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Chapter

Novel Formulation of Parzen
Data Analysis

David Horn

Abstract

The Parzen analysis associates Gaussian kernels with each data point, thus
obtaining a density function which may be viewed as a possible artificial generator
of the data. This probability function can be decomposed into the product of two
components, weight (W) and shape (S), which represent different aspects of the
data. We demonstrate how this naturally leads to a formalism of fields in data space,
which are interconnected through relations in one-dimensional scale space,
corresponding to the common Gaussian width. We discuss the connection of this
formalism to different clustering procedures such as quantum clustering (QC) and
mean shift (MS). We demonstrate on various examples the importance of these
concepts in the analysis of natural data as well as in image analysis in two or three
dimensions.

Keywords: Parzen probability, weight-shape decomposition, quantum clustering,
mean shift, image analysis

1. Introduction

Unsupervised machine learning has led to a wealth of clustering methods over
the past few decades [1]. One of the important early ideas is that of the Parzen
window distribution [2]. It has been introduced in 1962, as a kernel density estimate
of a distribution function underlying measured data, and still serves as the basis of
clustering algorithms in pattern recognition [1, 3]. Recently, it has been discovered
[4] that the Parzen probability function can be decomposed into two components,
weight and shape, which represent different aspects of the data. Weight, as its name
implies, describes the semi-global strength of the distribution, whereas shape rep-
resents local properties which come to light once the bias of the weight is being
removed. Moreover, —log(shape) coincides with a potential function V, which has
been previously introduced in quantum clustering (QC) [5]. The cluster centers in
QC correspond to minima of V. An alternative method, mean shift [6, 7], views the
maxima of the probability function as the appropriate candidates of cluster centers.
These two different points of view can now be studied and compared within a
unified formalism [4].

Here we discuss the novel connections of the Parzen distribution to its potential
and show how both can be used for the analysis of data points, leading to alternative
clustering possibilities and extracting interesting features from the data. A particu-
larly interesting set of applications appears in image analysis. Scale-space image
analysis [8] has developed from the Parzen kernel methodology discussed in [6].
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Now it turns out that insights from the potential term, or the shape component,
allow for novel applications which are relevant to medical and technical imaging.

2. The Parzen probability distribution and its potential function

Data analysis often involves dimensionality reduction and noise removal, as well
as some other tools, which eventually lead to consider a set of preprocessed data
points located in a d-dimensional Euclidean space x; € R?, with possible positive
attributes (e.g., intensities) I;. For this set, we define the non-normalized Parzen
window function with Gaussian kernels as

(%)’
Wo(x) = Y lie 22

(1)

Following [4], we introduce a relative probability weight function representing
the influence of the kernel at data point x; on any arbitrary point x:

(x—x;)?
e 22

w(x)

pi(x) = (2)

It obeys ) I;p;(x) = 1 and allows for the definition of two new scalar functions
over data space x, which are the potential and entropy fields

v = o1 5 @
H(x) = — X Iip;(»)logp;(x) (4)

Their difference is related to the Parzen probability function

V(x) = H(x) — logy(x) (5)

This can be rewritten as

y(x) = W(x)S(x) (6)

using [4] the concepts of weight and shape: W(x) = /) and S(x) = ¢ V™.

Since V(x) > 0, it follows that S(x) < 1. Moreover, both W and S are nonnegative.
S is integrable over x and, as such, can also serve as a distribution. From the
definitions of (1) and (3), one can derive [4] the Schrédinger equation

d

- %Vzw(x) +VEy(x) = EW(XL )

which has been the cornerstone of the QC algorithm [5].

3. Interplay of scale and data space dependence

All the scalar fields over data space, introduced in the previous section, depend
on the parameter o, the scale of all Gaussian kernels. This dependence leads to
further interesting relations between the Parzen probability function and its poten-
tial. Thus, from the definitions (1) and (3), it follows that



Novel Formulation of Parzen Data Analysis
DOI: http://dx.doi.org/10.5772/intechopen.83781

c0

22 logu,(x) = V,(x) (®)

where we keep the index ¢ which has been suppressed in the previous section.
This relation displays a direct connection between the two scalar functions defining

the probability and the potential. We proceed now to introduce a vector field D,
which is defined by

—Vlogy,(x) =D, 9)

and vanishes when the probability reaches its extrema in data space. Interest-
ingly it is also related to the gradient of the potential function, through

—0c 0
— D =VV 10
2 aa o o ( )
Hence we conclude that the potential reaches its extrema when D, remains
stationary with respect to variations of c.

D, may be expressed, in analogy with Eq. (3), as
X —X;
D(x) =X 1 TPi(X)' (11)

Its square U = D? serves as an indicator function whose stationarity

9 1, (x) =2V logy, (x) - VV,(x) = 0 (12)
2 0o

implies the existence of extrema of either the probability or the potential. Since
U = D? is nonnegative, U = 0 is 2 minimum in o. It corresponds to extrema of y
which are associated with D=0. Other values of U which obey Eq. (12) are associ-
ated with extrema of V which occur whenever a% D, = 0.Eq. (12) may be viewed as
a statement concerning a set of points of interest in the data: all extrema of either
the probability or the potential. In analogy with statistics, one may also view this
equation as an inference method finding the parameter ¢ which leads to points of
interest at given values of x.

Although all extrema may be regarded as points of interest, some are of more
interest than others: extrema that remain fixed in x for a range of scale values,
which is large compared with the range of scales of other points of interest. This
criterion, introduced by Roberts [9], allows searching for scales which correspond
to natural properties of the data. Thus it subserves the search for good clustering of
the data [4, 5, 9].

Finally, we wish to point out that y is not a properly normalized distribution
function. A proper probability function, whose integral is 1, is defined by

g
()
where N = ), I;. We note that y and V obey a joint integration constraint [10]
1/ 1) d
N (277:62> dey/(x)V(X)zi. (14)

This may be interpreted as a constraint on the expectation value of the potential
function in data space.
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Examples of the behavior of logy and of V are demonstrated in Figure 1 for a
data set of 9000 observed galaxies (with redshift in the domain 0.47 £0.005)
regarded as points in spherical angles 6 and ¢ within some limited range. Whereas
for ¢ = 2 (in units of angle degrees), the two fields exhibit many extrema; there
exist clear differences for larger sigma, for example, 6 = 10, where logy has one
maximum, while V displays several minima. This figure is taken from [10],

a paper which contains a detailed and expanded formulation of the analysis
presented in this section.

Figure 1.

(a) Loci of 9000 Galaxies, downloaded from the Sloan Digital Sky Server DR1 2, within some limited range of
spherical angles. Reproduced from [10]. (b) logy (top) and V (bottom) displayed over the data plane 1a,
using o = 2 in spherical angle units. Reproduced from [10]. (c) Surfaces of V and logy for increased values of
the Gaussian width. Reproduced from [10].
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4. Applications to clustering, image analysis, and more
4.1 Anomalies

Figure 1 serves as an example of different behaviors of logy and of V. We wish
to stress that when studying this system with large o, the probability distribution is
smooth; nonetheless underlying structure is observed in V. This means that, for a
given o, representing the large-scale behavior with one Gaussian, as one may be
tempted to do after seeing the probability distribution, is wrong as demonstrated by
the structures observed in V. On the other hand, the probability function tends to
a smooth limit for ¢ = 10, whereas the fluctuating V changes with c; hence V may
represent random fluctuations in the data. However, comparing with the raw
data in Figure 1a, we can be convinced that structure of the type discovered by
V exists in the data. If these are fluctuations or not, one cannot tell from a single
set of data.

A generally important question is if, within changing patterns of V, there exists
one (or some) which remains relatively stable as function of 6. Such a structure may
be viewed as a possible anomaly in the data. It is therefore advisable to study V
when looking for anomalies.

4.2 Clustering

Clustering methodologies based on maximization of the probability and mini-
mization of the potential can be defined by letting replica of data points move in
these directions. These methods are known as mean shift (MS) and quantum
clustering (QC) correspondingly. A recent review of MS techniques has been
presented in [11]. Analyzing the same data with the same width-parameter c leads
to different clustering results for these two different methods, as is expected from
Figure 1.

For illustration of clustering based on these different methods, we consider the
crab data set which is included in Ripley’s textbook [12]. It consists of 200 instances
belonging to four equally sized classes and is defined in a five-dimensional param-
eter space. Performing PCA and restricting ourselves to the 2D plane defined by
PC2-PC3 lead to a challenging clustering problem which has been discussed by [13],
when introducing support vector clustering (SVC), and by [5] when introducing
QC. It has been used in other papers employing variations of QC, such as the recent
study [14]. Here we will show the results of [4] who applied to these data three
clustering methods: Maximal Shape Clustering (MSC) which coincides with QC,
Maximal Probability Clustering (MPC) which coincides with MS, and Maximal
Entropy Clustering (MEC). The quality of all three methods may be judged by
applying the Jaccard score

J= Ny
ny; + nyo + Noy

where ny; is the number of pairs of points which belong together both in the
same class (accepted as “ground truth”) and in the same cluster, while n;o + no; are
numbers of pairs which belong to the same class but different clusters and vice
versa. This test is performed in Figure 2a, demonstrating that QC wins the compe-
tition for a wide range of ¢ values. The expected asymptotic value is ] = 98/398,
befitting one cluster and four classes.
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Figure 2.

(a) The Jaccard score, comparing clustering vesults with expert classification, comparing three clustering
methods over a range of 6 values. (b) The number of clusters, for each method and value of o. Reproduced from
[4]. MSC, MWC, and MPC stand for maximal shape, weight, and probability clustering accordingly. MSC
coincides with quantum clustering and MPC with mean shift.

Figure 3.
Topographic maps of probability, weight, and shape, for 6 = 0.7. Reproduced from [4].

Another comparison is being made in Figure 2b. This follows Roberts’ criterion
[9] that the preferable clustering method is the one which displays the most stable
number of clusters with respect to variation of c. This criterion is handy when the
ground truth is unknown. QC excels also in this test, leading to a stable prediction of
four clusters for a wide range of . This last figure also serve as a credibility test for
Roberts’ criterion.

In order to make the clustering results more intuitive, we display in Figure 3,
also taken from [4], topographic maps of the different fields describing probability,
weight, and shape, for 6 = 0.7. The points in four different colors represent the four
different classes. The topographic maps allow one to understand the clustering
results which represent the outcome of gradient ascent applied to replica of data
points which climb toward their nearest peak. Comparing the topologies of Figure 3
with the results for 6 = 0.7 in Figure 2 leads to an understanding of why the three
methods differ from each other.

4.3 Image analysis

A gray-scale image may be analyzed as a set of inputs associated with different
pixels. In higher dimensional problems, such as 3D MRI data, the pixels are replaced
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by voxels. Both may fit well into our analysis which starts with Eq. (1), associating a
probability distribution with every image. One may then wonder if the weight-
shape decomposition of Eq. (6)

can lead to any novel understanding of image analysis.

In any practical application, non-normalized probability and weight may have
very large amplitudes, yet shape will be limited to values <1. Nonetheless it carries
some important characteristics:

1. Shape may be normalized to become a distribution on its own.
2. Shape serves as a generalized edge detector.

3. Shape is the basis of QC; hence the latter is very relevant to clustering of
regions where shape is large. Alternative methods may be relevant when shape
is small.

The first claim is trivial since S is limited to the range 0 <S <1, and the Gaussian
kernels are integrable. The second property is a result of Eq. (7) which shows that
the potential is related to the second derivative of the probability. It has led to an
interesting result in [4], demonstrating that line caricatures of images can be pro-
duced by thresholded shape drawings.

To demonstrate the third point, we display in Figure 4 the results of an analysis
of a T2 MRI of the brain of a Macaque monkey [15]. Following the general proce-
dure outlined above, and limiting ourselves to large relative values (thresholded
distributions) of probability and shape, we find that the latter peaks in cortical
regions, whereas the former peaks in internal regions of the brain, as demonstrated
in Figure 4. Thus, a simple thresholding procedure allows one to easily segment the
MR image, for the purpose of further analysis of the cortex by applying QC to the
data in the large S domain. In Figure 5, we follow these conclusions [15] with a
display of QC clusters projected onto the surface of the brain, leading to its

Figure 4.

Thresholded shape (ved) and thresholded probability (blue) dominate different vegions within the same MR
image of a macaque brain, projected on its y-z plane. This analysis used o = 3 in voxel units. Data outside the
brain are due to artifacts and noise in the MR image. These vesults ave due to [15], and they indicate that large
shape components dominate cortical vegions of the T2 MRI brain image.
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parcellation into cortical components which are derived by just computational
image analysis.

4.4 Convolutional representation of V

When one analyzes data in a regular underlying structure, such as pixels m of an
image I(m), the translational invariance of the Gaussian kernel allows one to use a
convolutional description such as

w[m] = Y IIn)K[m—n] = I« K[m| (15)

with K being a discrete representation of the kernel. This leads [4] to the
following result for the potential

_ IxL[m]

Viml = K m)

(16)
where L = —K log K. Such 3D kernels were applied to brain MR images [15]
leading to the results displayed in Figures 4 and 5.
Noting that Eq. (15) is reminiscent of a convolutional layer in a deep network
[16], we hypothesize that it can be useful to incorporate intermediate layers with

nonlinear filters such as Eq. (16), as additional non-trained pooling filters in deep
networks.

4.5 Computational remarks

The clustering methodology which has been employed in the different examples
shown above is the simplest flavor of gradient descent (or ascent). It calculates the
relevant fields on the basis of the data points and continues with straightforward
dynamics that have been applied to replica of data points, seeking the extrema of
the fields. Various alternatives to this basic application exist. The most important
one is hierarchical clustering, which allows for conceptual simplicity and saves
computational complexity. Such methodologies were described and discussed in
[11] and in [4].

Computational complexity is an obvious issue when working with large data
sets. Thus, 3D MRI data may easily comprise 1 M points, whereas their

Figure 5.

Characteristic vesults of QC cortical clusters as mapped onto the surface of the brain and projected onto the x-y
plane. This figure displays a map of the lavgest clusters of shape, each described by a different color. These results
are due to Fisher [15].
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manipulation within a system like MATLAB may well be limited to handling only
40 K points at a time [15]. One way to overcome such issues is to consider
performing the analysis within extended voxels, for example, voxels containing
three pixels in each direction in a 3D image problem. Within each new voxel, one
may simply sum the intensity of points, leading to a new presentation of the data in
the form of Eq. 1 on the smaller extended voxel space. Clearly one has to make sure
that such an approximation does not harm interesting features of the data.

When analyzing other big data, no prior dimensional representation may be
required. For the sake of noise reduction and computational complexity, it is
advantageous to first apply relevant dimensional reduction, as provided, for exam-
ple, by singular value decomposition (SVD) and principal component analysis
(PCA). It is also important to make sure that the different axes are of similar scale,
as shown in the example of Figure 3. When the data is still large, one may apply the
trick of extended voxels described above. For very large data, one may also separate
the data into several components, as is customary in supervised learning, to make
sure that conclusions are not affected by the random choice of a subset of the data.

5. Conclusions

In the past (see, e.g., [3]), Parzen analysis has not considered the potential field
V, which plays an important part in the understanding of different features of the
data. In particular, V is sensitive to small changes in the Parzen probability by being
related to its second derivative. It is also the basis of quantum clustering whose
advantages have been demonstrated here as well as in many other investigations in
the literature. The discovery of the weight-shape decomposition of the Parzen
probability has led to a focus on shape and on the potential and allows for a
meaningful comparative discussion of the different features which may be
extracted from data.

Here we have defined a set of fields in data space which hopefully will turn out
to serve as useful tools in future data analyses. They seem to be adequately applica-
ble to image analysis, and we expect them to be particularly useful in biomedical
and technical image analyses in three dimensions. When analyzing other data,
where no visual display constraints exist, noise reduction and computational com-
plexity call for preprocessing by dimensional reduction. Further reduction of com-
putational complexity may be tried by employing extended voxels, which our
technique can easily accommodate.

In summary, this extended Parzen method replaces any set of discreet data by a
continuous set of fields in data space, with interrelations in scale space. It allows for
investigating data properties in terms of these fields and their extrema.
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