threshold and permanent index change. It is known that the modified index has a
limit, i.e., it can only grow to the order of 1073 (positive change in silica fibers)
when it reaches saturation. Reflection from a transient grating, however, depends
on both the index modulation and the grating period.

We have found that femtosecond photo pre-treatment can immunize a fiber up
to a certain illumination intensity [94]. In fact, the reported multiphoton ionization
and inscription threshold (~ 10" W/cm?) can be raised so that permanent Bragg
gratings first appear at a higher pulse energies.

Fiber immunizing can help avoid permanent index change and observation of
transient FBG effects. After immunization, the fiber transient index change effects,
such as heat or Kerr, are expected to be observed more clearly as the permanent
index change is saturated and its effects are suppressed.

In order to immunize the fiber against femtosecond inscription, we remove
the phase mask and inscribe it with a focal line pattern. The pulse energy in this
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Figure 3.
Transmission spectra of the inscribed permanent FBGs in untreated and treated fibers: untreated fiber, dashed
blue lines; treated fibers, solid ved lines. (a) 160 uf pulse energy. (b) 180 uJ pulse energy.

pre-treatment was chosen to be slightly more than twice the average energy for FBG
inscription, so that the peak intensity of the pre-treatment would be slightly higher
than that of the FBG inscription.

Figure 3 shows permanent gratings inscribed on a fresh fiber compared to
a treated fibers. Before any pre-treatment, gratings with —25 and — 30 dB trans-
mission dips were inscribed, at pulse energies of 160 pJ (Figure 3a) and 180 pJ
(Figure 3b), respectively. As is evident, when pre-treatment of the fibers is done at
slightly more than double of the pulse energy, the results is a complete immunity
for inscription at 160 pJ and in only —2 dB transmission loss at 180 pJ. For the latter,
a 2.5-nm wavelength shift is observed, corresponding to an increase of ~ 2 - 1072 of
the average refractive index due to the pre-treatment. Thus, our treatment greatly
reduces the ability to inscribe gratings. Pre-treatment of the fiber causes complete
immunity or limited grating buildup at a considerably lower rate.

4.5 Fast switching with transient thermal grating

Fiber immunization extremely limits the grating buildup. We characterized the
transient grating reflections of an immunized fiber [95]. After completing the
photo-treatment process on a standard SMF at a pulse energy of 1 m]J, the pump
laser pulse rate was lowered to 2 Hz in order to reduce the average thermal effects,
and reflected pulses were measured with our detector. Figure 4a shows the aver-
aged time trace (100 pulses) of the reflected pulse for different femtosecond illu-
mination pulse energies (all below half of the immunization pulse energy).

The reflected pulses (Figure 4a) have a very fast rise time followed by nanosec-
ond decay. This is three orders of magnitude improvement compared to transient
grating based on UV laser reported in Ref. [80, 81]. The observed transient increase
in the reflectivity can mainly be attributed to local heating of the silica, due to
nonlinear absorption, corresponding to a local increase in the refractive index and is
followed by thermal diffusion that washes out the grating. The decay time is typical
for thermal diffusion at these sizes and distances.

10
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(a) Measured average time trace of the veflected pulses for different femtosecond illumination pulse energies.
The inscribing pulse vate was 2 Hz. An exponential fit with parameters, a = 17.87, b = 2.06, ¢ = 10.5, and
d = 1.7, is shown for the highest veflectivity, indicating a thermal diffusion time of ~10 ns. (b) The peak
amplitude of the measured reflected signal as a function of pulse energy. The linear fit indicates a nonlinear
relation between the pulse energy (intensity) and veflectivity.

The measured rise time is 2 ns, but we believe the actual rise time is significantly
shorter, since our measurement was limited by our detection system (about the
same rise time was also measured for our 35 fs laser source). For a 550 pJ illumina-
tion pulse, the reflected pulse duration is approximately 14.3 ns (measured between
1 and e points). An exponential fit is shown (light blue) in Figure 4a, with a time
constant of ~10 ns. For a 550-p]J illumination pulse, the measured reflected peak
power is 0.38 mW, corresponding to a peak power reflectivity of 0.0435%.

Assuming an effective grating length of 5 mm, and applying the theory for
spatial-temporal gratings, we estimate an index change of An = 2.3 -10°. This is
three orders of magnitude less than reported in the literature for permanent femto-
second inscribed gratings. However, it should be noted that tens of thousands of
pulses are used to achieve the reported An for permanent inscription. The thermal
grating, and the refractive index increase, decay time depends on the diffusion
coefficient of the fiber and the grating period. In this case, the decay time expected
to be 34 ns [96]. The reflected power from a temporal grating is proportional to
(An)?; thus, we expect from theory (Eq. (6)) a reflected signal decay time of 17 ns.
This is in good agreement with the experimental results, where differences may
arise due to the presence of germanium in the fiber core.

Figure 4(b) shows the peak reflectivity as a function of applied pulse energy.

A small increase in the inscribing pulse energy results in a higher induced transient
refractive index change, leading to a significantly stronger reflected pulse. As
suggested by the linear fit, the peak reflectivity has, indeed, a nonlinear growth that
corresponds to [ >, which is a good indication that the grating is, indeed, based on
multiphoton absorption.

With respect to Figure 2, and time scale reported with femtosecond induced
index change [4], the immunization technique allows us to remove transient effects
associated with material resolidification and access the previous phase of femtosec-
ond laser-matter interaction.
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We also note here that thermal grating diffusion time is highly dependent on
grating period. The diffusion time is opposite to the square of the grating period;
thus, working with first-order grating can reduce the time scale by a factor of four.
The applicability to transient thermal grating for higher pulse rate and life time of
such device is elaborated elsewhere [95].

5. Conclusions

Transient fiber Bragg gratings has a great potential for all-optical, all-fiber, fast
optical switching. Many challenges have yet remained to be investigated in this
field, mostly improving the efficiency of the grating for practical applications,
methods to generate them, and life time of such devices.

Achieving Kerr gratings for ultrafast switching is challenging in silica fibers
since the effect is much weaker than inscription of permanent gratings. However, it
may be feasible in highly nonlinear fibers or waveguide materials. Semiconductor
waveguides and materials are promising for both Kerr-based transient gratings and
free-carrier-based gratings. Furthermore, it should be possible to implement with
low-power, low-cost diodes rather than high-power femtosecond lasers—at the cost
of slower rise time.

The immunization technique presented here can be used to implement transient
thermal gratings in transparent materials and may serve as a diagnostic tool for
dielectric materials with different compositions and doping. Furthermore, the dif-
fusion of transient thermal gratings is highly dependent on the grating period; thus,
many time scales and wavelengths are accessible by simply choosing a suitable mask
and illuminating wavelength.

Several applications may rise from transient gratings in fibers and remain to be
demonstrated: fiber laser Q-switching and modulation, generation of sub-ns
pulses—a regime not accessible with Q-switching or mode-locking technique,
diagnostic tools, and more.
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