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Abstract

Despite an inability to encode proteins, small noncoding RNAs (sncRNAs) have 
critical functions in the regulation of gene expression. They have demonstrated roles 
in cancer development and progression and are frequently dysregulated. Here we 
review the biogenesis and mechanism of action, expression patterns, and detection 
methods of two types of sncRNAs frequently described in cancer: miRNAs and 
piRNAs. Both miRNAs and piRNAs have been observed to play both oncogenic and 
tumor-suppressive roles, with miRNAs acting to directly regulate the mRNA of key 
cancer-associated genes, while piRNAs play crucial roles in maintaining the integrity 
of the epigenetic landscape. Elucidating these important functions of sncRNAs in 
normal and cancer biology relies on numerous in silico workflows and tools to profile 
sncRNA expression. Thus, we also discuss the key detection methods for cancer-
relevant sncRNAs, including the discovery of genes that have yet to be described.

Keywords: small noncoding RNAs, miRNAs, piRNAs, transcriptome, gene 
expression profiling, novel, cancer, neoplasms, computational biology

1. Introduction

The central dogma of molecular biology that has prevailed for many decades, 
states that genetic information flows from DNA to RNA to protein. Nevertheless, 
RNAs that do not encode proteins were discovered as early as the 1950s [1, 2]. While 
protein-coding genes represent less than 2% of the human genome, it has been 
established that ~90% of the genome can be transcribed [3].

Small noncoding (snc) RNAs refer to ncRNA species that are <200 nucleo-
tides in length and can be further categorized by their shared molecular features 
and biological mechanisms of action (Table 1). SncRNAs have diverse structural 
and functional roles in the regulation of gene expression, RNA splicing, epigen-
etic processes and chromatin structure. Due to their broad roles, the deregula-
tion of sncRNAs has been shown to be involved in human diseases, including 
cancer. MicroRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) are two 
of the most studied sncRNA species. Here we describe current knowledge in the 
biogenesis and mechanisms of action for these sncRNAs and their expression 
profiling in cancer.
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1.1 Biogenesis

1.1.1 miRNA biogenesis

MiRNAs are transcribed by RNA polymerase II to produce primary miRNA 
(pri-miRNA) transcripts [4]. Pri-miRNAs are folded hairpin intermediary RNA 
structures that can harbor multiple mature miRNA sequences and even protein-
coding exons [5]. After transcription, pri-miRNAs are then processed and cleaved 
into mature miRNAs through different pathways (Figure 1a). In the “canonical” 
pathway, pri-miRNAs go through two cleavage events: (i) in the nucleus, the 
RNAseIII enzyme Drosha cleaves the pri-miRNA hairpin at its base to generate a 
precursor miRNA (pre-miRNA, ∼60 nt) [6] and (ii) the pre-miRNA is translocated 
to the cytoplasm by Exportin-5, where it is cleaved into two mature (∼22 nt) miRNA 

Types Comments Size (nt) Ref

MicroRNAs (miRNAs) Evolutionarily conserved, endogenous, single-stranded sncRNAs, 

derived from endogenous short hairpin transcripts

18–25 [17]

PIWI interacting RNAs 

(piRNAs)

Largest group; single-stranded ncRNAs; generated by a 

Dicer-independent mechanism; a uridine at the 5′ end, 5′ 

monophosphate, and 2′-O-methyl at the 3′ end

21–36 [18]

Transfer RNAs and 

ribosomal RNAs

Often referred to as “housekeeping” RNAs; take part of the 

translation process in ribonucleoproteins

Small nuclear RNAs 

(snRNAs)

Found within the splicing speckles and cajal bodies of the nucleus; 

role in processing pre-messenger RNA, regulation of transcription 

factors and maintaining telomeres

150 [19]

Small nucleolar RNAs 

(snoRNAs)

Regulators of rRNA stability and function; some snoRNAs regulate 

gene expression and silencing processes

(i) C/D box snoRNAs (60–200 nt): catalyzing the 2′-O-ribose 

methylation of rRNA residues

(ii) H/ACA box snoRNAs (120–250 nt): guiding pseudouridylation 

of rRNA

(iii) Small Cajal body specific RNAs: functions as a Cajal-body 

localization signal

60–250 [20]

Small interfering RNAs 

(siRNAs)

Partially complementary passenger and guide RNA strands; 

involved in post-transcriptional gene silencing through the RISC-

mediated degradation of mRNA targets

19–23 [21]

Transfer RNA 

Fragments (tRFs)

Generated by specific cleavage of tRNA transcripts;

(i) Stress induced tRFs (31–40 nt): repress translation and modulate 

cellular stress-response; interact with AGO proteins to form 

complexes for RNA interference silencing

(ii) Smaller tRFs (14–30 nt): biogenesis and function unclear; some 

interact with PIWI or AGO proteins

14–40 [22]

Y RNAs Parts of the Ro ribonucleoprotein. Involved in DNA replication, 

RNA stability, and responses to stress

100 [23]

7SL RNAs Component of the signal recognition particle (SRP) that 

mediates co-translational insertion of secretory proteins into the 

endoplasmic reticulum lumen

[24]

Small NF90 associated 

RNAs (SNaRs)

Interact with NF90’s double-stranded RNA-binding motifs and act 

as transcriptional regulator

117 [25]

Vault RNAs (vtRNAs) Associated in large ribonucleoprotein particles (Vaults); essential 

for intracellular trafficking

100 [26]

Table 1. 
Classification of small noncoding RNAs.
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molecules by Dicer (also an RNAse III enzyme) [7]. The major alternative miRNA 
processing pathway is the Mirtron pathway [8]. Mirtrons are short hairpin introns 
with splice acceptor and donor sites. In this pathway, a splicing event takes place 
instead of cleavage by Drosha. Here, the Mirtron and canonical miRNA pathways 
converge. Thus, the Mirtron pathway is considered as Drosha-independent, but 
Dicer-dependent. Several other miRNA processing pathways have also been 
reported [9]. Co-transcribed miRNAs that share similar seed regions are considered 
as members of a miRNA family [10]. Mechanistically, either of the strands derived 
from a mature miRNA duplex can be loaded into the Argonaute (AGO) family of 
proteins (AGO1–4 in humans) in an ATP-dependent manner to form the RNA-
induced silencing complex (RISC) [11]. Although one of the strands is usually 
preferentially incorporated, this varies according to context, and the sequence of the 
strand incorporated will determine the targets that will be recognized by RISC [12].

1.1.2 piRNA biogenesis

PiRNAs are typically transcribed from genomic regions called piRNA clusters, 
regions which are typically 50–100 kb long, contain mainly transposable DNA ele-
ments and their remnants, and are found in large pericentromeric or subtelomeric 
domains [13]. PiRNAs are generated by RNaseIII-independent pathways that do not 
involve double-stranded RNA precursors, through two main biogenesis pathways 
(Figure 1b). (i) Primary processing pathway: cleavage of long piRNA precursors, by 
PIWI proteins, preferentially at uridine residues [14]. The 3′ ends of piRNAs harbor 
extra nucleotides, which are trimmed upon association with PIWI proteins [15]. 
Here, the lengths of mature primary piRNAs are determined and depend on the 
molecular size of PIWI proteins [16].

Upon maturation, the 3′ ends of piRNAs are 2′-O-methylated by Hen1/Pimet, 
which is associated with PIWI proteins [27]. This modification maintains the stabil-
ity of piRNAs in vivo and can be used as a distinguishing feature in piRNA studies 
[28]. (ii) Ping-Pong cycle: this pathway is initiated in the cytoplasm to produce 
“secondary” piRNAs. The PIWI protein-piRNA complex (loaded with primary 
piRNAs) together with AGO3 are responsible for cleaving both sense and antisense 
transposon transcripts. Secondary piRNAs result from these transposon frag-
ments and are complementary to the first 10 nt of the loaded primary piRNA [29]. 
This complex shows a strong bias for uracil at the 5′ end (1-U), and, accordingly, 

Figure 1. 
Biogenesis of (A) miRNAs and (B) piRNAs.
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Ago3-piRNAs tend to have adenosine at the 10th nucleotide from the 5′ end (10-A). 
Thus, 1-U and 10-A are signature to piRNAs made via the Ping-Pong cycle [30]. The 
cleavage of transposons by the AGO3-piRISCs and Aub-piRISCs, and the generation 
of secondary piRNAs are the main mechanisms involved in the control of transcript 
levels and silencing of transposons [13, 31].

Each step of miRNA and piRNA biogenesis is subject to regulation [32]. Thus, 
examining the biogenesis pathways of these sncRNAs through high throughput 
sequencing techniques may uncover mechanisms of aberrant miRNA/piRNA 
expression and deregulation in many human diseases.

1.2 Mechanisms of action

1.2.1 miRNA-mediated mechanisms

Once assembled into RISC, the miRNA 5′ seed region (between nucleotides 
2–7) interacts with specific region(s) within the 3′ untranslated region (3′ UTR) of 
target messenger RNAs (mRNAs) [33]. A single miRNA can interact with multiple 
target mRNAs. Depending on the miRNA/mRNA complementarity, degradation or 
repression of the targeted mRNA(s) will be triggered [33]. Pairing with complete 
complementary target leads to cleavage of the target mRNA and subsequent miRNA 
and mRNA degradation [34]. However, pairing with imperfect complementar-
ity can lead to AGO2-mediated RNA interference. The interference mechanisms 
include having: (i) the GW182 component of the RISC to recruit associated proteins 
that would deadenylate, decap and degrade the target mRNA [35], (ii) Eukaryotic 
Translation Initiation Factor 4A2 (eIF4A2) as a “roadblock” to inhibit the ribosome-
scanning step of initiation [36], and (iii) translational activation through recruit-
ment of AGO2 and FXR1 instead of GW182 [37]. Of note, the miRNA-RISC can 
shuttle between the cytoplasm and the nucleus through Importin-8 or Exportin-1, 
highlighting the ability of newly-transcribed miRNAs to act in different cellular 
compartments [38].

Beyond the regulation of their production, several processes modify miRNA 
function. MiRNAs have a functional role in transcriptional gene silencing through 
DNA modification [39], deposition of repressive histone marks [40], promoting 
a transcriptionally active chromatin state [41], and altering alternative splicing 
profiles [42]. Alternative splicing, alternative polyadenylation affecting 3′ UTRs, 
and cell type-specific RNA binding proteins that affect target mRNA secondary 
structures can change the available pool of miRNA binding targets. Moreover, 
subcellular localization of a given miRNA-RISC modulates its ability to bind target 
mRNAs [43]. These cell-type and biological state-specific factors contribute to 
the specificity of miRNA. Lastly, miRNAs can be released into and detected in 
extracellular fluids, delivered to different cells, and so act as regulators in autocrine, 
paracrine and/or endocrine processes [44].

1.2.2 piRNA-mediated mechanisms

The most well-known function of piRNAs is the silencing of transposons in 
germline cells to ensure genome stability during gametogenesis [45]. Similar to 
the lesser-known function of miRNAs, piRNAs primarily act as guides for PIWI 
proteins and drive histone modifications promoting heterochromatin assembly and 
DNA methylation [46].

PIWI-proteins are mainly found in the nucleus and co-localize with Polycomb 
group protein, playing crucial roles as epigenetic modifiers [47]. Knockout of 
PIWI proteins decreases histone H3 lysine 9 methylation, a marker of repressed 
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gene expression [48]. The complementary sequence of the piRNAs is responsible 
for directing these proteins to the specific targets on the genome and recruiting 
epigenetic factors [49], supposedly participating in epigenetic control [47], cell 
metabolism [50] and genome stability [51]. Alterations in piRNA expression have 
significant implications to the biology of stem-cells and cancer [52].

2. MicroRNA expression profiling in cancer

2.1 MicroRNA detection

Various experimental approaches can be used for measuring miRNA expression 
levels. The most frequently used are quantitative PCR (qPCR), digital color-coded 
barcoding profiling, miRNA microarrays, and high-throughput RNA sequenc-
ing (RNA-seq) methods. Material considerations and experimental aims dictate 
which approach is optimal [53]. While qPCR is efficient in analyzing few miRNAs, 
array and sequencing based methods offer parallel analyses of multiple miRNAs. 
Experiments that aim to discover previously undescribed transcripts require RNA-
seq approaches [54].

2.2 MicroRNA expression in cancer

RNA expression has been shown to be dysregulated in all stages of cancer 
and nearly every cancer type [55–57]. Genome-wide profiling has demonstrated 
that miRNA expression signatures are associated with tumor type, tumor grade 
and clinical outcomes; thus, miRNAs are potential candidates for diagnostic and 
prognostic biomarkers, as well as therapeutic targets [56, 58, 59]. In fact, miRNA 
expression signatures have been observed to be impacted by smoking status in lung 
adenocarcinoma patients [59]. Furthermore, the expression patterns of miRNAs 
may be able to supplement the diagnostic utility of mRNAs, particularly in key 
tumor features such as subtype identification [58, 60]. There are currently ~2400 
human miRNA annotated in miRBase (http://www.mirbase.org/cgi-bin/mirna_
summary.pl?org=hsa), and it is believed that they collectively regulate one third of 
the genome [61]. The development of high-throughput deep sequencing analysis 
platforms has enabled our ability to detect and characterize miRNAs, as well as to 
identify the impact of their deregulation [57]. A summary of miRNA databases and 
the tools available for gene expression profiling is provided in Table 2.

2.3 Identification of novel microRNA sequences

The annotated human miRNA transcriptome mainly contains abundant and 
conserved miRNA sequences. Therefore, cell lineage- and tissue-specific miRNAs, 
especially the less abundant species, may not necessarily be included in current miR-
Base annotations [55]. Re-analyses of high-throughput sequencing data of human 
tissues, cancers and cell lines have resulted in large scale discoveries of previously 
unannotated miRNAs that are expressed in a tissue-specific manner [55, 62–64].

A wide range of stand-alone and web-based miRNA discovery bioinformatics 
tools have been designed to quantify miRNA expression and to predict miRNA 
candidates and their isoforms from small RNA sequencing data (Table 2). These 
tools align the small RNA sequences to reference genomes and predicts putative 
novel miRNAs precursors based on the molecular features of these sequences, such 
as their folding characteristics, the formation of hairpin structures and whether 
this precursor gives rise to the three products of miRNA processing by DICER: a 5′ 
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Resource Name Description Link

Gene expression databases ArrayExpress EMBL-EBI ArrayExpress functional genomics data https://www.ebi.ac.uk/arrayexpress/

GEO NCBI Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/

Oncomine Web applications for translational bioinformatics https://www.oncomine.org/resource/login.html

TCGA NIH The Cancer Genome Atlas https://portal.gdc.cancer.gov

miRNAs databases miRBase miRbase 22: the microRNA database www.mirbase.org

miRCancer microRNA Cancer Association Database http://mircancer.ecu.edu/

SonamiR DB Somatic mutations altering microRNA-ceRNA interactions http://compbio.uthsc.edu/SomamiR/

TransmiR Transcription factor microRNA regulations http://www.cuilab.cn/transmir

piRNAs databases piRBase piRNA annotation and function analyses http://www.regulatoryrna.org/database/piRNA/

piRNABank Web analysis of mammalian and Drosophila piRNAs http://pirnabank.ibab.ac.in/

piRNA cluster 

database

Resource for genomic piRNAs clusters http://www.smallrnagroup.uni-mainz.de/piRNAclusterDB.

html

miRNA discovery tools deepBase Annotate and discover small, long and circular ncRNAs http://rna.sysu.edu.cn/deepBase

miRDeep Identification of novel and known miRNAs in NGS data https://www.mdc-berlin.

de/n-rajewsky#t-data,software&resources

miRMaster miRNA analysis framework, novel miRNA detection, isoforms and 

variants search

https://ccb-compute.cs.uni-saarland.de/mirmaster/

miRNAkey Software for the analysis of miRNA sequencing data http://ibis.tau.ac.il/miRNAkey/

OASIS Online small-RNA detection and prediction platform http://oasis.dzne.de

Tools4miRs Curation of methods for miRNA analysis https://tools4mirs.org/

miRNA target prediction 

tools

miRDB miRNA target prediction and functional annotations http://mirdb.org/

miRTargetLink Human microRNA-mRNA interaction networks https://ccb-web.cs.uni-saarland.de/mirtargetlink/

miRWalk Online prediction of microRNA binding sites http://mirwalk.umm.uni-heidelberg.de/

pathDIP Pathway enrichment analysis by online data integration http://ophid.utoronto.mirDIP/

Targetscan Predict target sites of conserved miRNAs http://www.targetscan.org/vert_72/

Table 2. 
Resources for ncRNA profiling studies.
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and a 3′ mature miRNA sequence (and also star sequence), as well as a hairpin loop 
(Figure 2) [65]. Additionally, other filtering criteria may be incorporated to further 
enrich for real miRNA candidates, such as GC content, seed sequence composi-
tion and similarity to known sequences, as well as expression considerations [65]. 
Therefore, comparing the features of the novel miRNA candidates to annotated 
miRNA species present in public repositories, such as miRbase, allows for the 
estimation of the probability of the miRNA candidate being a real miRNA, as well 
as the confirmation of their novelty [66].

2.4  Assessment of miRNA expression and biological function from  
sequencing data

To estimate miRNA expression levels, high-quality sequence reads, which are 
mapped to individual miRNAs, are quantified and normalized for differences 
in sequence depth to allow for comparison between samples [67]. A variety of 
statistical tests can be applied to determine differential expression. For example, 
tissue-specificity of the miRNAs derived from a given organ site can be assessed by 
comparing expression patterns across tissue types, by using Principal Component 
Analysis (PCA) or nonlinear t-Distributed Stochastic Neighbor Embedding (t-SNE) 
[62, 63]. Additionally, differential expression of miRNA between biological states, 
such as neoplastic versus nonmalignant tissue samples, can be compared using vari-
ous standard parametric or nonparametric statistical tests (Figure 3) [63, 64].

Once miRNAs-of-interest are identified, their function can be assessed through 
in silico methods of gene-target prediction. Prediction of miRNA:mRNA targets 
enables the understanding of their involvement in genetic regulatory networks. 
Since one miRNA can target multiple gene transcripts, it is challenging to com-
prehensively capture regulatory targets without also yielding false predictions. 
Therefore, a variety of computational approaches have been developed for the 
confirmation of miRNA:mRNA target interaction which consider features such as 
(i) seed match, (ii) conservation, (iii) free energy, and (iv) site accessibility [68]. 

Figure 2. 
Output from the miRDeep2 algorithm demonstrates that a previously unannotated small RNA sequence 
exhibits miRNA-like folding structures.
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The growing availability of high throughput next generation sequencing (NGS) data 
will not only lead to novel miRNA discovery but will allow us to further elucidate 
the role of miRNA expression in human biology and disease such as cancer.

3. PIWI-interacting RNA expression profiling in cancer

PiRNAs are known to act in an evolutionarily conserved innate protection 
mechanism against transposable elements in germ cell genomes [69]. Beyond the 

Figure 3. 
Pipeline for detection and characterization of known and novel miRNAs. A) An example of bioinformatic 
pipeline for the detection of miRNAs. B) Main features for assessment of the biological relevance of miRNAs.
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piRNA functions described in germ cells, there is increasing evidence of multifac-
eted action not restricted to transposon silencing in somatic cells [70]. Although the 
function of piRNAs in somatic cells and their relationship with tumorigenesis and 
cancer progression are still unknown, many studies seek to evaluate PIWI proteins 
and piRNA expression in a variety of malignancies [71].

3.1 piRNA detection and resources

Since piRNAs resemble miRNAs in length and structure, the same expression 
profiling platforms are applicable, wherein small RNA sequencing, microarrays, 
and quantitative PCR are the most widely used. The identification of piRNAs is 
mainly performed by small RNA sequencing, through extracting the reads with the 
proper length (generally from 24 to 32 nucleotides) that present piRNA-like features 
[72]. As previously discussed, piRNAs are frequently identified by a uridine nucleo-
tide in the first position, have an adenosine nucleotide at the 10th position, have 
a 2′-O-methylation at the 3′ end, and are mapped in clusters in the genome [72]. 
Although the expression can be confirmed by in situ hybridization and Northern 
blotting [73], the co-immunoprecipitation assay is the gold standard technique 
[74]. This analysis allows the isolation and characterization of RNAs physically 
interacting with PIWI-proteins [74]. However, the lack of highly specific antibodies 
for human PIWI-proteins limits the discovery of relevant piRNAs [75]. Functional 
studies using knockdown or knockout experiments for newly discovered piRNAs 
are fundamental to elucidate the biological role of these sequences [73].

The increasing application of large-scale small RNA sequencing has enabled the 
discovery of a large amount of piRNAs. The most widely used piRNA compendiums 
are piRBase and piRNABank, which contain millions of annotated human piRNA 
sequences—8,438,265 and 11,147,151 annotated piRNAs to date, respectively (Table 2) 
[76, 77]. Despite the large number of annotated sequences in these databases and many 
studies describing piRNA expression in somatic and malignant tissues, this knowledge 
must be considered with caution. It has been demonstrated that different piRNA 
databases include some RNA fragments that have similar sizes and features to piRNAs, 
representing possible contaminants; yet, sncRNAs derived from tRNAs have been 
described to interact with PIWIL2 and are deregulated in cancer [78].

PIWI-interacting RNAs regulate the expression of mRNAs by guiding PIWI-
proteins [46]. Bioinformatics approaches have shown that approximately 28.5% 
of human mRNA sequences contain at least one retrotransposon sequence in their 
3′ UTRs, and those mRNAs can be post-transcriptionally regulated by piRNAs 
[79]. In addition, many piRNAs do not match transposon sequences, suggest-
ing an even greater set of targets and functional roles for piRNAs [80]. In fact, 
cross-linking immunoprecipitation (CLIP) analyses unveils many nontransposon 
mRNAs engaged with PIWI proteins [81]. In Caenorhabditis elegans, it was previous 
demonstrated that piRNA action is analogous to miRNAs, in that seed sequences 
are required for mRNA targeting, but unlike miRNAs, piRNAs do not tolerate many 
mismatches out of this region [82]. Potential piRNA targets can be retrieved using 
algorithms initially designed for miRNAs, such as miRanda [83], where stringent 
alignment (≥170) and free-energy scores (≤−20.0 kcal/mol) are required for 
piRNA analyses [84]. However, the identification of piRNA targets is very challeng-
ing, as the targeting rules are still unsolved [82].

3.2 piRNA profiles in cancer

PIWI proteins 1–4 and PIWI-related proteins (DDX4, HENMT1, MAEL and 
TDRD1) have been reported to be disrupted in tumor cell line and patient samples 
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[85, 86]. The sncRNA repertoire of cancer cell lines from the NCI-60 panel (59 
cell lines from nine different tissues) was recently characterized, where piRNAs 
comprised the largest proportion of expressed transcripts, followed by miRNAs and 
snRNAs [62]. In lung cancer cell lines, it was previously described 555 differentially 
expressed piRNAs and piRNA-like sncRNAs (piRNA-Ls) compared with lung 
bronchial epithelial cell lines [87]. Among them, piR-L-163 was found to be down-
regulated in cancer cell lines and interact with phosphorylated ERM, regulating cell 
proliferation, migration and invasion.

Interestingly, piRNA expression profiling studies in tumor tissues revealed that 
piRNAs can be influenced by etiologic factors, such as tobacco consumption and 
HPV infection in lung and head and neck cancer [88–90]. The piRNA transcrip-
tome of 6260 samples (from 11 organs) from The Cancer Genome Atlas (TCGA) 
consortium was prior screened [56]. Tumor samples presented a higher number of 
expressed piRNAs (n = 522) compared to somatic non-neoplastic tissues (n = 273), 
suggesting their potential as biomarkers. RNA sequencing found piR-1245 to be 
overexpressed and demonstrate oncogenic roles in colorectal cancer, inducing pro-
liferation, colony formation, invasion, and apoptosis resistance [91]. Several other 
piRNAs have been reported to be overexpressed in numerous human malignancies 
[92–95]. Alternatively, piRNAs have also been described to have anti-tumor effects. 
For example, piR-39980 was demonstrated through functional assays to decrease 
proliferation, migration, invasion, colony formation, and to induce apoptosis in 
fibrosarcoma cell lines upon piRNA-mimic transfection [96].

The role of piRNAs in the response to chemotherapy has also been addressed 
[97–99]. In PIWL2-knockout embryonic fibroblast mouse models, the commonly 
overexpressed gene PIWL2 was demonstrated to facilitate chromatin acetylation 
and relaxation in response to cisplatin treatment, leading to enhanced DNA repair 
and highlighting its potential role in treatment resistance [97]. piR-FTH1 was 
reported to drive chemoresistance in breast tumor cell lines, where its repression 
could sensitize tumor cells to doxorubicin [98]. Similarly, inhibition of piR-L-138 
can increase apoptosis in cisplatin-treated lung cancer cell lines and patient-derived 
xenografts [99].

4. Emerging roles of sncRNA as cancer biomarkers

Considering the tissue-specificity of miRNAs and piRNAs in cancerous and 
healthy samples [55, 56], several individual or sncRNA-sets have been proposed 
as diagnostic or prognostic markers [56]. A set of 24 miRNAs evaluated by qPCR 
has been shown to correctly discriminate malignant from benign thyroid nodules 
with high sensitivity and specificity, potentially avoiding unnecessary diagnostic 
thyroidectomies [100]. In gastric adenocarcinoma, a three-piRNA recurrence risk 
signature was reported, using the small RNA sequencing data from the TCGA data-
base [101]. Similarly, a higher expression of piR-1245 was linked to a lower overall 
survival in three independent cohorts of colorectal cancer patients [91].

The use of sncRNAs as liquid biopsy cancer-markers is also under intense 
investigation [102, 103]. In fact, both miRNAs and piRNAs are detectable in human 
serum, as demonstrated by a recent study based on RNA sequencing analysis in 
477 serum samples [104]. Moreover, sncRNAs are enriched in extracellular vesicles 
(miRNAs ~40%, piRNAs ~40%) [105], allowing for their export from the cell in 
which they were synthesized to affect cells at a distance [106]. Models based on 
miRNA and piRNA combinations were able to correctly classify colon and prostate 
cancer patients from healthy individuals [106]. A four-miRNA expression signature 
in the serum of triple negative breast cancer patients was also demonstrated to be 
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an optimal survival predictor [107]. Recently, a qPCR assay comprising two targets 
(piR-5937 and piR-28876) and one reference piRNA (piR-28131) was suggested to 
detect early colon cancer [108]. Despite the low piRNA levels in the serum of cancer 
patients, they presented better detection sensitivity than the currently used bio-
markers such as CA19-9 and carcinoembryonic antigen (CEA).

Many studies are currently investigating the ability of miRNA/piRNA signatures 
to empower cancer screening through the prediction of cancer recurrence or pro-
gression, stratification of patients by prognosis, and prediction of tumor response 
to various treatments. However, more efforts are still needed to screen miRNA/
piRNA biomarker candidates and further validate them in large cohorts.

5. Conclusions

Here, we summarized the roles of small noncoding RNAs in normal and disease 
molecular biology and highlighted the importance of developing high-throughput 
sncRNA-detection methods in genome analyses. Transcribed through a variety 
of mechanisms, these molecules act in the widespread and specific regulation 
of gene expression. However, before these results can be translated to the clinic 
many factors must still be considered, including the development of effective and 
specific delivery system for sncRNA-based therapeutics and the broad validation 
of these sequences in large external cohorts. As our ability to detect and validate 
these sequences develops, we will continue to uncover their biological functions and 
potential uses in the clinical management of many diseases, including cancer.
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