
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

An Embedded Gait Analysis 
System for CNS Injury Patients
Gilbert Pradel, Tong Li, Didier Pradon and Nicolas Roche

Abstract

Clinical evaluation of CNS injury patients before and after treatment is an 
essential step in gait rehabilitation. Medical care of gait disturbance for stroke 
patients is based on different treatments based on clinical and functional evalua-
tions. Evaluation of gait aims at characterizing the motor performance to provide 
clinicians with information on the patient’s organizational or performance status 
and to allow them to consider the most appropriate treatment options. A 3D 
instrumented gait analysis system allows quantification of several parameters at 
each instant of walking but does not represent gait in daily life conditions. The 
absence of devices usable in daily life situation constitutes a lack pointed out by 
clinical practitioners and is at the origin of this work. In the following are described 
the design and implementation of a wireless embedded system for the collection of 
spatiotemporal parameters of pathological gait in everyday life. Algorithms estimate 
joint angles, step length, and gait events and automatically partition data into gait 
cycles. Experiments have been carried out to accurately evaluate the joint angles, 
the precision of sensor synchronization, the precision of gait event detection, and 
the robustness in the case of pathological walk. Comparisons with references given 
by the 3D instrumented gait analysis system are detailed.

Keywords: CNS injury people, stroke patients, gait analysis, spatiotemporal gait 
parameters, gait event detection, embedded systems

1. Introduction

Stroke, caused by an effusion of the blood inside the brain tissue (hemorrhage) 
or by an interruption of the blood supply (ischemia), leads to motor impairments 
and disorders of the higher functions (e.g. negligence and anosognosia), sensorial 
and sensitive [1–3].

On the motor plan, the lesion of the central nervous system generates a pyra-
midal syndrome mainly characterized by a loss of motor selectivity, alteration of 
motor command, and a muscle over-activity accompanied by exaggeration of the 
stretch reflex commonly called spasticity. Although 50–80% of the patients recover 
a locomotor capacity [1, 4], they reported that, due to gait alteration, they lost a lot 
of autonomy in daily life activities [5–7].

Human gait is a complex phenomenon that must ensure the inter-limb coordina-
tion rotation of multiple segments in order to maintain equilibrium during motion 
[3]. It can be described as a series of segmental rotations of the lower limbs in order 
to ensure the displacement of the body. These series of cyclic movements can be 
split into different phases grouped together in a gait cycle. Hemiplegic patients’ gait 
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differs from those of healthy people concerning different points like performance 
and organization. The main anomalies observed in this population are an altera-
tion of spatiotemporal and kinematic parameters. Therapeutic management and 
prospective follow-up take into account these two points.

Medical care of gait disturbance in stroke patients use different treatments based 
on clinical evaluation and functional evaluation. Evaluation of the stroke patient’s 
gait aims at characterizing the motor performance to provide clinicians with 
information on the patient’s organizational or performance status and to allow them 
to consider the most appropriate treatment options.

In the same way, after applying these different therapeutic approaches, the eval-
uation allows the therapist to determine the effectiveness of the latter in relation to 
the fixed objective. Among the different methods for evaluating gait, the most com-
monly used to know the patient’s organization during walking are the Functional 
Gait Assessment (FGA) and the 3D instrumented Gait Analysis (3D-GA).

There are different types of functional tests that can be used in varying scenarios 
to evaluate the locomotion of hemiparetic patients. Here, we just list some of the 
most used tests:

• The 5- or 10-m walking test: timed walk on a set distance (5 or 10 m) with 
spontaneous or maximum speed. With this test, the mean of speed, cadence, 
and step length could be determined.

• The 6-minute walk test: assesses the maximum distance walked during 6 minutes 
over a 30 m [8, 9] walkway to determine the average walk speed.

• The Timed Up and GO test: the patient is asked to rise from a chair, walk 3 m, 
turn, walk back to the chair and sit down. It can be used to assess walking speed, 
functional mobility, walking balance, and postural transitions.

The FGAs are performed under the situations close to those of the patient’s daily 
life but do not provide all the parameters characterizing walking. They do not allow 
observing the evolution of all the parameters and also limit the number of measurable 
parameters; their measurement is generally not precise because it is too qualitative.

The 3D-GA provides the clinician with all the quantitative information on the 
state of organization of the musculoskeletal system during the execution of the 
locomotor task by means of the kinematic, kinetic, and spatiotemporal parameters 
of the gait. A 3D-GA system uses the absolute three-dimensional location of the 
object moving relative to a system reference also fixed. It can be typically of opto-
electronic type (Motion Analysis, Vicon, Optitrack, Qualisys, Saga, Codamotion, 
etc.). The patient, equipped with reflective markers located on anatomical points, 
walks in an environment equipped with optoelectronic cameras that record the 
displacement of the markers, of a platform of force to detect the events of the gait 
cycle. A complex post processing on the recorded information extracts the locomo-
tor parameters. This test can only be performed in a hospital environment with 
limitations due to the size of the environment and its duration.

The walk of the patient in the hospital environment, equipped with these 
reflective markers, may be not representative of his/her locomotion in everyday 
life: the distance is too short, the ground is horizontal without asperities, and the 
trajectory is very often rectilinear. When using a treadmill, the start and stop phases 
are delicate for the patient’s balance. Also, finding a device providing information 
on walking is a necessity.

An embedded wearable motion analysis system uses a set of sensors worn on the 
body of the person to measure locomotion parameters. The system must be energy 



3

An Embedded Gait Analysis System for CNS Injury Patients
DOI: http://dx.doi.org/10.5772/intechopen.83826

efficient, light, and compact and must not interfere with the patient’s natural 
locomotion so that it can be used in patients’ everyday life. Information provided by 
the embedded system must be similar to those delivered by 3D-GA systems.

This chapter describes the wireless embedded system for acquiring the locomo-
tor parameters of a stroke person. This system is designed to be used out of hospital 
environment (i.e. in the patient’s daily life). This system is coupled to a gait event 
detection device to isolate walking cycles. The results of the experiments performed 
are compared to those provided by the 3D-GA in order to test the accuracy and 
robustness of the proposed system.

2. Changes in hemiplegic gait

2.1 Changes in spatiotemporal parameters of the gait cycle

The gait cycle, normal or pathologic, is divided into eight sub-phases: initial 
contact, loading response, midstance, terminal stance, pre-swing, initial swing, 
mid swing, and late swing [10, 11]. If the full cycle is normalized to 100%, then 
the stance phase (between initial contact (IC) event and final contact (FC) event) 
represents 60% and the swing phase 40%. This normalization makes it possible to 
compare the results of different studies or different populations.

The spatiotemporal parameters are often used to describe and characterize the 
locomotion [3, 10]. Figure 1 illustrates the definition of the spatial parameters like 
step width, step length, and stride length.

The following are the temporal parameters:

• Duration of the different sub-phases, expressed in percentage

• Cadence in number of steps per minute

• Lengths of the step and the stride

• Gait speed, which is the product of the cadence per step length in m/s

If, for a healthy subject, the durations of the sub-phases in a cycle are sym-
metrical for the left and the right sides, it is not the case for a stroke patient. In that 
case, the duration of the stance phase and its percentage of the gait cycle decrease 
for the affected lower limb compared to the healthy subject [12–16]. Moreover, the 
duration of the single support phase of the paretic side is decreased compared to the 
healthy side. The spontaneous gait speed can be considered as a significant ele-
ment that traduces patients’ ability to walk [10]. Similarly, different studies [17, 18] 

Figure 1. 
Spatial parameters.
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showed that the cadence of the stroke patients is decreased compared to those of the 
healthy subject whatever their gait speed.

2.2 Changes in joint kinematic parameters

The modifications of spatiotemporal parameters observed during gait of stroke 
patients are mainly caused by kinematic and kinetic alterations [19]. Global motor 
organization is given by the kinematic parameters, a segment rotation is character-
ized in function of the adjacent one, and joint angles are the main elements allowing 
the understanding of the gait. Figure 2 illustrates the definition of joint angles of 
the lower limb.

2.2.1 Changes in movement at the hip

The joint angle of the hip is defined as the relative angle between the pelvis and the 
femur. The flexion/extension of the hip occurs in the sagittal plane. The flexion of the 
hip propels the thigh toward the anterior surface of the body. In contrast, the exten-
sion of the hip throws the thigh toward the posterior surface of the body.

For the healthy subject, at the beginning of a cycle, the hip is in flexion. During 
the single support phase, the hip performs an extension. At the end of propulsion, 
the angle of the hip reaches a maximum extension of about −10°. During the oscil-
lating phase, the maximum value of hip flexion can reach +45°.

Usually, a stroke patient exhibits both an insufficient hip flexion and a limitation 
of the hip extension, [20] which contribute to the decrease of the step length and of 
the gait speed.

2.2.2 Changes in movement at the knee

The joint angle of the knee, defined as the relative angle between the tight and 
the shank, is close to +10° for the healthy subject at the beginning of a gait cycle. 
During the single support phase, this angle increases to a first maximum amplitude 
of about +20° and then decreases. At the beginning of the oscillating phase, the 
knee flexes quickly to prepare the oscillation of the body. We then observe a second 
local maximum with a value that can reach +60° followed by an extension.

Figure 2. 
Definition of the joint angles for the lower limb.
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For the stroke patient, the presence of a hyper-extension at the beginning of the 
single support phase due to the spasticity of the triceps surae or a decrease of peak 
knee flexion in swing phase is called stiff knee gait mainly due to a spasticity of the 
rectus femoris muscle.

2.2.3 Changes in movement at the ankle

The ankle joint angle is defined as the relative angle between the shank and the 
foot, the foot being considered as a single rigid segment. The dorsiflexion of the 
ankle in the sagittal plane traduces a flexion of the foot. In contrast, plantar flexion 
comes from a flexion of the foot.

During the gait cycle, the evolution of ankle angle is composed by three steps:

• During the initial double contact, the heel touches the ground with the foot in 
neutral position (0°).

• Then, the ankle makes a plantar flexion. When the entire foot is in contact with 
the ground, the ankle plantar flexion is about +10°.

• After this step, the foot makes a dorsiflexion to reach a peak whose value is about 
+20°.

• The last step corresponds to the toe off. The ankle makes, firstly, a plantar flexion 
and, secondly, a dorsiflexion.

In stroke patients, a plantar flexion is often observed either during the initial 
double contact or during the single support phase or the swing phase. This decrease 
of dorsiflexion can be explained by a spasticity of the triceps surae muscle. This 
phenomenon is often associated with a reduction of the propulsive force and a 
deficit of the gait velocity [21, 22].

2.3 Discussion

During an evaluation of the therapeutic management, the following are 
considered:

• The relative segmental (articular kinematics) and the absolute displacements 
(segmental kinematics)

• The movements of the segmental and/or global center of mass by using anthro-
pometric data, kinetics, forces, moments, and articular powers by coupling 
dynamometric sensors (force platform type)

• Electromyographic muscular activities

To allow appropriate management of the stoke patient, the 3D-GA system, consid-
ered de facto as the “gold standard,” and the FGAs are the most used methods. However, 
the costs as well as the complexity of the use of optoelectronic 3D-GA systems reduce 
the use of this assessment of gait disturbance of patients with stroke sequelae to a 
limited number of laboratories/hospitals compared to the actual demand of patients.

The studies presented in the following describe the design and implementation 
of a wireless embedded system for collecting gait parameters of pathological gait in 
everyday life.
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3. Recording of gait parameters by wireless wearable system

The main objective at the base of the approach is the study of the signals from 
the sensors during walking and the implementation of the posture estimation algo-
rithm. This section describes the architecture of the realized prototype as well as the 
algorithm used to estimate the posture. The flexions and extensions of the segments 
estimated by the prototype are compared with the measurements from the 3D-GA 
system considered as a reference. The results of this comparison will be shown in 
the experimentation section.

3.1 System architecture

Different types of noninvasive sensors are able to measure the gait kinematics, 
such as magnetic sensors, goniometers, and inertial measurement units (IMU). 
These IMUs, consisting of sensors, measure the acceleration, the angular velocity, 
and the terrestrial magnetic field density around the sensor in the orthonormal 
coordinate system bound to the sensors. This information is used to estimate the 
orientation of the human body segments on which the sensors are placed. The joint 
angles are then calculated based on the orientations of the segments.

The IMU and compass sensor based on MEMS (Micro Electro Mechanical 
System) technology allow the design of miniaturized wireless sensors respecting 
the constraints of energy consumption, compactness, and cost. Therefore, the 
system uses MEMS IMU and compass sensor to capture the movement of lower 
limb segments.

The system comprises at least seven sensor nodes as shown in Figure 3. 
Each node is built around the System-on-Chip (SoC) Nrf51822 from Nordic 
Semiconductors. It offers many low-power wireless communication options, 
including ESB and Bluetooth Low Energy (BLE) protocols. The inertial sensor used 
is the MPU6050 from Invensense. This IMU integrates a 3D accelerometer and a 
3D gyrometer. A 3D magnetometer is used to measure the Earth’s magnetic field. 
Measurements carried out by the sensors are processed by the onboard SoC to 
estimate their orientations in real time.

A coordinator node supports the synchronization of the sensor nodes, the 
recording of the data coming from the sensor nodes on a SD card, and the man-
agement of the various functions of the sensor node (connection/disconnection, 

Figure 3. 
System organization and sensor placement.
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calibration, and power on/off). The sensor nodes wait for synchronization with 
the coordinator and then transmit the data to it. This wireless distributed system 
architecture provides great system flexibility and greatly improves its ease of use.

3.2 Constraints related to the use of a wireless device

The wireless transmission protocol, in addition to being energy efficient, must 
have enough bandwidth to transmit measurements in accordance with the required 
sampling frequency. The protocol must allow synchronization of the clocks of the 
various sensors to have the same time reference. Clock synchronization, impera-
tive in our application, allows separate systems to have the smallest possible 
difference between their subjective times whatever the factors that can modify the 
time reference [23].

Candidate technologies, such as WIFI (IEEE 802.11), ZigBee (IEEE 8.2.15.4), 
Bluetooth classic, BLE, GSM, 3G, and LTE, have not been selected because 
either they do not allow a precise synchronization of the sensor nodes, or they 
do not provide the desired throughput or limit the number of nodes. The chosen 
protocol, ESB, is a proprietary low energy consumption protocol proposed by 
Nordic Semiconductor with a bit rate of 2 Mbps. It reaches a transmission speed of 
1.2 Mbps. It supports broadcast functionality to synchronize clocks.

Without the time synchronization, the time shift between sensors may achieve 
144 ms after 1 hour of measurement using a clock with accuracy equal to 20 ppm. 
Synchronization accuracy tests were performed. The synchronization RMSE calcu-
lated during the last minute after 1 hour of recording is equal to 18.2 μs. During the 
test, the maximum clock offset between two sensor nodes is 37.6 μs.

The average of the sampling period of the system, i.e. the duration between two 
synchronizations, equals 9.1 ms with a standard deviation of 1.1 ms. The acquisition 
frequency of system locomotive parameters can reach 109 Hz.

3.3 Joint angle reckoning

Each sensor node has its own reference system. It is then necessary to define a 
suitable coordinate system to describe the orientation of a lower limb’s segment. 
Two coordinate systems are used in this application. One system is fixed to the earth 
and may be considered for the purpose of segment of human motion analysis to be 
an inertial coordinate system. The other coordinate system is local to the IMU and is 
referred to as a body coordinate system. The attitude of an object can be represented 
in different ways [24]. Euler angles, rotation matrix, and quaternion are the most 
used methods. Quaternion is difficult to understand but compared to the two other 
representation methods, it requires less memory and calculation capabilities. It 
avoids the problem of Gimbal lock that appears in Euler angle representation. The 
quaternion representation is used in this application. A complete description of 
the use of quaternions for articular angle calculation between two segments and 
the transformation of the local coordinate system to the terrestrial reference is 
described in [24, 25].

Data captured by IMU and magnetometer are processed in real time with the 
algorithm executed by the onboard SoC to estimate sensor attitude. This algo-
rithm uses a numerical integration to compute the angle from the angular velocity 
provided by the gyrometer. This numerical integration inevitably introduces a 
drift in addition to the calculation approximation error. To correct this drift which 
accumulates over time, the information provided by the accelerometer and the 
magnetometer have been merged according to the onboard algorithm. The detail of 
this algorithm is described in [26, 27].
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Finally, tests in static and dynamic conditions show that the adopted method is 
effective to compensate the drift of the gyrometer during walk. The quality of esti-
mation is related to the conditions of use of the sensor (vibration, percussion, and 
external accelerations experienced during a long time...). Nevertheless, if the IMU 
works on a limit condition for a very long duration, the risk of incorrect estimated 
value remains present. In the case of gait in everyday life, these conditions occur 
periodically, but not during a long time, the precision of estimated values remains 
in acceptable limits.

Thanks to this system, it is possible to calculate the joint angles of the lower limb 
in real time and to record them in an everyday life environment.

3.4 Experiments

The experiments are carried out in a gait analysis laboratory equipped with 3D-GA 
system, considered as reference, to evaluate the accuracy of the proposed system. 
Three healthy subjects and two hemiparetic patients have been experimented with 
wearing markers for 3D-GA system and the wearable system. The hemiparetic patients 
perform 6 times a course of 8 m with self-select comfortable speed. The 3D-GA system 
capture area is approximately 6 m × 3 m; this limits the recording time. To evaluate the 
reliability of the proposed system for a longer duration, it has been decided to practice 
the experiments on a treadmill. To avoid the difficulties encountered by hemiparetic 
patients, especially when starting the carpet, only the healthy subjects have been 
asked to walk on the treadmill. The healthy persons have been asked to walk on the 
treadmill for 1 minute. The speed of the treadmill is set at 4 km/h.

Figure 4 shows the evolution of joint angles of a hemiparetic patient during 
walking on flat terrain (right side in blue and left side in red). The signals of both 
systems have a great similarity in shape. There is no time shift, and the differences 
between the signals from the two systems are limited.

Figure 5 illustrates the changes in joint angles in the sagittal plane of a healthy 
person while walking on a treadmill. The joint angles estimated by the proposed 
system are the continuous line signals and those measured by the 3D-GA system are 
in dashed line. The figure shows joint angles in a 10-second window of a 1-minute 
recording. As for the signals observed on the hemiplegic patient, the signals of both 
systems have a great similarity in shape. The two systems are well synchronized. 
The differences between the signals from the two systems are limited.

Figure 4. 
Joint angles of a hemiparetic subject.
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Table 1 illustrates the accuracy of the wearable system compared to the 3D-GA 
system. Root mean square error (RMSE) allows us to observe the difference of 
each sample between the two systems. The correlation coefficient (CC) allows us 
to evaluate the similarity of the shapes of the signals measured by the two systems. 
The RMSEs of joint angles estimated with respect to the reference system are 
between 2.4° and 4.0° for healthy persons. The CCs of healthy subjects are between 
0.89 and 0.99. The signals of the hemiparetic patients have RMSEs between 3.1° and 
3.6° and CCs between 0.89 and 0.99.

Figure 6 illustrates the correlation and concordance of the joint angles measured 
by the two systems. The coefficient of determination (r2) equals 0.97. The lower limits 
of agreement (95%) equal −4.8° and the upper limits of agreement (95%) equal 7.6°.

3.5 Discussion

Comparisons between the results of the embedded system and the reference 
show that the joint angles measured by the embedded system have limited dif-
ferences compared to the reference system. The RMSE of the proposed system is 
between 2.4° and 4.0°. The signal shapes of both systems have great similarities. The 
CC of the signals between two systems is between 0.89 and 0.99.

Figure 5. 
Joint angles of a healthy subject during treadmill walking.

Joint angle

Ankle Knee Hip

RMSE (°) CC RMSE (°) CC RMSE (°) CC

Hemiparetic subject 1 3.6 0.90 3.3 0.98 3.5 0.98

2 3.2 0.89 3.4 0.98 3.1 0.97

Average 3.4 0.90 3.3 0.98 3.3 0.98

Healthy subject 1 4.0 0.90 3.1 0.99 3.3 0.97

2 3.9 0.89 3.0 0.99 2.4 0.99

3 3.4 0.92 3.2 0.99 3.2 0.98

Average 3.8 0.90 3.1 0.99 3.0 0.98

Table 1. 
Comparison between the proposed system and the 3D-GA system.
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From the results of the comparison (Table 1), Figures 6 and 7, the largest 
RMSE and the smallest CC are observed for the joint angles of the ankles. Three 
sources may induce these errors: percussion during walking, centripetal accelera-
tion, and the cross-talk effect [28]. During the walk, the main percussions occur 
when the foot contacts the ground. Percussions influence the measurements of 
accelerometers and gyrometers; the filtering process used to reduce these influ-
ences does not fully eliminate them. Measurement errors can also be introduced 
by the cross-talk effect. During a straight walk, the ankles have more degrees of 
freedom than other joints. When positioning a sensor, there can be misalignments 
between the sensor and the segment of the human body. The consequence is that 
the movements in the planes other than the sagittal plane are combined in the 
measure. This problem can be solved by adding a calibration phase to align the 
sensor and human body [29]. This problem will be considered in a future study.

Figure 6. 
Correlation (a) and Bland-Altman plot (b).

Figure 7. 
IMU signals and gait events of a healthy subject.
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To conclude this section, despite the lack of a precise calibration process, the 
embedded system provides an estimate of the joint angles close to the references, 
which validates both the architecture and the data processing algorithm.

Data captured by the system are organized in time series; this does not allow to 
analyze or compare inter or between patients. In gait analysis, locomotion data are 
often partitioned with gait event and normalized in gait cycle to compare with each 
other. The size of data captured in everyday life condition is often huge. A method 
to perform auto-partition is necessary.

4. Determination of gait events

Detection of gait events is a fundamental problem. All captured gait signals 
should be normalized in gait cycles so that they could be compared between each 
other. Calculations of spatiotemporal parameters are also based on the timing of gait 
events. So, the determination of the IC and FC event occurrences is compulsory.

In everyday life conditions, the gait event can be captured whether by measuring 
the ground reaction force (GRF) or by processing of the signals from IMU.

GRF-based methods use foot switches (force sensitive resistor or mechanical 
switch) placed under toe and heel to determine IC and FC events. Gait event detec-
tion is quite easy with these methods. Due to the GRF, the foot switch state toggles 
both when the foot contacts the ground (Heel-Strike, IC event) and when the foot 
leaves the ground (Toe-Off, FC event). These systems are considered as the Gold 
Standard for normal gait due to their high accuracy.

But in pathological gait, the IC event could not correspond to heel-strike and 
the FC event not often corresponds to toe-off as in normal gait. For example, with 
foot drop gait, the IC event may be the moment when the toe starts to contact the 
ground and FC event is the moment of toe-off. Therefore, it is difficult to place the 
force sensor for the pathological gait, and this limits its use [30].

Several studies propose real-time or delayed real-time motion detection 
systems based on the use of acceleration and angular velocity signals of human 
body segments provided by IMU [30–36]. All the algorithms proposed in these 
studies consist of a set of rules that make it possible to identify several char-
acteristics in the different gait signals. Currently, in everyday life gait event 
determination systems, the accelerometer seems to be the most used sensor [37]. 
The data it provides are often coupled with data from the gyrometer to get more 
reliable results.

Figure 7 illustrates the acceleration, sagittal angular velocity, and inclina-
tion signals of both feet on a healthy subject during normal walking. The signals 
observed on both feet have almost the same characteristics and shapes. The local 
extrema of acceleration and angular velocity signals are the most commonly used 
characteristics for determining gait events (IC and FC) [37]. The accuracy of 
methods presented in different studies may achieve between 11 and 165 ms [35, 36]. 
Between 86 and 98% of events are correctly detected for normal gait [37].

Figure 8 shows the acceleration, angular velocity, and inclination signals of 
the two feet of a hemiparetic patient during a straight walk. Due to the asymmetry 
of the gait, the acceleration and angular velocity signals are significantly distinct 
between the healthy side and the paretic side. The amplitudes of the acceleration 
and angular velocity signals are much lower than those of a healthy person. Local 
maximum is strongly attenuated, especially the local maximum corresponding to 
the IC event in the angular velocity signal. In addition, the style of pathological 
walking varies greatly between stroke persons and there is a significant variability 
in the shape of the recordings. Given this specificity, it is difficult to use existing 
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methods to treat different types of pathological walking. An alternative method is 
therefore necessary to determine the gait events.

4.1 Proposed method

During walk, the distance between the two feet varies periodically. Assume, at 
moment   t  0   , the following situation: both feet are on the ground, right foot forward 
and left foot back. The beginning of the gait cycle of the right foot is the moment 
when it touches the ground. The distance between the two feet is maximum, which 
leads to a local maximum in the feet distance signal. During the single support 
phase of the right foot, the left foot being in swing phase, the distance between 
feet decreases until the first local minimum is reached when the left foot passes 
beside the right foot. This distance then increases to another local maximum when 
the left foot is on the ground. During the swing phase of the right foot, the second 
minimum appears when the right foot passes near the left foot. The gait cycle of the 
right foot ends with increasing distance to the third maximum when the right foot is 
on the ground. Figure 9 illustrates the variation in the distance between the two feet 
during walking of a healthy subject and a stroke subject. Asymmetry in the length 
of the stroke patients justifies the larger differences in amplitude between adjacent 
local maximum.

Figure 10 illustrates the variation in the normalized foot distances in the gait 
cycle of a healthy and of a stroke person during straight walking. The two signals 
have similar shapes close to the letter ‘w’. The signals are composed of three 
local maxima and two local minima. This phenomenon seeable during the gait 
of the healthy person is also encountered in pathological walking. The two local 
maxima located at the beginning and at the end of the gait cycle correspond to 
the IC event of the same side. The third local maximum located at around 50% 
of the walking cycle identifies the IC event of the opposite side. The two local 
minima occur as the feet pass closest to each other. It is observed that the median 
local maximum on the signal of the healthy people is very close to the point 
corresponding to 50% of walking cycle. Opposite, because of the gait asymmetry 
of the hemiparetic patient, the median local maximum is slightly offset from the 
middle point of the gait cycle.

Figure 8. 
IMU signals and gait events of a stroke subject.
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Compared to the acceleration and angular velocity signals, the foot distance 
signal is simpler to use for the recognition of gait events as the extrema are more 
significant. The IC event can be highlighted by searching for the local maximum of 
the foot distance signal.

Figure 11 shows the relationship binding the distance between the two feet 
and the IC event. In this figure, the blue curve is the relative distance between feet 
during the walk of the hemiparetic patient. This distance is captured by the 3D-GA 
system. The red dots correspond to the IC events determined manually by visual 
inspection. Green triangles are the local maximums of the distance. Local maxima 
are very close to the IC events determined manually. Feet distance can then be an 
alternative, simpler, and more robust method than existing ones.

However, local maxima only allow determining that an IC event is produced by 
a foot. To distinguish, the foot that produces the IC event is the one that has just 
finished its swing phase, because the opposite foot is in its support phase. The 
acceleration experienced by the foot that produces the IC event must be signifi-
cantly greater than that of the opposite foot before the IC event. Comparing the 
accelerations of both feet for a time just before the IC event occurs is the way to 
identify the foot that produces this event.

After the IC events have been correctly determined, it is then possible to parti-
tion and normalize the recording in gait cycles. Between two IC events on the same 
foot, there must be a FC produced by this foot. Even if the local maxima that cor-
respond to the IC events are attenuated and become undetectable, the local maxima 

Figure 9. 
Distance between feet during walk.

Figure 10. 
Distance between feet normalized in gait cycle.
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that correspond to the FC events are still detectable. The method for determining 
FC using the signal from gyrometer, which is presented in different studies, remains 
valid [30, 33, 38, 39].

In the following, the new embedded sensor for measuring the relative distance 
between feet to determine the IC event is described. The data from this new sensor 
are coupled with data provided by the IMU to determine the FC event. The accuracy 
of this method is evaluated by comparing the results provided by the proposed 
system and those given by the 3D-GA system.

The distance between feet can be measured either by measuring the displace-
ments of the two feet independently or by a direct measurement of the distance 
between the two feet.

Theoretically, the displacement of the foot can be calculated with data from 
the IMU attached to the foot. After estimating the attitude of the foot, a reference 
transformation can be made to transform the acceleration measured in the sensor 
coordinate system to the fixed coordinate system. By double integration on the 
acceleration of the foot, the three-dimensional displacement of the foot can be 
reckoned. But unbounded drifts will appear because of the sensor noise and the 
accumulation of the digital integration error.

Several studies propose different methods based on the algorithm called “zero 
velocity update” (ZUPT), which aim at reducing this error [40–43]. These methods 
are based on the detection of the period during which the foot is considered as static 
or quasi-static according to the information measured by the accelerometer or the 
gyrometer, supposing that the foot velocity is equal to zero during these periods. 
These methods limit the error introduced by the first integration applied to the 
accelerations to obtain the foot speed. However, no correction is applied to the 
second integration applied to the speed to calculate the displacement. This implies 
an accumulation of error over time on the calculation of movement of the foot. The 
study in [44] shows that the same displacement calculated with data from two IMUs 
does not give the same result. The errors depend on the style of locomotion and the 
gait speed as well as the type of environment in which walking is performed [45]. 
For this reason, none of the studies cited use the movements relative between the 
two feet.

In order to find a solution, a direct real-time measurement of the relative 
distance of the feet will be made by a wireless rangefinder that will complement the 
wireless system. The rangefinder measures the distance directly by measuring the 
time of fight (ToF) of an electromagnetic wave, thus avoiding complex calculations.

Figure 11. 
Relationship between the IC event and the distance between feet.
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4.2 Measurement of feet distance with ultra-wideband (UWB) rangefinder

To determine gait events using foot distance signal, a pair of rangefinder 
modules (based on DM1000 [46]) is added to the system. The rangefinders are 
connected to the sensor nodes on the feet. To obtain the best performance of the 
distance measurement, the two rangefinders are placed at the medial side of foot, 
close to the heel, antennas face to face, as shown in Figure 12. The feet relative 
distance provided by the modules is coupled with the information from sensors on 
the feet to determine the IC and EC events and the times they occur. The rangefind-
ers are sampled at 100 Hz. Figure 3 illustrates the main organization and role of the 
elements of the final system.

4.3 Experiments

Experiments are conducted to evaluate the accuracy of the proposed system includ-
ing the gait event detection and joint angle estimation. Experiments are performed in a 
gait analysis laboratory equipped with 3D-GA system. Totally, 11 hemiparetic patients, 
4 females and 7 males 51.7 ± 18.2 years old, participated in the experiments. About, 
4 healthy people, 1 female and 3 male aged 24 ± 3.1 years, participated in the experi-
ments. The persons were equipped with both markers for 3D-GA system and proposed 
wearable system during experiment. All persons have been asked to walk 6 times on a 
straight course of 8 m with self-selected confirmable speed. The walking scenarios are 
captured by 3D-GA system at 100 Hz and at 70 Hz by the proposed wearable system. 
The embedded system’s records are re-sampled at 100 Hz so that they can be compared 
point-to-point with those of the 3D-GA system.

Figure 13 illustrates the joint angles of a hemiparetic patient normalized in 
gait cycles. In this figure, the red curves represent the joint angles of the left side 
(healthy side) and the blue curves represent the joint angles of the right side 
(paretic side). The dotted curves are the angles measured by the 3D-GA system and 
the solid lines are the angles estimated by the proposed wearable system.

The two systems are compared by evaluating the accuracy of the gait event 
detection (IC and FC) and the joint angle estimation. IC and FC events’ RSMEs 
are used to evaluate the accuracy of gait event detection, and the detection rate is 
calculated to describe the robustness of event detection.

Figure 12. 
Placement of rangefinder.
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Table 2 summarizes the results of the comparison of the accuracy between the 
proposed system and the 3D-GA system of joint angles and gait events as well as 
the robustness of the gait event detection. The RMSE estimates of joint angles are 
between 1.3° and 3.9° for hemiparetic patients and between 1.8° and 4° for healthy 
subjects. The CCs for stroke subjects are between 0.9 and 0.99. For healthy persons, 
they are between 0.91 and 0.99. In terms of the detection of gait events, the RSMEs 
for IC detection are between 45 and 14 ms for hemiparetic patients and between  
16 and 24 ms for healthy persons. The FC event detection has a precision between 12 and  
41 ms for hemiparetic patients and between 15 and 20 ms for healthy persons. The 
rates of detection of CI are between 93 and 100% for hemiparetic patients and 
between 95 and 100% for healthy persons. The rates of detection of FC are between 
92 and 100% for hemiparetic patients and between 97 and 100% for healthy people.

Figure 14 illustrates the correlation and concordance of the joint angles mea-
sured by the two systems. The coefficient of determination (r2) equals 0.98. The 
lower limits of agreement (95%) equal −3.6° and the upper limits of agreement 
(95%) equal 5.9°.

4.4 Discussion

This chapter describes the use of a wireless rangefinder to measure the feet 
relative distance in order to automatically detect the gait events (IC and FC) in 
everyday life condition and specially to consider the differences between normal 
and pathological walking.

To evaluate the precision and robustness of the proposed system, experiments 
have been carried out on hemiparetic and healthy persons. The estimated informa-
tion delivered is compared with that from the 3D-GA system. Their comparison 
shows that the joint angles estimated with the proposed system are quite compara-
ble to those of the reference system. In terms of the detection of gait events, thanks 
to the additional information given by the rangefinders, errors are rare. The system 
is very robust in the case of pathological walking.

In terms of detection of gait events, the results show a precision of 27 ms for 
IC events of hemiparetic patients and 22 ms for FC events. More than 98% of the 
events are correctly detected. The results show that this method has good accuracy 
and is especially robust for pathological gait. However, because of the limitation of 
the area detectable by the 3D-GA system, the comparison can be done only between 
the data captured in this area. So, even if the detection rate of the events of several 
persons reaches 100%, one can imagine that it is possible that some events are lost 
during the beginning and the end of the gait.

Figure 13. 
Joint angles of hemiparetic subject normalized in gait cycle.
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Joint angles Gait events

Ankle Knee Hip CI CF

RMSE (°) CC RMSE (°) CC RMSE (°) CC RMSE (ms) Rate (%) RMSE (ms) Rate (%)

Hemiparetic patients 1 2.1 0.95 1.9 0.99 2.3 0.98 43 100 17 100

2 3.9 0.92 1.9 0.98 3.8 0.98 22 100 22 97

3 2.4 0.97 2.6 0.99 3.8 0.94 25 97 17 100

4 1.8 0.92 3.9 0.98 3.9 0.92 20 100 22 100

5 2.6 0.94 2.9 0.99 2.6 0.98 45 98 42 98

6 2.6 0.91 2.5 0.99 2.7 0.98 15 100 13 100

7 3.9 0.95 3.5 0.98 3.5 0.97 35 100 41 100

8 3.6 0.90 2.4 0.99 3 0.99 19 100 12 100

9 2.9 0.93 3.1 0.97 3.6 0.91 28 98 15 97

10 1.9 0.97 1.8 0.99 1.6 0.99 14 100 17 100

11 2.5 0.95 1.3 0.99 3.6 0.99 30 93 24 92

Mean 2.75 0.94 2.53 0.99 3.13 0.97 26.91 98.73 22.00 98.55

Healthy persons 1 3.2 0.92 1.9 0.99 3.3 0.97 20 97 15 100

2 3.1 0.94 3.7 0.98 1.2 0.99 24 98 13 97

3 4 0.91 1.8 0.99 1.5 0.99 21 95 20 97

4 2.7 0.93 3 0.99 2.8 0.98 16 100 12 100

Mean 3.25 0.93 2.60 0.99 2.20 0.98 20.25 97.50 15.00 98.50

Table 2. 
Comparison between the proposed system and the 3D-GA system.
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The proposed system provides good accuracy in determining hemiparetic events 
but has a limitation. The method uses the relative distance between the feet as the 
main source of information to determine the IC event. Then, the FC is searched 
between two IC events. As a result, if the IC event is not correctly determined, the 
FC event cannot be detected. As shown in Figure 11, the IC events of both feet cor-
respond to the local maximum of the relative distance signal of the feet. If the peaks 
corresponding to the IC are very attenuated, the risk of no longer detecting the IC 
event increases (Figure 15). This figure shows the relative distance and inclinations 
of the two feet. The colored areas represent the areas where the peaks on the dis-
tance signal corresponding to the IC must be observed. In green zones, significant 
peaks are observable; in red zones, most peaks are very attenuated or undetectable. 
This system cannot then be used on people that walk with a maximum distance 
of the feet very close to the length of the step during the double phase support. In 
practice, for all persons that have a minimum relative distance between feet larger 
than 20 cm, this system works properly.

5. Conclusion and perspectives

The chapter describes a wireless embedded system used to record information 
related to the gait of patients with after-effects of stroke in ecological situations.

Figure 15. 
CI nondetectable case.

Figure 14. 
Correlation (a) and Bland-Altman plot (b).
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It is based on the use of seven inertial sensors. Each sensor executes the orienta-
tion estimation algorithm. Even if each sensor uses its local clock and performs 
the measurement according to its own time base, their synchronization through 
reference broadcast time synchronization (RBTS) allows synchronization accu-
racy, synchronization speed, and the number of sensors to synchronize. Other 
constraints related to the use of the wireless link are the speed of transmission and 
energy consumption. To address these constraints, among wireless transmission 
technologies, we selected a proprietary protocol that allows the clock error between 
two sensors limited to a value less than 37.6 μs that does not accumulate over time. 
Thanks to the efficiency of this protocol, the sampling frequency to transmit the 
raw measurements and the orientation of the segments estimated by the sensors 
reaches 109 Hz.

The embedded wireless system uses a pair of range-finders to determine the 
gait events to split the recordings into gait cycles and calculate the temporal 
parameters. The method to determine the gait events, initial contact (IC) and 
final contact (FC), uses relative distance between feet and speed angular feet. The 
system also estimates the articular angles of the lower limbs. This information 
is the input of a piece of post-processing software that determines the temporal 
parameters and automatically cuts the joint angles into walking cycles. A series 
of experiments was conducted to evaluate the accuracy and robustness of the 
system. The difference between the values measured by the embedded system 
and the 3D-GA system shows a good robustness on the pathological path, which is 
quite innovative.

This development shows the evolution of our embedded gait analysis system. 
The final system provides the measured quantities comparable to those from a 
3D-GA system. The algorithmic and material design takes into account the con-
straints of pathological walking and use in an ecological situation. The algorithms 
for segment orientation estimation and gait event detection are optimized for 
pathological walking. The new method we have proposed for determining the 
events of walking improves the robustness of event detection in the pathological 
case. In order for the system to be used in an ecological situation and to record the 
activity of the person in his daily life, the electronic design of the system is carried 
out in order to minimize the influence of the system on the walking of people and to 
have enough autonomy to record walking all day long. An effort has also been made 
to improve the ease of implementation and use.

In addition, it is possible to analyze the walk in more complex or functional situ-
ations. Indeed, certain clinical tests required different movements on the patient. 
This is the case, for example, for the TUG (Timed Up and Go). This test requires the 
patient to get up from a chair, walk forward 3 m, turn around a pad, walk back, and 
then sit down again. This test involves several motor skills. According to the chrono-
metric performance, the risk of falling for the patient was identified for a number 
of values. We also looked to turn strategies in this test for stroke patients compared 
to healthy subjects from the quantification of the pelvis trajectory [47]. To make 
these comparisons, DTW (Dynamic Time Warping) methods on the trajectory of 
the basin on the horizontal plane were used. These methods allow identification of 
patients’ strategies and therefore their classification as shown in [48, 49]. It is realis-
tic to hypothesize on walking route (straight lines, stairs, up and down slopes, etc.), 
identification of displacement strategies from the calculation of the DTW on joint 
kinematics and/or segmental accelerations to follow the evolution (improvement or 
degradation) of the locomotor possibilities of the patient. This promising approach 
is the main line of our current work.
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