We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Quantum Neural Machine
Learning: Theory and Experiments

Carlos Pedro dos Santos Gongalves

Abstract

Cloud-based access to quantum computers opens up the way for the empirical
implementation of quantum artificial neural networks and for the future integration
of quantum computation in different devices, using the cloud to access a quantum
computer. The current work experimentally implements quantum artificial neural
networks on IBM’s quantum computers, accessed via cloud. Examples are provided
for the XOR Boolean function representation problem and decision under risk; in
the last case, quantum object-oriented programming using IBM’s Qiskit Python
library is employed to implement a form of quantum neural reinforcement learning
applied to a classical decision under risk problem, showing how decision can be
integrated into a quantum artificial intelligence system, where an artificial agent
learns how to select an optimal action when facing a classical gamble. A final
reflection is provided on quantum robotics and a future where robotic systems are
connected to quantum computers via cloud, using quantum neural computation to
learn to optimize tasks and act accordingly.

Keywords: quantum artificial neural networks, quantum neural reinforcement
learning, quantum object-oriented programming, decision under risk

1. Introduction

Research on quantum neural machine learning has, until recently, mostly been a
theoretical effort, anticipating a future where quantum computers would become
available and sufficiently advanced to support quantum neural machine learning
[1-5]. However, we now have quantum computers that are capable of
implementing quantum artificial neural networks (QUANNSs) experimentally, and
one is able to access these computers via cloud. This brings QUANNS from the
purely theoretical realm to the experimental realm, setting up the new stage for the
expansion of quantum connectionism. In the current chapter, we address this issue,
by implementing different QUANNSs on IBM’s quantum computers using the IBM Q
Experience cloud-based access.

The chapter is divided into three sections. In Section 2, we address the basic
properties of quantum neural computation, the connection with the quantum cir-
cuit computation model, and how different interpretations of quantum mechanics
may address the basic computational dynamics involved.

In Section 3, we discuss how the IBM quantum computers can be considered
QUANNES, illustrating with an example of a QUANN applied to the problem of the
XOR Boolean function computation, implemented experimentally on two of IBM’s

1 IntechOpen

Artificial Intelligence - Applications in Medicine and Biology

devices (Section 3.1); afterward (Section 3.2), we turn to the experimental imple-
mentation of quantum robotics and quantum decision with a more complex form of
quantum neural computation in the form of a variant of quantum neural reinforce-
ment learning (QNRL), applied to a problem of decision under risk, where the
agent must learn the optimal action that leads to the highest expected reward in a
classical gamble.

The problem is first addressed in terms of the fundamental equations which
employ quantum adaptive computation, namely quantum adaptive gates; then, we
implement it experimentally on IBM’s quantum computers and, afterward, we
address the main Python code that was used to run the algorithm on these com-
puters, thus, introducing quantum object-oriented programming (QOOP) and
reflecting on its relevance for research on quantum artificial intelligence.

While, in Section 3.1, the main goal is to illustrate the implementation of
QUANN:S in a case where QUANNS exhibit a greater efficiency over classical ANNS,
in Section 3.2, our main goal is not to address the speed-up of quantum algorithms
over classical ones or even the greater efficiency of quantum algorithms over clas-
sical ones, but rather to provide for a reflection on the first steps for a possible
future where quantum computation is incorporated in different (classical) robotic
systems by way of the internet of things and cloud-based access to quantum
devices, and the role that quantum adaptive computation may play in such a future.

In particular, in Section 3.2, we illustrate how a QUANN can become adaptive
with respect to a problem that is given to it, in this case, a decision problem under
risk, therefore, allowing us to address how QOOP can be employed to simulate an
artificial agent, with a QUANN as its cognitive architecture, that must make a
decision when presented a problem of classical decision under risk; therefore, our
main goal in Section 3.2, from a computer science standpoint, is to address how a
quantum artificially intelligent system decides when faced with a classical decision
under risk problem, using QUANNs and QOOP.

In Section 4, we conclude with a chapter review and a reflection on future
directions for cloud-based quantum-enabled technologies and QOOP.

2. Quantum neural computation and quantum mechanics

In order to address quantum neural computation, we need to first introduce
some notation, which is commonly used in quantum computation, namely, we use
the standard Dirac’s bra-ket notation, where a ket vector corresponds to a column
vector and the bra vector is its conjugate transpose. Defining, then, the fundamental
ket vectors |0) and |1), respectively, as:

0= (o) m=(7) &

with the corresponding bra vectors (0| and (1| being defined, respectively, as the
conjugate transpose of |0) and |1), then, we can represent Pauli’s operators as:

&1=|o><1|+|1><0|=((1’ (1)) @)
&2:—i|o><1|+i|1><0|=(? jf) 3)

s =00l -l = (7)) 4

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

The unit operator on the two-dimensional Hilbert space, spanned by the basis
{|0),]1)}, is denoted by 1 = |0)(0| 4 |1)(1]| which has the form of the identity
matrix.

The Walsh-Hadamard transform unitary operator is, in turn, given by:

- eites 1 (1 1)
Owrr = — 5
wn = ﬁ<1 ° 5)

We also use the usual notation for the ket vectors |[+) = Upy|0) and
|=) = Uwnl1).

Besides the above notation, we denote the binary alphabet by A, = {0,1} and
the set of d-length binary strings by A%, using boldface letters to represent binary
strings of length greater than 1.

Using this notation, we are now ready to address some basic general properties
of quantum neural computation.

The basic computational unit of a QUANN is a neuron with a two-level firing
dynamics that can be described by the neural firing operator [5, 6]:

v (6)

where v is a neural firing frequency expressed in Hertz.
The eigenvectors for this operator are given by:

vls)y =svls),s = 0,1 (7)

Therefore, the eigenvector |0) corresponds to a neural activity where the firing
frequency is 0 Hz, while the eigenvector |1) corresponds to a neural activity where
the firing frequency is 1 Hz. This means that there are two quantized energy levels
associated with the artificial neuron, and these energy levels are obtained from the

single neuron Hamiltonian, expressed in terms of the neural firing frequency oper-
ator as follows [5, 6]:

A

H=2mp (8)

Therefore, the eigenvector |0) is associated with a neural firing energy level of
0 Joules, while the eigenvector |1) is associated with a neural firing energy level of
27y Joules.

For a neural network with d neurons, the neural firing activity can be addressed
in terms of a neural field in the network, with the firing frequency field operators
such that the k-th neuron neural firing operator ;, obeys the eigenvalue equation:

Up[$182...84) = Spv[s152...54) 9)

and any pair of neural firing operators commute; that is, fork, [= 1,2, ..., d,
[Dr,v1] = 0. Thus, the total neural firing frequency operator is given by:

d
ﬂTot - Z I;k (10)

k=1
which leads to the eigenvalue spectrum for the neural network:

SEU[S152...54) (11)
1

ﬁTgt|Slsz...Sd> =

d
h—

Artificial Intelligence - Applications in Medicine and Biology

The general computational dynamics of a d-neuron QUANN can be addressed,
in the quantum circuit model, by a computational chain of unitary operators, where
the networked computation is implemented by conditional unitary operators that
follow the structure of the neural links [4-6], which means that not all conditional
unitary operators can be implemented in the neural network, but only those that
respect the network’s topology and processing direction.

Formally, then, an N-length computational chain that propagates forward in a
quantum neural computation circuit is comprised of a sequential product of unitary
operators:

C=0UnUn1..U; (12)

The sequence is read from right to left and such that U is the first operator to be
applied and Uy is the last. This is the forward sequence proceeding from the
beginning to the end of the computation. The reverse chain, which propagates
backward in the computational circuit, is, then, given by the conjugate transpose of
the forward chain:

¢ =Ul.Ul Ul (13)

Formally, given a general initial density operator, representing the initial neural
field dynamics of the QUANN, expressed as follows:

ﬁin = 2 pr,s l‘> <S‘ (14)

r,sEA‘zi

the quantum computation can be addressed in terms of the propagation:
A Ay T
Pour = CpC =

_ 5 (2 sl [OO 1.0l)
r’,s’eA”zi r,sEAg

<S\UI...0;V_10HS’>>
(15)

The firing patterns, in Eq. (15), r and s correspond to input neural firing patterns

for the QUANN, while the firing patterns r and s correspond to output neural
firing patterns; in this way, the quantum neural computation is propagating in both
directions of the computational chain, so that we have the propagation from the
input to the output (from the beginning to the end of the computational chain),

which corresponds to the amplitude<r' } UnUy_1..Uq |r>, and the propagation from
the output to the input (from the end to the beginning of the computational chain),

which corresponds to the amplitude <s‘ UI...U};,_llAJ Ms’>.
For the cases where there is a mismatch between the final output firing dynam-

ics, that is, when r # s, the QUANN does not reach a well-defined output; from a
computational perspective, we can state that the network does not reach a final
solution, since the output computed in the forward direction of the computational

circuit, <r/ | Un UN_l...U1|r>, does not match the output computed in the reverse
direction of the computational circuit, <s’ UI...U}:,A lA]IT\,’s/>.

However, when r = s, the output computed in the forward and backward
directions matches; this leads to the diagonal components of the final density

operator that, for each s’ € A%, are given by:

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

(louuls)[s) (s

D . At
— | X peo{s|ONUN-1..Unlr)(s|07.. 0% U
r,seA‘zi

s/> }s/><s/|
(16)

This means that the neural field computes each alternative final firing pattern

s € A? with a projective intensity given by the weighted sum over each pair of
alternative initial firing patterns propagated in both directions of the computational
chain:

<s/|,r3m|s/> ELXN dpr’s<s/|UNUN_l...U1|r><s‘UI...U;f\,1[7}‘\,’s/> (17)
1, s€EAJ

From a computer science standpoint, this two-directional propagation, which is a
basic result of the quantum circuit-based computation (generalizable to any type of
quantum computer), exhibits a form of forward propagation and backward propaga-
tion, where the forward and backward amplitudes can be, from a computer science
standpoint, addressed in terms of a probe and response dynamics, respectively;

returning to Eq. (15), each amplitude (r | UnUn_1...Uq |r) can be addressed as a
probing computational dynamics from the beginning to the end of the computational
circuit that links the initial (input) firing pattern r to the final probed (output) firing

pattern r , and the reverse amplitude <s’ U IU}‘V_llAJ Hsl> can be addressed as a

response that comes from the end of the computational circuit to the beginning, a
response that links the output firing pattern s’ to the initial input firing pattern s.

When the two output firing patterns do not match, r # s, we have a mismatch
between the probe and the response, and when the two firing patterns match,

r =s,anecho is produced with an intensity given by the sum in Eq. (17); the
computation is, then, like the search for the solution to a computational problem,
where each probed alternative final output gets a response with a specific intensity.

These dynamics are simultaneous, that is, the QUANN processes in both the
forward and backward directions simultaneously to arrive at the final result.

The above fundamental computational dynamics is characteristic of quantum
mechanics, and not limited to QUANNSs or quantum computation, nor is it depen-
dent on one’s interpretation of quantum mechanics. It arises when one considers the
structure of a general density operator for a quantum system [6].

Indeed, as an example, let us consider a general density operator for a quantized

observable O on some quantum system, which, for the purpose of illustration we
consider to have a discrete, not necessarily finite, non-degenerate eigenvalue spec-
trum, so that the ket vectors |m), form = 0, 1, 2..., satisfying o) lm) = 0,,|m), span the
basis for a Hilbert space associated with the quantum system with respect to the
observable; then, the general dynamics for the quantum system, with respect to the
observable, can be represented as a density operator on the system’s Hilbert space:

p =3 palm)inl (18)

my N

The off-diagonal components of such an operator are such that there is no
matching between the corresponding eigenvalues, only in the diagonal do we find a
matching between the eigenvalues. The ket vector can, in this case, be considered as
a probing vector, while the bra vector can be considered as a response vector.

In this way, only when a probed alternative eigenvalue finds a matching
response eigenvalue do we have an echo for an alternative eigenvalue that can be

Artificial Intelligence - Applications in Medicine and Biology

actualized, and the probability for this actualization coincides with the diagonal
density value p,, ,, which corresponds to the echo intensity. This is a basic result from
quantum mechanics that extends to any observable, including observables with
both discrete as well as continuous spectra.

It is important to stress that this echo dynamics is not specific to QUANNS, but is
present in any quantum system; any density operator characterizing a quantum
system exhibits, in the formalism, this main dynamics, so the echo dynamics is a
characteristic of the physics of quantum systems and accounts for Born’s probability
rule in quantum mechanics—that is, the probability of an alternative eigenvalue
to be observed is equal to the corresponding diagonal component of a density
operator.

Therefore, embedded within quantum mechanics’ formalism, we find an
account of Born’s probability rule. Furthermore, given a Hamiltonian operator for

the quantum system Hg, and a time lapse of At, quantum mechanics defines the
unitary propagation of a density operator at time ¢ as:

plto + At) = e T (g)it s (19)

In the case of the illustrative general example, given in Eq. (18), we get:

plto + A1) = X (Z Pk,z(tO)<m|€_%HsAt|k><l|€%HSAt|n>> [m) (n] (20)
msn \kyl

where (m|exp (—i/nHsAt)|k) is a forward in time propagating amplitude from
the k-th initial eigenvalue to the m-th final eigenvalue and (I| exp (i/nHsAt)|n) is a
backward in time propagating amplitude from the n-th final eigenvalue to the -tk
initial eigenvalue', and this basic dynamics is a general result that stems from
Schrédinger’s unitary evolution.

Cramer was, however, the first to fully address the consequences of this
dynamics and propose the concept of echo, within the context of quantum mechan-
ics, addressing it related to Born’s rule, deriving Born’s rule from within the quan-
tum formalism.

While Cramer [7] addresses the echo in terms of the encounter of a forward-
propagating retarded wave (which we addressed above under the probe dynamics,
proceeding forward from the beginning to the endpoint of the unitary evolution)
and the backward-propagating advanced wave (which we addressed above under
the response dynamics, proceeding from the endpoint to the beginning of the
unitary evolution), by working with the density operator, instead of the wave
function, we get a clearer picture of the corresponding dynamics, which accounts,
in the case of any quantum physical system, for both the off-diagonal terms
(as failed echoes) and the diagonal terms of the density operator (as the echoes where
the probe was met by a matching response) with the echo intensity giving Born’s
probability rule. This result is generalizable and independent of the interpretation
of quantum mechanics that one follows; that is, all interpretations of quantum
mechanics agree with the above results.

It is important to clarify what an interpretation of quantum mechanics is and
why there are different interpretations of the same theoretical body and equations.
It turns out that the main interpretations do not disagree on the formalism,

1 One may notice the change in the time lapse signal so that the conjugate transposition corresponds to

time reversal.

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

methods, and how the mathematics is built and applied for prediction of experi-
mental results. The interpretations do not stem from any ambiguity or lack of
robustness in the formalism and in the application of the formalism, they stem from
the fact that not everything is accounted for by the formalism, and that is where the
interpretations come in.

To better frame this issue, one must consider the nature of the theory that one is
dealing with, what it explains, and what is outside its theoretical scope.

Quantum mechanics is, in fact, a probabilistic theory of the quantized dynamics
of fundamental physical fields, fields that work at the level of the building blocks of
physical nature. The physical theory and methods that form the basic structure of
quantum mechanics developed progressively from empirical observations and sta-
tistical findings on fundamentally random outcomes of physical experiments deal-
ing with the quantum level.

This means that physicists found the basic rules for (dynamical) probability
assignments that robustly capture the main probabilistic dynamics of quantum fields.

To understand the nature of the theory, it is important to stress that it was born
out of laboratory experiments, that it was built out of the statistical patterns found
in an observed stochastic dynamics, and that it was aimed at predicting the statisti-
cal distributions of that stochastic dynamics. The current formulation of quantum
mechanics essentially encompasses a set of rules for obtaining the probabilities
associated with the dynamics of quantum systems.

The theory does not state anything beyond that. A point that allowed many
physicists to pragmatically take the theory as it is, not dwelling on the why quantum
systems work that way, that is, to take the theory as a rule book that works, is
robustly tested empirically, applying it to problems following what is usually called
a shut up and calculate stance.

When one starts to ask on the why quantum systems work that way, the interpre-
tations enter into play, but they go beyond the physical setting of the theory in the
sense that they are related to ontological questions; that is, each interpretation
regards the ontological issue of physical reality and why the quantum dynamics
follows the echoes with probabilities coincident with the echo intensities.

In the pragmatic stance, one just takes the formalism as a recipe, calculates the
echo intensities without dwelling further on it. Any result in quantum mechanics
applying the formalism is valid and empirically testable and the formalism has time
and again, during twentieth and twenty-first centuries, been shown to be robust in
its predictions.

One way out of the ontological questioning would be to assume that we are
dealing with human representations, that we cannot speak of a reality independent
of human representations and experiments, that is, that the question of what reality
really is outside those representations and experiments cannot be answered and,
therefore, one just postulates that the field follows the echoes. This was the approach
of the Copenhagen school, including Bohr and Born, leading to Born’s rule that the
probabilities are coincident with the echoes, a rule that is introduced, usually, in
quantum mechanics’ classes as a postulate, a very detailed description of this can be
found in [7].

Contrasting with the Copenhagen school are the ontological schools, so called
because they assume a reality independent of human representations and
experiments.

Quantum mechanics itself does not state anything about this, so there is room
for proposals; Cramer [7], for instance, considers these interpretations as actually
new physical theories that go beyond the strict formalism and introduce new con-
jecture that cannot be tested under the formalism itself. The ontological interpreta-
tions that include the Bohmian and Everettian lines are all consistent with the

Artificial Intelligence - Applications in Medicine and Biology

formalism, that is, they agree with the formalism and mathematical methods of
quantum mechanics and, therefore, cannot be tested using just the formalism.

In the case of Cramer, his proposed transactional interpretation (TI) of quantum
mechanics [7] considers a probabilistic selection in terms of a quantum handshake
(Cramer's transaction), where there is a sequential hierarchical selection for a
quantum handshake linking the beginning and endpoint of the quantum dynamics,
where each alternative is evaluated probabilistically for the formation of a quantum
handshake or not; if no handshake is selected for a given alternative, the quantum
dynamics proceeds to the next alternative. In each case, the probability for a quan-
tum handshake is equal to the echo intensity, thus deriving Born’s rule from within
the formalism, instead of assuming it as a postulate.

Everett [8] assumed that all alternatives for a quantum system are actualized
simultaneously in different cosmic branches. This led to the many worlds interpre-
tation (MWI). MWT’s proposal is, thus, that reality is multidimensional and the
formalism is considered to be describing such a multidimensional reality that is a
single Cosmos with many worlds (many branching lines). This conjecture cannot be
tested empirically; it is consistent with the formalism and agrees with the predic-
tions of quantum mechanics. Namely, the statistical measure associated with
repeated experiments made on quantum systems tends to coincide with the echo
intensities since the echo intensities coincide with the existence intensity of each
world, recovering a statistical measure upon repeated experiments, as argued by
Everett in [8] regarding Born’s rule.

Bohm initially worked on the pilot wave model for quantum mechanics but just
as a first approximation. Indeed, in [9], the author addressed the pilot wave model
as a first approximation but then criticized it, in particular, in regard to the
assumption of a particle being separate from the field; even more, in [9], Bohm
defended that, at a lower level, the particle does not move as a permanently existing
entity, but is formed in a random way by suitable concentrations of the field’s
energy. Furthermore, he considered that any quantum field was characterized by a
nonlocal dynamics, and that the equations of quantum mechanics were just an
approximation, an average that emerged at the quantum level, proposing the con-
cept of quantum force and hypothesizing the existence of a subquantum level, so
that both the quantum and subquantum levels play a fundamental role in the field’s
dynamics.

Gongalves in [6] addressed the relation between the echo and Bohm’s proposal
recovering the Bohmian concept of quantum force [9, 10].

In this interpretation, the echo is associated with a dynamics of a quantum field
for the evaluation of each alternative; the probing and response dynamics, thus,
play a fundamental role, allowing a quantum field, any quantum field, to compute
each alternative in parallel, leading to an echo associated with each alternative.

As argued in [6], the intensity (modulated) echoes would, thus, have a functional
role as signalizers of an order to be risen (in the QUANN case, this order corre-
sponds to a specific quantum neural firing pattern); the field’s quantum and
subquantum levels would, then, work in tandem, mobilizing the forces needed to
make rise one specific alternative, and the resulting field lines of force, therefore,
coincide, in their intensities, with the echo intensities.

This quantum computational dynamics, present in quantum mechanics’ formal-
ism, works as a basic form of quantum “learning” dynamics, where the quantum field
“learns” about each alternative in the probe (forward propagating) and response
(back propagating) dynamics and, then, the field’s lines of force are formed along
the echoes resulting from the encounters of matching probe and response vectors,
with a force intensity that matches the corresponding echo’s intensity; the field then
follows one of these lines of force with a probability that coincides with the echo

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

intensity, so that the following of a given line of force is similar to a bifurcation
dynamics where the field will follow, stochastically, one of the branches with a
probability that coincides with the force intensity associated with each branch [6].

There is a consequence that comes from assuming the Bohmian framework,
namely, from the Bohm’s conjecture that a subquantum level randomness averages
out at the quantum level, but may lead to small deviations from the theoretical
probabilities [9, 10]; if such a conjecture holds, then deviations in quantum physical
experiments with actual quantum computers may always take place, such that, even
if we were to reduce the interaction with the environment to zero (or close to zero),
we could still have deviations due to subquantum level fluctuations, so that the field
would tend to follow the lines of force with probabilities that would hold on average
but with some deviations that might occur in each case.

While Bohm’s proposal is potentially testable, at the present stage of scientific
and technological development, we have not yet found a way to test the
subquantum proposal regarding quantum physical systems, and, in particular, to
test, empirically, the possibility that deviations from the main lines of force that
agree with a theory’s prediction are not due to environmental noise and, rather, to
subquantum level fluctuations.

All main interpretations, as reviewed above, agree with quantum mechanics’
general predictions, even Bohm, who considers that the predictions will hold
empirically on average, therefore, the interpretations do not have, at present, a
direct consequence on the results of technological implementation of quantum
computers, as long as one is not dealing with fundamental ontological issues
regarding the computational nature of quantum fields, but rather with the techno-
logical application of quantum algorithms, one is free to choose any interpretation
since it is consistent with the main formalism and results.

We consider, nonetheless, that future research directions on Bohm’s conjectural
line may prove fruitful both at a theoretical and technological level, concerning the
issue of quantum errors. This point, however, goes beyond the current chapter’s
scope. The results that follow, as of any work using the formalism of quantum
mechanics, hold for any interpretation of the theory. However, having made that
point, we will return to Bohm’s conjecture regarding some of the results obtained in
the next section, regarding the issue of quantum computing errors.

3. Implementing quantum artificial neural networks on IBM’s quantum
computers

The development of quantum computing devices has opened up the possibility
of transitioning from the purely theoretical approach to QUANNSs to an experimen-
tal implementation of these networks. A particular example is IBM’s quantum
processors, available via cloud, under IBM Q Experience, using superconducting
transmon quantum processing units.

The term transmon stands for transmission-line shunted plasma oscillation. A
transmon qubit [11, 12] is an attempt at a technological implementation of a qubit for
quantum computation, using superconductivity and Josephson junctions, gaining
in charge noise insensitivity [11, 12]. The control, coupling, and measurement
are implemented by means of microwave resonators and circuit quantum
electrodynamics.

IBM has different transmon-based quantum computers in different locations
around the world and provides access to these computers via cloud; this availability
allows researchers to implement quantum experiments on actual quantum com-
puters via cloud using IBM Q Experience, opening also the way for programmers to

Artificial Intelligence - Applications in Medicine and Biology

run algorithms on quantum computers by using the Python library Qiskit, which
allows for the programmer to build quantum circuits in the Python code and
manage the cloud-based access for simulation and experiments. The examples
addressed in the present section all used Qiskit and two devices were employed: the
“IBM Q 5 Tenerife” (ibqu4)2 and the “IBM Q 16 Melbourne™
(ibmq_16_melbourne).

The “IBM Q 5 Tenerife” device is a 5 qubit device with quantum registers labeled
from QO to Q4, and the connectivity is, according to IBM, provided by two coplanar
waveguide (CPW) resonators with resonances around 6.6 GHz (coupling Q2, Q3,
and Q4) and 7.0 GHz (coupling QO0, Q1, and Q2).

The “IBM Q 16 Melbourne” device is a 14 qubit device with a connectivity that
is, in turn, provided by a total of 22 CPW bus resonators each one connecting two
quantum registers. For both the Tenerife and Melbourne devices, each quantum
register also has a dedicated CPW readout resonator attached for control and
readout.

From a computational model standpoint, we can treat the network connections
and resulting quantum computing framework, provided by these physical devices,
as a form of QUANN, where the conditional neural gates must obey the quantum
device’s basic topology in what regards the possible quantum controlled gates.

This is so because the quantum registers are linked in specific topologies that
limit how conditional quantum operations are implemented; this is a main charac-
teristic of QUANNS, namely, the conditional unitary gates implemented in neural
computational circuits are dependent upon the topology and links between the
different artificial neurons.

For the simplest algorithms, we can use just a few registers and connections,
which means that each quantum device can simulate different QUANNS, within the
restrictions of their respective topologies.

For a QUANN using all the quantum registers in the device, the types of algo-
rithms are limited by the device structure, which can only implement a specific
neural network topology and link direction.

In Figures 1 and 2, we, respectively, show the connectivity structure of the “IBM
Q 5 Tenerife” and the “IBM Q 16 Melbourne” devices.

Having introduced the two devices, we now exemplify the theoretical and
experimental implementation of a QUANN, on these devices, for a basic problem:
the XOR Boolean function representation. This is a relevant example in the artificial
neural network (ANN) literature, since the classical feedforward ANN needs a
hidden layer to solve this problem, while its quantum counterpart does not [4].

Namely, a three-neuron QUANN with two input neurons feeding forward to a
single output neuron is capable of representing the XOR function, while, in the
classical case, we need an additional hidden layer comprised of two neurons. This is
a feature of QUANN:S that is generalizable to other Boolean functions as discussed in
[4] regarding the computational efficiency of QUANNS over classical ANNs.

The reason for the greater efficiency is linked to entanglement, namely, the
output neuron’s firing dynamics can become entangled with the input layer’s firing
dynamics by way of the implementation of conditional NOT (CNOT) gates,

% The relevant elements on this processor, including the quantum circuit structure, can be consulted at
the Qiskit backend website: https://github.com/Qiskit/qiskit-backend-information/tree/master/backend
s/tenerife/V1 (consulted in 21/10/2018)

3 The relevant elements on this processor, including the quantum circuit structure, can be consulted at
the Qiskit backend website: https://github.com/Qiskit/qiskit-backend-information/blob/master/backend
s/melbourne/V1/README.md (consulted in 21/10/2018).

10

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

al

Figure 1.
IBM Q 5 Tenerife (ibmgx4) connectivity structure.

833832,

IBM Q 16 Melbourne (ibmq_16_melbourne) connectivity structure.

providing for an example of the importance of entanglement in the efficiency of
quantum computation over classical computation, a point that was object of
detailed discussion in [4] regarding the relevance of entanglement for quantum
neural computational efficiency.

3.1 The XOR representation problem

The XOR Boolean function representation problem is such that we want an
output neuron to fire when the input neurons’ firing patterns are reversed and to
remain nonfiring when the input neurons’ firing patterns are aligned. This means
that the neural network’s output follows the XOR truth table with the output neuron
firing when the XOR function evaluates to “True” and not firing otherwise.

In this case, as shown in [4], the XOR function representation problem can be
solved by a standard quantum feedforward neural network with no hidden layer, by
taking advantage of quantum entanglement dynamics.

Formally, the quantum circuit, in the forward direction, can be represented by
the following chain:

C =U,U,U, (21)

with the gates, respectively, given by:

Ui =Uwn®Uuy ®1 (22)
U, =0)(0|®@1®1+ [1)(1| ®1 Q64 (23)
U;=1®[0)(0|®1+1®[1)(1|®461 (24)

11

Artificial Intelligence - Applications in Medicine and Biology

We begin with all three neurons in a nonfiring dynamics; then, the
propagation from input to output (in the forward direction of the computational
circuit) yields:

<515253|é}000> = <515253|f]3 Uzﬁ1’000> =
1000) + [010) + [100) + |110>) B

= <515253|U302(

2
~ (1000) +]010) + |101) + |111
:<51S253|U3(|) 1010) + 101+ >> _
1000) 4 |011) + [101) + |110)
= (515253) =
— 651, 055'2, 0553, 0 551, 0552, 1553, 1 551, 1552, 0653, 1 5,&'1, 1552, 155'3, 0 (25)
2 2 2 2

The result in Eq. (25) means that the only probed final alternatives are those
where the XOR rule s3 = 51 @5 holds; that is, these are the only alternatives where
there is a nonzero amplitude.

Likewise, back propagation from the output to the input yields the same result,
that is, the only responses come from outputs where the XOR rule s3 = 51 @+, holds,
as the following derivation shows:

<000‘C’T‘515253> = <000‘[_A]1T UZTU3T’515253> =
oty oot t
= 52’0<000|U1 Uz |5152$3> +552’1<000‘U1 Uz ’51521—53> =
A~ T ~ T
= 551,0552,0<000|U1 |5152$3> + 551’0552’1<000|U1 |51521 — S3>—|—

A T ~ 1.
+551,1652)0<000|U1 ‘51521 —S3> -+ 551,1552,1<000|U1 |515253> =

_ 551, 055§ 0553, 0 + 651, 055; 1653, 1 + 551, 1653 0553, 1 4+ 551, 1553 1553, 0 (26)

Replacing Egs. (25) and (26) in the general Eq. (17) yields, for this quantum
circuit, the echo intensities:

(5152530 uels15253) = (51525|C[000)(000|C” 15253) = 57@ (27)

That is, the forward and back propagation is such that the echoes are only formed
for the cases where the rule s3 = 51 @+, holds, leading to a % probability associated
with each alternative firing pattern of the first two neurons.

The Figure 3 shows the theoretical results from the above equations, the simu-
lation in the IBM quantum assembly language (QASM) simulator and the experi-
mental implementation on the Tenerife (ibmqgx4) and Melbourne
(ibmq_16_melbourne) devices.

The QASM simulation expresses, as expected, the basic random results from the
repeated experiments, which is associated with the fundamental stochastic dynam-
ics underlying quantum processing; however, the simulator results agree with the
theoretical results, so that the basic XOR computation holds, that is, in each case,
the output neuron exhibits the firing pattern that is consistent with the XOR rule.

12

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

XOR PROBLEM RESULTS

BTheoretcal BESmulator mTenerife [@AMelbourne

n.172

T o o 4 3

FFEFT

o o 4 B o

o 0,034
=w%w (1.047
Teww 0.058

Figure 3.
Theoretical and experimental implementation of the XOR representation problem on the QASM simulator,
Tenerife and Melbourne devices, with 8192 shots.

In the case of experiments, the XOR rule is predominant, that is, the dominant
frequencies are those consistent with the circuit; there are, however, also a few
residual cases that deviate from the XOR rule, all with low relative frequencies.
These deviations are to be expected on the actual physical devices. For the Tenerife
device, the relative frequency of cases that follow the XOR rule is 0.857; for the
Melbourne device, this relative frequency is 0.835.

One of the main problems in physical implementation of quantum computation
is the presence of errors. Indeed, the equations are derived for an isolated circuit so
that the only echoes are those matching the quantum circuit; therefore, in an isolated
QUANN, the stochastic results from repeated trials tend, in a frequentist approach,
to the actual probabilities with zero frequencies associated with the alternatives for
which no echo is produced. This is a basic property of quantum mechanics as
predicted by the theory, and explains that the QASM simulator gets a zero measure
for those alternatives for which there is no echo.

Of course, if Bohm’s conjecture regarding the subquantum dynamics [9, 10] is
right, then, even for a sufficiently isolated circuit, small deviations coming from the
subquantum level may be present and lead to echoes that do not correspond to those
of the main computing circuit. In any other interpretation that does not assume a
subquantum dynamics and that takes the formalism to be exact, then, such devia-
tions, for an isolated system, are considered physically impossible.

While we cannot rule out Bohm’s subquantum hypothesis, we cannot also con-
firm it for now, since one never has a completely isolated circuit, and both conjec-
tural lines (Bohmian and others) agree that some deviations on physical devices will
always be present due to the environment.

The differences between the two conjectural lines, for quantum computer sci-
ence, are worth considering regarding quantum error correction; however, for now,
in regard to the technological issue of quantum error correction, we cannot yet
make use of Bohm’s conjecture that the quantum probabilities are average quantities
and that subquantum fluctuations may introduce small deviations that average out
at the quantum level to lead to the main experimental agreement with the theory.

Having provided, through the XOR problem, an example of how quantum
neural computation can be run experimentally on IBM’s quantum devices, we now
address artificial intelligence (AI) applications; we are interested in the theoretical

13

Artificial Intelligence - Applications in Medicine and Biology

and experimental implementation of a form of reinforcement learning using
QUANNSs, namely the quantum neural reinforcement learning (QNRL) and its
connection to quantum robotics and quantum adaptive computation.

3.2 Quantum neural reinforcement learning, robotics, and quantum adaptive
computation

Quantum robotics involves the need for the development of quantum adaptive
algorithms that allow the robot to process alternatives and select appropriate
actions using quantum rules [6, 13-15], that is, to incorporate decisions in
quantum Al In this context, there are two major types of artificial agents that
one may consider:

* classical agents that implement classical actions but whose cognitive substrate
is quantum computational;

* quantum agents that implement quantum operations on a quantum target.

The first type of agent is addressed as a classical robot dealing with problems at a
classical level but whose computational substrate is run via cloud access on a
quantum computer, thus, pointing toward a possible future where quantum com-
putation is incorporated on different robotic systems by way of the internet of
things and cloud-based access to quantum devices.

The second type of agents corresponds to quantum software robots (quantum
bots) that are implemented within a quantum computer and can be used for the
adaptive management of target quantum registers and for the purpose of more
complex adaptive computation [6, 13-15].

This second type of agents forms the basis for Al solutions aiming at intelligent
quantum computing systems with application in quantum internet technologies
and, also, possible quantum adaptive error correction.

This latter point (quantum adaptive error correction) must draw specifically on
the empirical implementation in physical devices, since it is this implementation
that may ultimately test the best adaptive algorithms for quantum error correction.
A basic direction, in this case, regards echo strengthening, in order to diminish the
echoes coming from alternatives that do not fall in an intended computation.

We do not address this last point here, but rather illustrate the implementation
of the first type of agent in the context of an adaptive computation of a classical
gamble, namely, optimal action selection in a classical gambling problem through
quantum neural reinforcement learning (QNRL).

In this case, the artificial agent is dealing with a classical problem and
implementing its decision processing on a QUANN, namely, the agent has an action
set described by 24 binary strings; following an evolutionary computation frame-
work, we use d-length genetic codes to address actions, so that the actions’ codes are
comprised of d loci, each with two alleles, 0 and 1.

Now, given each alternative action, the agent is offered a classical gamble on a
measurable space (€,) where g is a sigma-algebra of subsets of Q and
Q = {wo, w1, ...,wn_1} is the set of rewards for the gamble, which we consider, in
this example, to be discrete, although the results also apply to continuous reward
spaces and (classical) probability distributions.

Now, for each action genetic code s € A? there is a corresponding gamble prob-
ability measure P; that is offered to the agent, so that the conditional expected value
for the reward w can be calculated as:

14

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

N-1
Ew|s] = go Wy Ps[wy,] (28)

The goal for the agent is to select the action that maximizes this conditional
expected reward, that is:

s* = arg max E[w|s] (29)

S

To solve the optimization problem in Eq. (29), we use a variant of QNRL, which
applies modular networked learning [16], in the sense that, instead of a single
neural network for a single problem, we expand the cognitive architecture and
work with a modular system of neural networks.

Modular networked learning (MNL) was addressed in [16] and applied to
financial market prediction, where, instead of a single problem and a single target,
one uses an expanded cognitive architecture to work on multiple targets with a
module assigned to each target and possible links between the modules used to map
links between subproblems of a more complex problem.

For modular neural networks, the resulting cognitive architecture resembles an
artificial brain with specialized “brain regions” devoted to different tasks and con-
nections between different neural modules corresponding to connections between
different brain regions. In the present case, the agent’s “artificial brain” (as shown
in Figure 4) is comprised of three “brain regions” connected with each other for a
specific functionality, where the first module (first brain region) corresponds to the
action exploration region, the second module (second brain region) corresponds to
the reward processing region, and the third module to the decision region.

The connections between the modules follow the hierarchical process associated
with the necessary quantum reinforcement learning for each action, Figure 4
expresses this relation. The reinforcement learning, in this case, is a form of quan-
tum search, implemented on the above modular structure, that proceeds in two
stages: the exploration stage and the exploitation stage.

In the exploration stage, the agent’s first brain region, taking advantage of
quantum superposition, explores with equal weights, in parallel, each alternative
initial action and the second brain region processes the conditional expected
rewards; this last processing is based on optimizing quantum circuits [6], where

4/ - -\‘
b ",
{ 4 4 \ ol /- N » N
\ k2) ([A) .. | A1) Decision
N L 4 \ ¥ s 3 ,/
Py E Gl RN 4 E ailY -
R S Y ! K e
v — o —
\ _—r——1 \ @
= \ \ \ —S
L~ | "\L \ —
."/ Ilr/ \\, / b H\.I . : i __\ Reward \‘
) . = . B) | Rdl | Processing
\ \ \ P, ; /
b 5 M S -
—~ F y y o
—— / / / i
—i - Fi j _
/ B — 7
e |- ——] T . /
e f ;,. — .-"
o | ; =
i N P .
3 ; ; .
i ko) | B (Edr | N\
[Exploration o P y i)
™ = s S /

Figure 4.
Modular structure for the reward maximigation problem.

15

Artificial Intelligence - Applications in Medicine and Biology

the unitary operator for the second brain region incorporates the optimization
itself.

The second brain region will work as a form of oracle in the remaining adaptive
computation and allows for the agent’s artificial brain to implement an optimal
expected reward-seeking dynamics.

Now, in the second phase of the exploration stage, the synaptic connections
from the first to the second brain region are activated, leading to a quantum
entangled dynamics between the two brain regions, where the first region acts as
the control (input layer) and the second as the target (output layer).

Thus, at the end of the exploration stage, the first two brain regions exhibit an
entangled dynamics. This is a basic point of quantum strategic cognition, in the
sense that the processing of the alternative courses of action is not localized in a
specific neuron or neurons, but rather it leads to quantum correlations between
different brain regions; these connections allow the artificial brain to efficiently
select the best course of action, from the evaluation of the alternatives and
rewards.

In the exploitation stage, the synaptic connections from the first brain region
(the action exploration region) to the third brain region (the decision region) are
activated first, so that the decision region is first processing the explored alternative
actions, becoming entangled with the action exploration region; then, the synaptic
connections between the reward processing region and the decision region are
activated for the conditional expected reward processing by the decision module. In
this way, the decision module makes the transition for the optimal action, consult-
ing the “oracle” (which is the reward processing module) only once.

The artificial brain thus takes advantage of quantum entanglement in order to
adaptively output the optimal action. Formalizing this dynamics, the artificial
brain is initialized in a nonfiring probe and response dynamics so that the initial
density is:

po = 0)(0|®* (30)

Now, we denote by s; the k-th bit in the string s*, and use the following notation
for the maximization in Eq. (29) evaluated at the k-tk bit:

s, = arg max E[w|s] (31)
s, k

Using this notation, the first phase of the exploration stage is given by the
unitary operator:

Ul -
arg max E[w|s] arg max Efw|s]
. - ®d
®lgd | cos S’]efﬂ' 1 —isin s’kfﬂ' 6 | ©1°%

(32)

The operator incorporates the optimization dynamics into the conditional quan-
tum gates’ parameters themselves. Since we have:

arg max E[w|s] arg max E[w|s]
cos sk 5 7 |1 —isin sk 5 7 |62 1]0) (33)

16

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

arg max E[w|s] arg max E[w|s]
s, k s, k *
5 7 [11) = |si)

= cos > 7 ||0) + sin

after the first phase of the of exploration stage, the resulting density is given by:

pr = UipoUs’ = [4)(+]®4 @ [s")(s*| @ |0)(0] & (34)

Thus, the neural field is probing, for the first brain region, each alternative
neural pattern (each alternative action) with equal weight, the response dynamics
also comes, for the first brain region, from each alternative neural pattern with
equal weight, which means that the echoes for the first brain region are independent
from the echoes for the remaining brain regions and show an equal intensity associ-
ated with each alternative neural pattern.

On the other hand, for the second brain region, the neural field exhibits a
reward-seeking dynamics that is adaptive with respect to the optimal action; that is,
the probing dynamics is directed toward the optimal action and the response
dynamics also comes from the optimal action, so that, due to the adaptive unitary
propagation, the second brain region is projecting over the optimum value, and this
is the only echo that it gets.

The third brain region still has a projective dynamics toward the nonfiring
neural activity.

Now, for the second phase of the exploration stage, we have the operator:

R . X - ®d
Uy=| Y Is)(s|®%_,((1—s)1+s5161) ®1°

seAd

(35)

which leads to the density after the second phase of the exploration stage:

) (s| @ _y |s; D i) (s} B
zd

pr=UspUy = % ®10)(0|®* (36)

I, sE A”Zl

Thus, after the second phase, the first and second brain regions exhibit an
entangled probe and response dynamics, where the neural field, for second brain
region, is effectively computing both the rewards and the explored actions.

Next comes the exploitation stage with the neural processing for the decision
module (the third brain region).

The first step of the exploitation stage is the processing of the initially explored
actions, by way of the operator:

N ~Qd R R
Us= Y [s)(s|®@1%" ®@¢_,((1—se)1 +s5x64) (37)

SE Ag
which leads to the density:

1) (| @ [si D7) (i D5k ® [r) (s

> (38)

IS
p3=UspUs = X
I, SE Ag
That is, the probe and response dynamics for the third brain region are corre-
lated and coincident with the probe and response dynamics for the first brain

region, so that the third brain region is effectively computing the initially explored
actions.

17

Artificial Intelligence - Applications in Medicine and Biology

Now, the second step for the third brain region results from the activation of the
synaptic links with the second brain region, leading to the conditional unitary
operator:

®

U= Y 1%®s)(s| @7, (1 — 501 + 561) (39)

seA?
Under this operator, we get the final density:
~ ooy T
pa =UapsUs =

) (s| ®5_; (|5 @71) (5; Dk | ® [® (s} ® 7)) (51 ® (57 Dsk)|)
2d

-z

I, sE Ag
(40)
Since we have the Boolean equality p @ (9 @ p) = ¢, this means that the above

density can be simplified, so that the neural field’s probe and response dynamics for
the third brain region projects over the optimal action:

) (s| ® |8k D7k) (s; D
2d

pa=UapsUs = <)) ® [s*)(s"| (41)
I, sE Ag

The third brain region’s computation takes advantage of the entangled dynamics
between the first and second brain regions to learn the optimal action. For the final
density, while the first and second brain regions exhibit an entangled probe and
response dynamics, the third brain region is always projecting over the optimum.

It is important to stress how QNRL takes advantage of quantum entanglement
such that the neural field for the third brain region followed each alternative action
and then the reward processing dynamics to find the optimum in all these alterna-
tive paths, so that the optimal action is always followed by the agent.

As an example of the above problem, let us consider the case where we the
reward set is Q = {—1, 1}, and that there are two possible actions 0 and 1 leading,
respectively, to the classical probability measures Py and P;, with Pojw = 1] = 0.4
and P;[w = 1] = 0.6; then, we get the probabilities of selection for each gamble and
device shown in Table 1, for 8192 repeated experiments.

As expected, the QASM simulator always selects the action 1, which is the best
performing action by the conditional expected payoff criterion. The Tenerife device
selects the correct action with a proportion of 0.778, while the Melbourne device
selects the correct action with a proportion of 0.647. If, instead of the above gamble
profile, we had Py[w = 1] = 0.6 and P;[w = 1] = 0.4, the optimal choice would be
the action 0; in this case, as shown in Table 2, the QASM simulator, again, selects
the correct action each time. The Tenerife device, in turn, selects the correct action
with a 0.857 frequency and the Melbourne device with a 0.814 frequency.

In Figure 5, we show the Melbourne device’s results* when we have four actions
for the same rewards profile, and the probabilities are Poo[w = 1] = 0.6,

Poilw = 1] = 0.4, Pyg[w = 1] = 0.8 and P11[w = 1] = 0.9, still setting the rewards to
Q={-1,1}.

In this case, if we run the experiment on the QASM backend, with 8192 shots,

we get the action encoded by the string 11 with relative frequency equal to 1, which

* We can only use the Melbourne device since the Tenerife device does not have the required capacity in

terms of number of quantum registers.

18

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

Device Action
0 1
QASM 0 1
Tenerife 0.222 0.778
Melbourne 0.353 0.647
Table 1.

Results for two alternative actions using the QASM simulator, the Tenerife device (ibmqgx4) and the Melbourne
device (ibmq_16_melbourne); in each case, 8192 shots were used, with Polw = 1] = 0.4 and P;jw = 1] = 0.6.

Device Action
0 1
QASM 1 0
Tenerife 0.857 0.143
Melbourne 0.814 0.186
Table 2.

Results for two actions using the QASM simulator, the Tenerife device (ibmqgx4) and the Melbourne device
(ibmq_16_melbourne); in each case, 8192 shots were used, with Pylw = 1] = 0.6 and P;lw = 1] = 0.4.

Relative Frequencies for Actions

.37

p 0.309
0.3
0.25
0.2 0.167
0.15 :
0.1
0.05

01 10 11

il

Figure 5.
Results for four actions using the Melbourne device (“ibmq_16_melbourne”), with 8192 shots used, and
probability profiles given by: Poolw = 1] = 0.6, Po1[w = 1] = 0.4, Pyolw = 1] = 0.8 and P31 jw = 1] = 0.9.

is the optimal action. If we run the experiment with the same number of shots on
the Melbourne device, then, as shown in Figure 5, the output 11 is still the dominant
action, however, with a proportion of 0.370, the second dominant action being non-
residual and with a value of 0.309 occurs for the output 10.

Therefore, the first qubit tends to be measured with the right pattern with a
proportion of 0.679 (0.309 + 0.370); the probability of the second qubit being
correct given that the first is correct is only about 0.54492 (0.370/0.679). This
suggests that the deviation may be due to the entanglement with the environment
significantly deviating the second qubit from the correct pattern.

The above algorithm was implemented using Qiskit and Python’s Object Ori-
ented Programming (OOP); the code, shown in the appendix, exemplifies how OOP
can be integrated with quantum computation for implementing quantum Al on any

19

Avrtificial Intelligence - Applications in Medicine and Biology

terminal, due to the cloud access to IBM’s quantum resources, constituting an
example of Quantum Object Oriented Programming (QOOP) using Qiskit.

The code defines the class “Agent” with an attribute that is the quantum neural
network; in this case, the attribute will be assigned a quantum circuit with the
required quantum and classical registers.

There are two methods that any instance of the class Agent must be able to
implement: the first method manages the cloud access to IBM’s resources, the
second method implements the action selection and the quantum algorithm.

The inputs for the first method are the accounts to be loaded, for the classical
computer to be able to access quantum computer via the cloud service, and the
backend code, which, by default, is set to the QASM simulator but can be changed
to any of the devices. The method returns the backend to be used.

The second method, for the action selection, has a structure that is specific to the
problem in question; that is, the agent is offered a set of rewards and probabilities
associated with each alternative action, and must choose the action that maximizes
the conditional expected reward.

Thus, the probabilities are known to the agent and form part of the gamble that
is offered to it; therefore, we are dealing with a decision problem under risk, and
wish to address how the agent’s QUANN can exhibit an adaptive computation with
respect to this problem.

While, in the above equations, the adaptive nature of the quantum neural circuit
was introduced in the unitary operator’s parameters themselves, the Python code
for the method must use the gamble’s inputs to make the quantum circuit adaptive;
that is, the method must be such that the agent designs its own cognitive architec-
ture (updating its qnnet attribute) and quantum circuit using the inputs to the
method, and, then, the agent must implement the cloud-based access to run, in
IBM’s quantum computers, the corresponding quantum algorithm.

The inputs for the method are, then, given by a list of probability distributions,
where each line corresponds to a different probability gamble profile associated
with each action, for instance, in the case of Table 1, the distributions are given by
([0.6, 0.4],[0.4, 0.6]). In the case of Tables 1 and 2 and Figure 5, the rewards list is
[-1, 1].

The other two inputs for the method are the backend used which allows the
agent that is instantiated in a classical computer to access via cloud the quantum
computer, using the backend code (backend_used) and repeatedly running the
algorithm on the respective device for a number of shots (num_shots).

The choose_action method’s step zero is the extraction of the expected values
and of the corresponding parameters for the adaptive gates, namely, the expected
values array associated with each action is extracted by the agent using the Python
library NumPy’s dot product applied to the distributions and rewards lists.

The number of actions and dimension 4 that determines the network size are
extracted from the length of the expected values array; then, the parameters for the
adaptive gates are extracted by applying NumPy’s argmax function on the expected
values array and then converting the resulting index in binary format (using
NumPy’s binary_repr). Since the indexes match the lexicographic order of binary
strings, the agent, thus, effectively extracts the parameters for the adaptive unitary
gates.

Now, the next step is to set up the QUANN, including the three modules, the
classical registers for the measurement of the final actions to be chosen and
updating the agent’s qnnet attribute, assigning it the corresponding Qiskit’s quan-
tum circuit object.

The last step implements the QNRL algorithm, following the inter-module links
as per the main equations introduced in this section, and defines the quantum

20

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

measurement for the decision module, executing the algorithm on the backend
(taking advantage of the cloud access) and plotting the histogram to extract the
main experimental relative frequencies obtained from the repeated experiments
(the number of shots).

4, Conclusions

Cloud-based access to quantum computers opens up a major point: the empirical
testing of algorithms and the implementation of computer programs in a quantum
computational substrate has become feasible.

The IBM Q Experience constitutes an example of how a programmer can use
Python programming language and IBM’s Python Qiskit package for building pro-
grams that use quantum computation, limited only by the specific device resources,
namely the number of quantum registers available.

For quantum AI and machine learning, this provides a way to effectively bring
the algorithms from the theoretical level to the test level, allowing one to test drive
different quantum AI frameworks on actual quantum computers. The work devel-
oped in the previous sections allowed us to provide several examples of such an
implementation, with a few main points standing out:

* We showed how one can address IBM’s superconducting transmon devices as
examples of QUANN:S, since, just as in a QUANN, the devices can only
implement the conditional gates depending on the network topology and the
directions of the links, which only allow for specific conditional gates to be
implemented; as an example, the Tenerife device is a bowtie feedforward
network, we cannot turn it into a recurrent network so that the gates have to be
implemented following specific directions of the links (this limit can be
experienced by any user that accesses the online resources and tries to visually
build circuits in IBM Q Experience homepage).

* We exemplified how basic Boolean functions’ representation, in this case the
XOR function, can be implemented on a (physical) quantum computer using
the cloud access to Tenerife and Melbourne devices and compared the
experimental results with the theoretical derivation; a relevant point of this is
that we only needed three quantum registers and no hidden layer to solve the
XOR problem, a point already raised about this function and generalized to
other functions in [4], regarding the theoretical efficiency of QUANNS.

* We addressed how a form of quantum adaptive computation, incorporating a
reward-seeking behavior and a variant of QNRL, can be implemented, in the
context of quantum robotics and Al, on different quantum devices.

The three main points above help strengthen two core arguments: the first is that
quantum machine learning can now be tested on actual quantum computers, making
it feasible to empirically test the algorithms; the second is that, in the near future,
with further advancements in quantum computation and quantum hardware, quan-
tum adaptive computation may be implemented on actual robots with a quantum
cognitive architecture that is based on cloud access to a quantum computer.

The present work addresses both core arguments by exemplifying how a form of
QNRL can be employed to implement quantum adaptive computation on a physical
QUANN with cloud-based access, employing QOOP and addressing, experimen-
tally, a decision under risk problem.

21

Artificial Intelligence - Applications in Medicine and Biology

A. Python Code for Quantum Neural Reinforcement Learning Problem.

Import NumPy and Qiskit’s main functionalities

import numpy as np

from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit import execute

from qiskit import IBMQ

from qiskit.tools.visualization import plot_histogram

class Agent:

def __init_ (self, qnnet):

self.qnnet = qnnet # agent’s Quantum Neural Network

def get_backend (self,

load_accounts = True, # if accounts are to be loaded
backend_code = ‘ibmq_qasm_simulator’ # backend code

):

Load IBM account if needed

if load_accounts == True:

IBMQ.load_accounts()

Get the backend to use in the computation

backend_used = IBMQ.get_backend (backend_code)

If one is not using the QASM simulator get the backend status
if backend_code! = ‘ibmq_qgasm_simulator’:
print(backend_used.status())

Return the backend used

return backend_used

def choose_action(self,

distributions, # probability distributions

rewards, # reward system

backend_used, # backed to be used

num_shots): # number of shots to run in quantum computer
Step 0: get the expected values and unitary parameters:

Get the expected values

expected_values = np.dot(distributions,rewards)

Get the number of actions involved

num_actions = len(expected_values)

Get the base number that we will need for the network size
dim = int.(np.log2(num_actions))

Get the parameters for the adaptive gate

maxstring = np.binary_repr(np.argmax(expected_values), width = dim)
Step 1: Setup the Quantum Artificial Neural Network:

Get the number of quantum registers

q = QuantumRegister(3*dim)

Get the number of classical registers

¢ = ClassicalRegister(dim)

Setup the quantum neural network

self.qnnet = QuantumCircuit(q, c)

Step 2: Implement the Reinforcement Learning Algorithm:
Exploration Stage

for i in range(0,dim):

self.qnnet.h(q[i])

for j in range(0,dim):

self.qnnet.u3(float(maxstring[j]) *np.pi,0,0,q[dim+j])

for k in range(0,dim):

22

Quantum Neural Machine Learning: Theory and Experiments
DOI: http://dx.doi.org/10.5772/intechopen.84149

self.qnnet.cx(q[k],q[dim+k])

Exploitation Stage

for 1 in range(0,dim):

self.qnnet.cx(q[1],q[2*dim+1])
self.qnnet.cx(q[dim+1],q[2*dim+1])

Quantum Measurement

for m in range(0,dim):
self.qnnet.measure(q[2*dim+m], c[dim-1-m])

Execute the algorithm on the backend

job_exp = execute(self.qnnet, backend = backend_used, shots = num_shots)
Plot the histogram

plot_histogram (job_exp.result().get_counts(self.qnnet))

Author details

Carlos Pedro dos Santos Gongalves
University of Lisbon, Institute of Social and Political Sciences, Lisbon, Portugal

*Address all correspondence to: cgoncalves@iscsp.ulisboa.pt

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

23

Artificial Intelligence - Applications in Medicine and Biology

References

[1] Menneer T. Quantum artificial neural
networks [thesis]. Exeter: The
University of Exeter; 1998

[2] Narayanan A, Meneer T. Quantum
artificial neural network architectures
and components. Information Sciences.
2000;128:231-255. DOI: 10.1016/
S0020-0255(00)00055-4

[3] Schuld M, Sinayskiy I, Petruccione F.
The quest for a quantum neural
network. Quantum Information
Processing. 2014;13(11):2567-2586. DOI:
10.1007/s11128-014-0809-8

[4] Gongalves CP. Quantum cybernetics
and complex quantum systems science:
A quantum connectionist exploration.
NeuroQuantology. 2015;13(1):35-48.
DOI: 10.14704/nq.2015.13.1.804

[5] Gongalves CP. Quantum neural
machine learning: Backpropagation and
dynamics. NeuroQuantology. 2017;
15(1):22-41. DOI: 10.14704/nq.2017.
15.1.1008

[6] Gongalves CP. Quantum robotics,
neural networks and the quantum force
interpretation. NeuroQuantology. ISSN:
1303 5150

[7] Cramer]JG. The Quantum
Handshake: Entanglement, Nonlocality
and Transactions. Cham: Springer.

p. 218. DOL: 978-3-319-24640-6

[8] Everett H. Relative state' formulation
of quantum mechanics. Reviews of
Modern Physics. 1957;29(3):454-462.
DOI: doi.org/10.1103/RevModPhys.
29.454

[9] Bohm D. Causality and Chance in
Modern Physics. London: Routledge;
1997 [1957]. p. 189. ISBN: 0-415-
17440-6

24

[10] Bohm D, Hiley BJ. The Undivided
Universe. New York: Routledge; 1995.
p. 409. ISBN: 978-0415121859

[11] Koch J, Yu TM, Gambetta J, Houck
AA, Schuster DI, Majer], et al. Charge-
insensitive qubit design derived from
the Cooper pair box. Physical Review A.
2007;76:042319. DOI: 10.1103/
PhysRevA.76.042319

[12] Schreier JA, Houck AA, Koch],
Schuster DI, Johnson BR, Chow JM,

et al. Suppressing charge noise
decoherence in superconducting charge
qubits. Physical Review B;77:180502(R).
DOI: 10.1103/PhysRevB.77.180502

[13] Benioff P. Quantum robots and
environments. Physical Review A. 1998;
58(2):893-904. DOI: 10.1103/
PhysRevA.58.893

[14] Benioff P. Some foundational
aspects of quantum computers and
quantum robots. Superlattices and
Microstructures. 1998;23(3-4):407-417.
DOI: 10.1006/spmi.1997.0519

[15] Dong D-Y, Chen C-L, Zhang C-B,
Chen Z-H. Quantum robot: Structure,
algorithms and applications. Robotica.
2006;24(4):513-521. DOI: 10.1017/
S0263574705002596

[16] Gongalves CP. Financial Risk and
Returns Prediction with Modular
Networked Learning. arXiv: 1806.05876
[cs.LG]. 2018. Available from: https://
arxiv.org/pdf/1806.05876.pdf
[Accessed: 28-10-2018]

