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Chapter

Oscillation Criteria of
Two-Dimensional Time-Scale
Systems
Ozkan Ozturk

Abstract

Oscillation and nonoscillation theories have recently gotten too much attention
and play a very important role in the theory of time-scale systems to have enough
information about the long-time behavior of nonlinear systems. Some applications
of such systems in discrete and continuous cases arise in control and stability
theories for the unmanned aerial and ground vehicles (UAVs and UGVs). We deal
with a two-dimensional nonlinear system to investigate the oscillatory behaviors of
solutions. This helps us understand the limiting behavior of such solutions and
contributes several theoretical results to the literature.

Keywords: oscillation, nonoscillation, two-dimensional systems, time scale,
nonlinear system, fixed point theorems

1. Introduction

This chapter analyses the oscillatory behavior of solutions of two-dimensional
(2D) nonlinear time-scale systems of first-order dynamic equations. We also inves-
tigate the existence and asymptotic properties of such solutions. The tools that we
use are the most well-known fixed point theorems to consider the sign of the
component functions of solutions of our system. A time scale, denoted by T, is an
arbitrary nonempty closed subset of the real numbers R, which is introduced by a
German mathematician, Stefan Hilger, in his PhD thesis in 1988 [1]. His primary
purpose was to unify continuous and discrete analysis and extend the results to one
comprehensive theory. For example, the results hold for differential equations
when T ¼ R, while the results hold for difference equations when T ¼ Z. There-
fore, there might happen to be two different proofs and maybe similar in most
cases. In other words, our essential desire is to combine continuous and discrete
cases in one comprehensive theory and remove the obscurity from both. For
more details in the theory of differential and difference equations, we refer the
books [2–4] to interested readers. As for the time-scale theory, we assume most of
the readers are not familiar with the time-scale calculus, and thus we give a concise
introduction to the theory of time scales from the books [5, 6] written by Bohner
and Peterson in 2001 and 2003, respectively.

Two-dimensional dynamical systems have recently gotten too much attention
because of their potential in applications in engineering, biology, and physics (see,
e.g., [7–11]). For example, Bartolini and Pvdvnowski [12] consider a nonlinear
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system and propose a new method for the asymptotic linearization by means of
continuous control law. Also Bartolini et al. [13, 14] consider an uncertain second-
order nonlinear system and propose a new approximate linearization and sliding
mode to control such systems. In addition to the nonoscillation for two-dimensional
systems of first-order equations, periodic and subharmonic solutions are also inves-
tigated in [15–17], and significant contributions have been made. Another type of
two-dimensional systems of dynamic equations is the Emden-Fowler type equation,
named after E. Fowler after he did the mathematical foundation of a second-order
differential equation in a series of four papers during 1914–1931 (see [18–21]). This
system has several fascinating applications such as in gas dynamics and fluid
mechanics, astrophysics, nuclear physics, relativistic mechanics, and chemically
reacting systems (see [9, 22–24]).

This chapter is organized as follows: In Section 2, we give the calculus of the
time-scale theory for those who are not familiar with the time scale (see [5]). In
Section 3, referred to [25, 26], we show the existence and asymptotic behaviors of
nonoscillatory solutions of a two-dimensional homogeneous dynamical system on
time scales by using improper integrals and some inequalities. We also give enough
examples for readers to see our results work nicely. Section 4, referred to [27],
provides us oscillation criteria for two-dimensional nonhomogeneous time-scale
systems by using famous inequalities and rules such as comparison theorem and
chain rules on time scales. Finally, we give a conclusion and provide some exercises
to the readers to have them comprehend the main results in the last two sections.

2. Preliminaries

The examples of the time scales are not restricted with the set of real numbers R
and the set of integers Z. There are several other time scales which are used in many
application areas such as qN0 ¼ 1; q; q2;⋯;

� �

, q. 1 (called q-difference equations
[28]), T ¼ hZ, h.0, T ¼ N2

0 ¼ n2 : n∈N0
� �

, etc. On the other hand, the set of
rational numbers Q, the set of irrational numbers R\Q, and the open interval a; bð Þ
are not time scales since they are not closed subsets of R. For the following defini-
tions and theorems in this section, we refer [5], (Chapter 1), and [29] to the readers.

Definition 2.1 Let T be a time scale. Then, the forward jump operator σ : T ! T

is defined by

σ tð Þ≔ inf s∈T : s. tf g for all t∈T

while the backward jump operator ρ : T ! T is given by

ρ tð Þ≔ sup s∈T : s, tf g for all t∈T:

Finally, the graininess function μ : T ! 0;∞½ Þ is defined by
μ tð Þ≔ σ tð Þ � t for all t∈T:

For a better explanation, the operator σ is the first next point, while the operator
ρ is the first back point on a time scale. And μ is the length between the next point
and the current point. So it is always nonnegative. Table 1 shows some examples of
the forward/backward jump operators and the graininess function for most known
time scales.

If t, supT and σ tð Þ ¼ t, then t is said to be right-dense, and if t. infT and
ρ tð Þ ¼ t, we say t is left-dense. Also, if t is right- and left-dense at the same time, then
t is said to be dense. In addition to left and right-dense points, it is said to be
right-scattered when σ tð Þ. t, and t is called left-scattered when ρ tð Þ, t. Also, if t is
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right-and left-scattered at the same time, then t is called isolated. Figure 1 shows the
classification of points on time scales, clarifying the operators σ, ρ and μ (see [5]).

Next, we introduce the definition of derivative on any time scale. Note that if
supT,∞, then Tκ ¼ T\ ρ supTð Þ; supTð �, and Tκ ¼ T if supT ¼ ∞. Suppose that
f : T ! R is a function. Then f σ : T ! R is defined by
f σ tð Þ ¼ f σ tð Þð Þ for all t∈T:

Definition 2.2 If there does exist a δ.0 such that

∣ g σ tð Þð Þ � g sð Þ � gΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε∣σ tð Þ � s∣ for all s∈ t� δ; tþ δð Þ∩T,

for any ε, then g is called delta differentiable on Tκ and gΔ is said to be delta
derivative of g. Sometimes, delta derivative is referred as Hilger derivative in the
literature (see [5]).

Theorem 2.3 Suppose that f , g : T ! R is a function with t∈Tκ. Then.

i. g is said to be continuous at t if g is differentiable at t.

ii. g is differentiable at t and

gΔ tð Þ ¼ g σ tð Þð Þ � g tð Þ
μ tð Þ ,

provided g is continuous at t and t is right-scattered.

iii. Let t be right-dense, then g is differentiable at t if and only if

gΔ tð Þ ¼ lim
s!t

g tð Þ � g sð Þ
t� s

is equal to a finite number.

T σ tð Þ ρ tð Þ μ tð Þ

R t t 0

hZ t þ h t � h h

N2
0

ffiffi

t
p

þ 1
� �2 1þ 2

ffiffi

t
p

qN0 tq t
q q� 1ð Þt

Table 1.
Examples of most known time scales.

Figure 1.
Classification of points.
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iv. If g tð Þg σ tð Þð Þ 6¼ 0, then  f
g is differentiable at t with

f

g

� �

Δ

tð Þ ¼ fΔ tð Þg tð Þ � f tð ÞgΔ tð Þ
g tð Þg σ tð Þð Þ :

If T ¼ R, then fΔ turns out to be the usual derivative f 0 on continuous case, while
fΔ is reduced to forward difference operator Δf , defined by Δf tð Þ ¼ f tþ 1ð Þ � f tð Þ
if T ¼ Z: The following example is a good example of time scale applications in
electrical engineering (see [5], Example 1.39–1.40).

Example 2.4 Consider a simple electric circuit, shown in Figure 2 with resistor
R, inductor L, capacitor C and the current I.

Suppose, we discharge the capacitor periodically every time unit and assume
that the discharging small δ.0 time units. Then we can model it as

P1�δ,δ ¼ ⋃
k∈N0

k; kþ 1� δ½ �

by using the time scale. Suppose that Q tð Þ is the total charge on the capacitor at
time t and I tð ) is the current with respect to time t. Then the total charge Q can be
defined by

QΔ tð Þ ¼
bQ tð Þ if t∈ ⋃

k∈N

k� δf g

I otherwise

8

<

:

and

IΔ tð Þ ¼
0 if t∈ ⋃

k∈N

k� δf g

� 1
LC

Q Tð Þ � R

L
I tð Þ otherwise,

8

>

>

<

>

>

:

where �1, bδ,0.
Finally, we introduce the integrals on time scales, but before that, we must give

the following definition to define delta integrable functions (see [5]).
Definition 2.5 g : T ! R is said to be right-dense continuous (rd-continuous) if its

left-sided limits exist at left-dense points in T and it is continuous at right-dense
points in T. We denote rd-continuous functions by Crd T;Rð Þ. The set of functions g
that are differentiable and whose derivative is rd-continuous is denoted by C1

rd T;Rð Þ.
Finally, we denote continuous functions by C throughout this chapter.

Figure 2.
Electric circuit.
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Theorem 2.6 ([5], Theorem 1.60) For σ : T ! T and f : T ! R, we have the
following:

i. The jump operator σ is rd-continuous.

ii. If f is continuous, then it is rd-continuous.

The Cauchy integral is defined by

Z b

a
f tð ÞΔt ¼ F bð Þ � F að Þ for all a, b∈T:

The following theorem presents the existence of antiderivatives.
Theorem 2.7 Every rd-continuous function has an antiderivative. Moreover, F

given by

F tð Þ ¼
Z t

t0

f sð ÞΔs for t∈T

is an antiderivative of f .
Similar to the continuous analysis, we have integral properties and some of them

are presented as follows ([5] or [29]):
Theorem 2.8 Suppose that h1 and h2 are rd-continuous functions, c, d, e∈T and

β∈R.

i. h1 is nondecreasing if hΔ1 ≥0.

ii. If h1 tð Þ≥0 for all c≤ t≤ d, then
R d
c h1 tð ÞΔt≥0:

iii.
R d
c βh1 tð Þð Þ þ βh2 tð Þð Þ½ � ¼ β

R d
c h1 tð ÞΔtþ β

R b
a h2 tð ÞΔt:

iv.
R e
c h1 tð ÞΔt ¼

R d
c h1 tð ÞΔtþ

R e
d h1 tð ÞΔt.

v.
R d
c h1 tð ÞhΔ2 tð ÞΔt ¼ h1h2ð Þ dð Þ � h1h2ð Þ cð Þ �

R d
c hΔ1 tð Þh2 σ tð Þð ÞΔt

vi.
R a
a f tð ÞΔt ¼ 0.

Table 2 shows how the derivative and integral are defined for some time scales
for a, b∈T.

T fΔ tð Þ R b
a f tð ÞΔt

R f 0 tð Þ R b
a f tð Þdt

Z Δf tð Þ ∑b�1
t¼a f tð Þ

qN0 Δqf tð Þ ∑t∈ a;b½ Þ
qℕ0

f tð Þμ tð Þ

Table 2.
Derivative and integrals for most common time scales.
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We finish the section by Schauder’s fixed point theorem, proved by Juliusz
Schauder in 1930, and Knaster fixed point theorem, proved by Knaster in 1928
(see [30], Theorem 2.A and [31], respectively).

Theorem 2.9 Schauder’s fixed point theorem. Suppose that S is a nonempty,
bounded, closed, and convex subset of a Banach space Y and that F : S ! S is a compact
operator. Then, we conclude that F has a fixed point such that y ¼ Fy.

Theorem 2.10 The Knaster fixed point theorem. Suppose that S; ≤ð Þ is a complete
lattice and that F : S ! S is order preserving, then F has a fixed point such that y ¼ Fy.
In fact, we say that the set of fixed points of F is a complete lattice.

Finally, we note that throughout this paper, we assume that T is unbounded
above and whenever we write t≥ t1, we mean t∈ t1;∞½ ÞT ≔ t1;∞½ Þ∩T.

3. Nonoscillation on a two-dimensional time-scale systems

This section focuses on the nonoscillatory solutions of a two-dimensional
dynamical system on time scales. To do this, we consider the system

xΔ tð Þ ¼ p tð Þf y tð Þð Þ

yΔ tð Þ ¼ r tð Þg x tð Þð Þ,

8

<

:

(1)

where p, r∈Crd t0;∞½ ÞT;Rþ� �

and f and g are nondecreasing functions such that
uf uð Þ.0 and ug uð Þ.0 for u 6¼ 0.

By a solution of (1), we mean a collection of functions, where
x, y∈C1

rd t0,∞½ ÞT; Rð Þ, T ≥ t0 and x; yð Þ satisfies system (1) for all large t≥T:
Note that system (1) is reduced to the system of differential equations when the

time scale is the set of real numbers R, i.e., fΔ ¼ f 0 (see [32]). And when T ¼ Z,
system (1) turns out to be a system of difference equations, i.e., fΔ ¼ Δf (see [33]).
Other versions of system (1), the case T ¼ Z, are investigated by Li et al. [34],
Cheng et al. [35], and Marini et al. [36]. More details about the continuous and
discrete versions of system (1) are given in the conclusion section.

Definition 3.1 A solution x; yð Þ of system (1) is said to be proper if

sup ∣x sð Þ∣, ∣y sð Þ∣, ∣z sð Þ∣ : s∈ t,∞½ ÞTf g.0

holds for t≥ t0.
Definition 3.2 A proper solution x; yð Þ of (1) is said to be nonoscillatory if the

component functions x and y are both nonoscillatory, i.e., either eventually positive
or eventually negative. Otherwise it is said to be oscillatory.

Suppose that N is the set of all nonoscillatory solutions of system (1). It can
easily be shown that any nonoscillatory solution x; yð Þ of system (1) belongs to one
of the following classes:

Nþ ≔ x; yð Þ∈N : xy.0 eventually
� �

N� ≔ x; yð Þ∈N : xy,0 eventually
� �

:

Let x; yð Þ be a solution of system (1). Then one can show that the component
functions x and y are themselves nonoscillatory (see, e.g., [37]). Throughout this
section, we assume that the first component function x of the nonoscillatory
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solution x; yð Þ is eventually positive. The results can be obtained similarly for the
case x,0 eventually.

We obtain the existence criteria for nonoscillatory solutions of system (1) in Nþ

and N� by using the fixed point theorems and the following improper integrals:

I1 ¼
R∞
t0

p tð Þf k1
R t
t0
r sð ÞΔs

	 


Δt, I2 ¼
R∞
t0

r tð Þg k2
R t
t0
p sð ÞΔs

	 


Δt,

I3 ¼
R∞
t0

p tð Þf k3 � k4
R∞
t r sð ÞΔs

� �

Δt, I4 ¼
R∞
t0

r tð Þg k5
R∞
t p sð ÞΔs

� �

Δt,

P t0; tð Þ ¼
R t
t0
p sð ÞΔs, R t0; tð Þ ¼

R t
t0
r sð ÞΔs,

where ki, i ¼ 1� 5 are some constants.

3.1 Existence of nonoscillatory solutions of (1) in Nþ

Suppose that x; yð Þ is a nonoscillatory solution of (1) such that x.0. Then
system (1) implies that xΔ.0 and yΔ.0 eventually. Therefore, as a result of this,
we have that x converges to a positive finite number or x ! ∞ and similarly y tends
to a positive finite number or y ! ∞. One can have very similar asymptotic behav-
iors when x,0. Hence, as a result of this information, the following subclasses of
Nþ are obtained:

Nþ
F,F ¼ x; yð Þ∈Nþ

: lim
t!∞

jx tð Þj ¼ c; lim
t!∞

jy tð Þj ¼ d
n o

,

Nþ
F,∞ ¼ x; yð Þ∈Nþ

: lim
t!∞

jx tð Þj ¼ c; lim
t!∞

jy tð Þj ¼ ∞
n o

,

Nþ
∞,F ¼ x; yð Þ∈Nþ

: lim
t!∞

jx tð Þj ¼ ∞; lim
t!∞

jy tð Þj ¼ d
n o

,

Nþ
∞,∞ ¼ x; yð Þ∈Nþ

: lim
t!∞

jx tð Þj ¼ ∞; lim
t!∞

jy tð Þj ¼ ∞
n o

:

To focus on Nþ, first consider the following four cases for t0 ∈T :

1. P t0;∞ð Þ ¼ ∞ and R t0;∞ð Þ ¼ ∞

2.P t0;∞ð Þ ¼ ∞ and R t0;∞ð Þ,∞

3.P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞

4.P t0;∞ð Þ,∞ and R t0;∞ð Þ ¼ ∞

Suppose P t0;∞ð Þ ¼ ∞ and R t0;∞ð Þ ¼ ∞ and that x; yð Þ is a nonoscillatory
solution in Nþ: Integrating the equations of system (1) from t0 to t separately
gives us

x tð Þ≥ x t0ð Þ þ f  y t0ð Þð Þ
Z t

t0

p sð ÞΔs

and
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y tð Þ≥ y t0ð Þ þ g x t0ð Þð Þ
Z t

t0

r sð ÞΔs, t≥ t0:

Thus, we get x tð Þ ! ∞ and y tð Þ ! ∞ as t ! ∞. In view of this information, the
following theorem is given without any proof.

Theorem 3.3 Let P t0;∞ð Þ ¼ ∞ and R t0;∞ð Þ ¼ ∞. Then any nonoscillatory solution
of system (1) belongs to Nþ

∞,∞.

Next, we consider the other three cases to obtain the nonoscillation criteria for
system (1).

3.1.1 The case P t0;∞ð Þ ¼ ∞ and R t0;∞ð Þ,∞

Suppose that x; yð Þ is a nonoscillatory solution of system (1) such that x.0 and
y.0 eventually. Then by the integration of the first equation of system (1) from t0
to t, we have that there exists k.0

x tð Þ≥ x t0ð Þ þ k

Z t

t0

p sð ÞΔs, t0 ∈T: (2)

Then by taking the limit of (2) as t ! ∞, we have that x diverges. Therefore, we
have the following lemma in the light of this information.

Lemma 3.4 Any nonoscillatory solution in Nþ belongs to Nþ
∞,F, or N

þ
∞,∞ for

0, c, d,∞.
It is not easy to give the sufficient conditions for the existence of nonoscillatory

solutions in Nþ
∞,∞. So, we only provide the existence of nonoscillatory solutions in

Nþ
∞,F.
Theorem 3.5 There exists a nonoscillatory solution in Nþ

∞,F if and only if I2,∞

for all k2.0.
Proof. Suppose that there exists a solution in Nþ

∞,F such that x tð Þ.0, y tð Þ.0 for
t≥ t0, x tð Þ ! ∞ and y tð Þ ! d as t ! ∞ for d.0. Since y is eventually increasing,
there exist k2.0 and t1 ≥ t0 such that f  y tð Þð Þ≥ k2 for t≥ t1. Integrating the first
equation from t1 to t, the monotonicity of f yields us

x tð Þ ¼ x t1ð Þ þ
Z t

t1

p sð Þf y sð Þð ÞΔs≥ k2

Z t

t1

p sð ÞΔs, t≥ t1: (3)

Integrating the second equation from t1 to t, the monotonicity of g and (3)
gives us

y tð Þ ¼ y t1ð Þ þ
Z t

t1

r sð Þg x sð Þð ÞΔs≥
Z t

t1

r sð Þg k2

Z s

t1

p uð ÞΔu
� �

Δs, t≥ t1: (4)

So as t ! ∞, we have that I2,∞ holds.
Conversely, suppose that I2,∞ for all k2.0. Then, there exists a large t1 ≥ t0

such that
Z ∞

t1

r tð Þg k2

Z t

t1

p sð ÞΔs
� �

Δt,
c

2
, (5)
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where k2 ¼ f cð Þ. Let Y be the set of all bounded and continuous real-valued
functions y tð Þ on t1;∞½ ÞT with the supremum norm supt≥ t1

∣y tð Þ∣. Then Y is a Banach
space (see [38]). Let us define a subset Ω of Y such that

Ω≔ y tð Þ∈Y :

c

2
≤ y tð Þ≤ c; t≥ t1

n o

:

One can prove that Ω is bounded, closed, and also convex subset of Y. Suppose
that T : Ω ! Y is an operator given by

Tyð Þ tð Þ ¼ c�
Z ∞

t
r sð Þg

Z s

t1

p uð Þf y uð Þð ÞΔu
� �

Δs: (6)

The very first thing we do is to show that T is mapping into itself, i.e., T : Ω ! Ω.

c

2
≤ c�

Z ∞

t
r sð Þg

Z s

t1

p uð Þf cð ÞΔu
� �

Δs≤ Tyð Þ tð Þ≤ c

by using (5) for y∈Ω. The second thing we show that T must be continuous on
Ω: Hence, for y∈Ω, suppose that yn is a sequence in Ω so that yn � y

�

�

�

�! 0: Then

∣ Tyn
� �

tð Þ � Tyð Þ tð Þ∣

≤
R∞
t r sð Þ g

R s
t1
p uð Þf yn uð Þ

� �

Δu
	 


� g
R s
t1
p uð Þf y uð Þð ÞΔu

	 
�

�

�

�

�

�Δs
:

Then by the Lebesgue dominated convergence theorem and by the continuity of
f and g, we have that Tyn � Ty

�

�

�

�! 0 as n ! ∞, i.e., T, is continuous. Finally, we
show that TΩ is relatively compact, i.e., equibounded and equicontinuous. Since

0, Tyð ÞΔ tð Þ ¼ r tð Þg
Z t

t1

p uð Þf y uð Þð ÞΔu
� �

≤ r tð Þg k2

Z t

t1

p uð ÞΔu
� �

,∞,

we have that Ty is relatively compact by the Arzelá-Ascoli and mean value
theorems. Therefore, Theorem 2.9 implies that there exists y∈Ω such that y ¼ Ty:
Then we have

yΔ tð Þ ¼ Tyð ÞΔ tð Þ ¼ r tð Þg
Z t

t1

p uð Þf y uð Þð ÞΔu
� �

t≥ t1: (7)

Setting x tð Þ ¼
R t
t1
p uð Þf y uð Þð ÞΔu gives us xΔ tð Þ ¼ p tð Þf y tð Þð Þ: Hence, we have that

x; yð Þ is a nonoscillatory solution of system (1) such that x tð Þ ! ∞ and y tð Þ ! c as
t ! ∞, i.e., Nþ

∞,F 6¼ ø.

3.1.2 The case P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞

In this subsection, we show that the existence of nonoscillatory solutions of (1) is
only possible in Nþ

F,F and Nþ
∞,∞ for P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞, i.e.,

Nþ
F,∞ ¼ Nþ

∞,F ¼ ø:
Lemma 3.6 Suppose P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞ and that x; yð Þ is a

nonoscillatory solution of system (1). Then x tð Þ tends to a finite nonzero number c if and
only if y tð Þ tends to a finite nonzero number d as t ! ∞.
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Proof. We prove the theorem by assuming x.0 without loss of generality.
Therefore by the definition of Nþ, y is also a positive component function of the
solution x; yð Þ. By taking the integral of the second equation of system (1) from t0
to t and by the monotonicity of g and x, we have that there exists a positive
constant k such that

y tð Þ≤ y t0ð Þ þ k

Z t

t0

r sð ÞΔs,

where k ¼ g cð Þ: Then we have that y is convergent because P t0;∞ð Þ,∞ as
t ! ∞. The sufficiency can be shown similarly.

Theorem 3.7 Nþ
F,F 6¼ ø if and only if I1,∞ for all k1.0.

Proof. The necessity part can be shown similar to Theorem 3.5. So for sufficiency,
suppose I1,∞ holds for all k1.0. Then choose t1 ≥ t0 such that

Z ∞

t1

p tð Þf k1

Z t

t1

r sð ÞΔs
� �

Δt,
c

2
, (8)

where k1 ¼ g cð Þ and t≥ t1: Let X be the Banach space of all bounded real-valued
and continuous functions on t0;∞½ ÞT with usual pointwise ordering ≤ and the
norm supt≥ t1

∣x tð Þ∣. Let Y be a subset of X such that

Y≔ x∈X :

c

2
≤ x tð Þ≤ c t≥ t1

n o

and F : Ω ! X be an operator such that

Fxð Þ tð Þ ¼ c

2
þ
Z t

t1

p sð Þf
Z s

t1

r uð Þg x uð Þð ÞΔu
� �

Δt, t≥ t1:

One can easily have that inf  B∈Y and sup B∈Y for any subset B of Y, which
implies that Y; ≤ð Þ is a complete lattice. First, let us show that F : Y ! Y is an
increasing mapping.

c

2
≤ Fxð Þ tð Þ≤ c

2
þ
Z t

t1

p sð Þf g cð Þ
Z s

t1

r uð ÞΔu
� �

Δt≤ c, t≥ t1,

that is F : Y ! Y: Note also that for x1 ≤ x2, x1, x2 ∈Y, we have Fx1 ≤ Fx2, i.e.,
F, which is an increasing mapping. Then by Theorem 2.10, there exists a function
x∈Y such that x ¼ Fx: By taking the derivative of Fx, we have

Fxð ÞΔ tð Þ ¼ p tð Þf
Z t

t1

r uð Þg x uð Þð ÞΔu
� �

, t≥ t1:

By letting

y tð Þ ¼
Z t

t1

r uð Þg x uð Þð ÞΔu,

we have yΔ tð Þ ¼ r tð Þg x tð Þð Þ, and x; yð Þ is a nonoscillatory solution of system (1)
such that x and y have finite limits as t ! ∞. This completes the assertion.
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Remark 3.8 Suppose that P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞. Then, as a result of
this, we have I1,∞. So Theorem 3.7 also holds for P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞.

Exercise 3.9 Prove Remark 3.8.

3.1.3 The case P t0;∞ð Þ,∞ and R t0;∞ð Þ ¼ ∞

We present the nonoscillation criteria in Nþ under the case P t0;∞ð Þ,∞ and
R t0;∞ð Þ ¼ ∞ in this subsection. Therefore, we have the following lemma.

Lemma 3.10 Suppose that R t0;∞ð Þ ¼ ∞. Then any nonoscillatory solution in Nþ

belongs to Nþ
F,∞ or Nþ

∞,∞, i.e., N
þ
F,F ¼ Nþ

∞,F ¼ ø.
Exercise 3.11 Prove Lemma 3.10.
The following theorem shows us the nonexistence of nonoscillatory solutions in

Nþ
F,∞: We skip the proof of the following theorem, since it is very similar to the

proof of Theorem 3.5.
Theorem 3.12 Nþ

F,∞ 6¼ ø if and only if I1,∞ for all k1.0.

3.1.4 Examples

Examples are great ways to see that theoretical claims actually work. Therefore,
we provide two examples about the existence of nonoscillatory solutions of system
(1). But before the examples, we need the following proposition because our exam-
ples consist of scattered points.

Proposition 1 ([5], Theorem 1.79) Let a, b∈T and h∈Crd: If a; b½ � consists of only
isolated points, then

Z b

a
h tð ÞΔt ¼ ∑

t∈ a;b½ ÞT
μ tð Þh tð Þ:

Example 3.13 Let T ¼ 2N0 . Consider

Δqx tð Þ ¼ t

2t� 1

	 


1
61

y tð Þð Þ 1
61

Δqy tð Þ ¼ 1

2t
13
5
x tð Þð Þ35,

8

>

>

>

<

>

>

>

:

(9)

where Δq is known as a q-derivative and defined as Δqh tð Þ ¼ h σ tð Þð Þ�h tð Þ
μ tð Þ , where

μ tð Þ ¼ t, σ tð Þ ¼ 2t, and t ¼ 2n, (see [5]). In this example, it is shown that we have a
nonoscillatory solution in Nþ

∞,F to highlight Theorem 3.5. Therefore, we need that
P t0;∞ð Þ is divergent and R t0;∞ð Þ is convergent. Indeed, by Proposition 1, we have

P 1;Tð Þ ¼
Z T

1
p tð ÞΔt ¼ ∑

t∈ 1;T½ Þ
2N0

t

2t� 1

	 


1
61 � t:

Hence, we have P 1;∞ð Þ ¼ ∞ as T tends to infinity. Note that we use the limit
divergence test to show the divergence of P 1;∞ð Þ. Next, we continue with the convergence
of R 1;∞ð Þ. To do that, we note

R 1;Tð Þ ¼
Z T

1
r tð ÞΔt ¼ ∑

t∈ 1;T½ Þ
2N0

1

2t
13
5
� t:
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As T ! ∞, we have

∑
∞

n¼0

1
2 � 2n
� �8

5

,∞

by the geometric series, i.e., R 1;∞ð Þ,∞. Finally, we have to show I2,∞. Let
k2 ¼ 1: Then we get

Z T

1
r tð Þg k2

Z t

1
p sð ÞΔs

� �

Δt ¼
Z T

1

1

2t
13
5

∑
s∈ 1;t½ Þ

2N0

s

2s� 1

	 
 1
61 � s

 !3
5

Δt

≤
R T
1

1

2t
13
5

∑
s∈ 1;t½ Þ

2N0

s
62
61

 !3
5

Δt≤

Z T

1

1

2t
13
5
� t 62

105Δt ¼ ∑
t∈ 1;T½ Þ

2N0

1

t
208
105
:

So as t ! ∞, we have

∑
∞

n¼0

1
2n

� �208
105

,∞

by the ratio test. Therefore, I2,∞ by the comparison test. One can also show
that t; 2� 1

t

� �

is a solution of system (9) such that x tð Þ ! ∞ and y tð Þ ! 2 as t ! ∞,
i.e., Nþ

∞,F 6¼ ø by Theorem 3.5

Example 3.14 Let T ¼ n
2 : n∈N0
� �

, f zð Þ ¼ z
1
3, g zð Þ ¼ z

1
5, p tð Þ ¼

ffiffi

2
p ffiffi

2
p

�1ð Þ
2
2t
3 3�2t�1ð Þ

1
3
,

r tð Þ ¼
ffiffi

2
p ffiffi

2
p

�1ð Þ
2
4t
5 2�2t�1ð Þ

1
5
, and t ¼ n

2 in system (1). We show that there exists a nonoscillatory

solution in Nþ
F,F. So by Theorem 3.7, we need to show P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞

and I1,∞. Proposition 1 gives us

Z T

0
p tð ÞΔt ¼ ∑

t∈ 0;T½ ÞT

ffiffiffi

2
p ffiffiffi

2
p

� 1
� �

2
2t
3 3 � 2t � 1ð Þ

1
3
� 1
2
≤ ∑

t∈ 0;T½ ÞT

1

2
2t
3
:

So as T ! ∞, we have

∑
∞

n¼0

1
2
n
3
,∞

by the geometric series, i.e., P t0;∞ð Þ,∞. Also

Z T

0
r tð ÞΔt ¼ ∑

t∈ 0;T½ ÞT

ffiffiffi

2
p ffiffiffi

2
p

� 1
� �

2
4t
5 2 � 2t � 1ð Þ

1
5
� 1
2
≤ ∑

t∈ 0;T½ ÞT

1

2
4t
5
:

Hence, we have

∑
∞

n¼0

1

2
2n
5
,∞

as T ! ∞. Note also that I1,∞ if P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞ (see Remark

(8)). It can be confirmed that 2� 1
2t ; 3� 1

2t
� �

is a nonoscillatory solution of

12
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xΔ tð Þ ¼
ffiffiffi

2
p ffiffiffi

2
p

� 1
� �

2
2t
3 3 � 2t � 1ð Þ

1
3
y tð Þð Þ13

yΔ tð Þ ¼
ffiffiffi

2
p ffiffiffi

2
p

� 1
� �

2
4t
5 2 � 2t � 1ð Þ

1
5
x tð Þð Þ15

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

such that x tð Þ ! 2 and y tð Þ ! 3 as t ! ∞, i.e., Nþ
F,F 6¼ ø by Theorem 3.7.

3.2 Existence of nonoscillatory solutions of (1) in N�

Suppose that x; yð Þ is a nonoscillatory solution of system (1) such that x.0
eventually. Then by the first and second equations of system (1) and the similar
discussion as in Section 3.1, we obtain the following subclasses of N�.

N�
F,F ¼ x; yð Þ∈N�

: lim
t!∞

x tð Þ ¼ c; lim
t!∞

y tð Þ ¼ �d
n o

,

N�
F,0 ¼ x; yð Þ∈N�

: lim
t!∞

x tð Þ ¼ c; lim
t!∞

y tð Þ ¼ 0
n o

,

N�
0,F ¼ x; yð Þ∈N�

: lim
t!∞

x tð Þ ¼ 0; lim
t!∞

y tð Þ ¼ �d
n o

,

N�
0,0 ¼ x; yð Þ∈N�

: lim
t!0

x tð Þ ¼ 0; lim
t!0

y tð Þ ¼ 0

 �

:

This section presents us the existence and nonexistence of nonoscillatory solu-
tions of system (1) under the monotonicity condition on f and g.

Theorem 3.15 Let R t0;∞ð Þ,∞. Then there exists a nonoscillatory solution in
N�

F,F 6¼ ø if and only if I3,∞ for all k3,0 and k4.0.
Proof. Suppose N�

F,F 6¼ ø. Then there exists a solution x; yð Þ∈N�
F,F such that

x.0, y,0, x tð Þ ! c1, and y tð Þ ! �d1 as t ! ∞ for 0, c1,∞ and 0, d1,∞. By
integrating the second equation of system (1) from t to ∞, we obtain

y tð Þ ¼ y ∞ð Þ �
Z ∞

t
r sð Þg x sð Þð ÞΔs

≤ � d1 � k4

Z ∞

t
r sð ÞΔs, where k4 ¼ g c1ð Þ:

(10)

Integrating the first equation from t1 to t, using (10) and the fact that x is
bounded yield us

c1 ≤ x tð Þ ¼ x t1ð Þ þ
R t
t1
p sð Þf y sð Þð ÞΔs

≤ x t1ð Þ þ
R t
t1
p sð Þf �d1 � k4

R∞
s r uð ÞΔu

� �

Δs≤ x t1ð Þ, t≥ t1:

Therefore, it implies I3,∞ as t ! ∞, where �d1 ¼ k3.
Conversely, suppose that I3,∞: Then there exist t1 ≥ t0 and k3,0, k4.0 such

that

Z ∞

t0

p tð Þf k3 � k4

Z ∞

t
r sð ÞΔs

� �

Δt.
�1
2

(11)
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where k4 ¼ g 3
2

� �

. Let CB be the set of all continuous and bounded real-valued
functions x tð Þ on t1;∞½ ÞT with the supremum norm supt≥ t1

∣x tð Þ∣. Observe that CB is
a Banach space (see [38]). Suppose that B is a subset of CB such that

B≔ x tð Þ∈CB : 1≤ x tð Þ≤ 3
2
; t≥ t1


 �

:

We have that B meets the assumptions of Theorem 2.9. Suppose also that
F : B ! B is an operator such that

Fxð Þ tð Þ ¼ 1�
Z ∞

t
a sð Þf k3 �

Z ∞

s
b uð Þg x uð Þð ÞΔu

� �

Δs (12)

First, we need to show F is a mapping into itself, i.e., F : B ! B. Indeed,

1≤ Fxð Þ tð Þ≤ 1�
Z ∞

t
a sð Þf k3 � g

3
2

� �
Z s

t1

b uð ÞΔu
� �

Δs≤
3
2

because x∈B and (5) hold. Next, let us verify that F is continuous on B: In order
to do that, let xn be a sequence in B such that xn ! x, where x∈B ¼ B: Then

∣ Fxnð Þ tð Þ � Fxð Þ tð Þ∣

≤

Z ∞

t

p sð Þ  f k3 �
Z ∞

s

r uð Þg xn uð Þð ÞΔu
� �

� f k3 �
Z ∞

s

r uð Þg x uð Þð ÞΔu
� ��

�

�

�

�

�

�

�

Δs:

Therefore, the continuity of f and g and the Lebesgue dominated convergence
theorem gives us Fxn ! Fx as n ! ∞, which implies F is continuous on B. Finally,
we prove that FY is equibounded and equicontinuous, i.e., relatively compact.
Because

0, � Fxð ÞΔ tð Þ ¼ �p tð Þf k3 �
Z ∞

t
r uð Þg x uð Þð ÞΔu

� �

≤ � p tð Þf k3 � k4

Z t

t1

r uð ÞΔu
� �

,∞,

we have that Fx is relatively compact. Hence, Theorem 2.9 implies that there
exists x∈B such that x ¼ Fx: Thus, we have x.0 eventually and x tð Þ ! 1 as
t ! ∞. Also

xΔ tð Þ ¼ Fxð ÞΔ tð Þ ¼ p tð Þf k3 �
Z ∞

t
r uð Þg x uð Þð ÞΔu

� �

t≥ t1:

Letting

y tð Þ ¼ k3 �
Z ∞

t
r uð Þg x uð Þð ÞΔu,0, t≥ t1 (13)

and taking the derivative of (13) give yΔ tð Þ ¼ b tð Þg x tð Þð Þ: So, we conclude that
x; yð Þ is a nonoscillatory solution of system (1). Finally, taking the limit of Eq. (13)
results in y tð Þ ! k3,0. Therefore, we get N�

F,F 6¼ ø.
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Theorem 3.16 Suppose P t0;∞ð Þ,∞. N�
0,F 6¼ ø if and only if I4,∞ for k5.0.

Exercise 3.17 Prove Theorem 3.16.
Theorem 3.18 Suppose P t0;∞ð Þ,∞: N�

0,0 6¼ ø if I3,∞ and I4 ¼ ∞ for all

k3 ¼ 0, k4,0 and k5.0, provided f is odd.
Proof. Suppose that I3,∞, and I4 ¼ ∞. Then there exists t1 ≥ t0 such that

Z ∞

t1

p sð Þf �k4

Z ∞

s
r uð ÞΔu

� �

Δs, 1

and

Z ∞

t1

r sð Þg k5

Z ∞

s
p uð ÞΔu

� �

Δs.
1
2

for t≥ t1, k4 ¼ �g 1ð Þ. Let X be the space that is claimed as in the proof of
Theorem 3.7. Let Y be a subset of X and given by

Y≔ x∈X : c1

Z ∞

t

a sð ÞΔs≤ x tð Þ≤ 1 t≥ t1


 �

,

where c1 ¼ f 1
2

� �

. Define an operator T : Y ! X such that

Txð Þ tð Þ ¼
Z ∞

t

p sð Þf
Z ∞

s

r uð Þg x uð Þð ÞΔu
� �

Δt, t≥ t1:

One can show that Y; ≤ð Þ is a complete lattice and T is an increasing mapping
such that T : Y ! Y. As a matter of fact,

Txð Þ tð Þ≤
Z ∞

t

p sð Þf g 1ð Þ
Z ∞

s

r uð ÞΔu
� �

Δt≤ 1, t≥ t1

and

Txð Þ tð Þ≥
Z ∞

t

p sð Þf
Z ∞

s

r uð Þg c1

Z ∞

u

p vð ÞΔv
� �

Δu

� �

Δs

≥  f
1
2

� �
Z ∞

t
p sð ÞΔs,

where c1 ¼ k5, i.e., T : Y ! Y: Then by Theorem 2.10, there exists a function
x∈Y such that x ¼ Tx: By taking the derivative of Tx and using the fact that f is
odd, we have

Txð ÞΔ tð Þ ¼ p tð Þf �
Z ∞

t
r uð Þg x uð Þð ÞΔu

� �

, t≥ t1:

Setting

y tð Þ ¼ �
Z ∞

t
r uð Þg x uð Þð ÞΔu
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yields yΔ tð Þ ¼ b tð Þg x tð Þð Þ, and x; yð Þ is a solution of system (1) in N�
0,0, i.e., x and

y both tend to zero.
Theorem 3.19 Suppose R t0;∞ð Þ,∞. N�

F,0 6¼ ø if and only if I3,∞, where k3 ¼ 0
and k4.0.

Exercise 3.20 Prove Theorem 3.19. Hint: Use Theorem 2.10 with the operator

Fxð Þ tð Þ ¼ 1
2
�
Z ∞

t
a sð Þf �

Z ∞

s
b uð Þg x uð Þð ÞΔu

� �

Δt, t≥ t1:

Examples make results clearer and give more information to readers. Therefore,
we give the following example to validate our claims. The beauty of our example is
that we do not only show the theorem holds but also find the explicit solutions,
which might be very hard for some nonlinear systems.

Example 3.21 Consider T ¼ N2
0 ¼ n2 : n∈N0

� �

with the system

xΔ tð Þ ¼ 1

t
1
3

ffiffi

t
p

þ 1
� �2

t2 þ 1ð Þ13
y tð Þð Þ13

yΔ tð Þ ¼
ffiffi

t
p

þ 1
� �4 � t2

t
9
5

ffiffi

t
p

þ 1
� �4

1þ 2
ffiffi

t
p� �

x tð Þð Þ15,

8

>

>

>

>

>

<

>

>

>

>

>

:

(14)

where fΔ tð Þ ¼ f σ tð Þð Þ�f tð Þ
μ tð Þ for σ tð Þ ¼

ffiffi

t
p

þ 1
� �2

and μ tð Þ ¼ 1þ 2
ffiffi

t
p

(see [5]). First, let

us show P t0;∞ð Þ,∞, where t0 ≥ 1.

Z T

1
p tð ÞΔt ¼ ∑

t∈ 1;T½ Þ
N0

2

1

t
1
3

ffiffi

t
p

þ 1
� �2

t2 þ 1ð Þ13
� 1þ 2

ffiffi

t
p� �

≤ ∑
t∈ 1;T½ Þ

N0
2

1þ 2
ffiffi

t
p

t2
:

Since t ¼ n2, as T ! ∞, we have

∑
∞

n¼1

1þ 2n
n4

,∞

by the geometric series. Therefore, P 1;∞ð Þ,∞ by the comparison test. Next,
we show I4,∞. Since P 1;∞ð Þ,∞, we have

R∞
t p sð ÞΔs, α for t≥ 1 and 0, α,∞.

Hence,

Z T

1
r tð Þg

Z ∞

t

p sð ÞΔs
� �

Δt≤ α

Z T

1
r tð ÞΔt

¼ α ∑
t∈ 1;T½ Þ

N0
2

ffiffi

t
p

þ 1
� �4 � t2

t
9
5

ffiffi

t
p

þ 1
� �4

1þ 2
ffiffi

t
p� �

� 1þ 2
ffiffi

t
p� �

≤ α ∑
t∈ 1;T½ Þ

N0
2

1

t
9
5
:

So as T tends to infinity, we get

∑
∞

n¼1

1

n
18
5
,∞,
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i.e., I2,∞. Also, note that 1
t ;�1� 1

t2

� �

is a solution of system (14) in N� such that x

tends to zero, while y tends to �1, i.e., N�
0,F 6¼ ø.

4. Oscillation of a two-dimensional time-scale systems

Motivated by [39], this section deals with the system

xΔ tð Þ ¼ a tð Þf y tð Þð Þ

yΔ tð Þ ¼ �b tð Þg x tð Þð Þ þ c tð Þ,

(

(15)

where a, b∈Crd t0;∞½ ÞT;Rþ� �

, c∈Crd t0;∞½ ÞT;R
� �

and functions f g have the
same characteristics as in system (1) and g is continuously differentiable. Note that
we can rewrite system (15) as a non-homogenous dynamic equations on time scales
and putting σ on x inside the function g. Therefore, we have the following dynamic
equation

a tð ÞxΔ tð Þ
� �Δ þ b tð Þg xσ tð Þð Þ ¼ c tð Þ (16)

and systems of dynamical equations

xΔ tð Þ ¼ a tð Þf y tð Þð Þ

yΔ tð Þ ¼ �b tð Þg xσ tð Þð Þ þ c tð Þ:

(

(17)

Oscillation criteria for Eq. (16), system (17), and other similar versions of (15)
and (17) are investigated in [39–42]. A solution x; yð Þ of system (15) is called
oscillatory if x and y have arbitrarily large zeros. System (15) is called oscillatory if
all solutions are oscillatory.

Before giving the main results, we present some propositions so that we can use
them in our theoretical claims (see [43], Theorem 4.2 (comparison theorem) and
[5], Theorem 1.90).

Proposition 2 Let z1 be a function from T to R and v be a nondecreasing function
from R to R such that v ∘ z1 is rd-continuous. Suppose also that p≥0 is rd-continuous and
α∈R: Then

z1 tð Þ≤ αþ
Z t

t0

p τð Þv z1 τð Þð ÞΔτ, t≥ t0

implies z1 tð Þ≤ z2 tð Þ, where z2 solves the initial value problem

zΔ2 tð Þ ¼ p tð Þv z2 tð Þð Þ, z2 t0ð Þ ¼ z20. α:

Proposition 3 (chain rule). ([5], Theorem 1.90) Let h1 : R ! R be continuously
differentiable and suppose h2 : T ! R is delta differentiable. Then h1 ∘ h2 : T ! R is
delta differentiable, and the formula

h1 ∘ h2ð ÞΔ tð Þ ¼
Z 1

0
h10 h2 tð Þ þ hμ tð ÞhΔ2 tð Þ
� �

dh


 �

hΔ2 tð Þ

holds.
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For simplicity, set

A t; sð Þ ¼
Z s

t
a uð ÞΔu, B t; sð Þ ¼

Z s

t
b uð ÞΔu,

C t; sð Þ ¼
Z s

t

∣c uð Þ∣Δu, D t; sð Þ ¼
Z s

t

b uð Þ � c uð Þ
g x uð Þð Þ

� �

Δu,

Y t; sð Þ ¼
Z s

t

yσ uð ÞxΔ uð Þ
R 1
0 g0 x uð Þ þ hμ uð ÞxΔ uð Þð Þdh½ �
g x uð Þð Þg xσ uð Þð Þ Δu:

Next, note that if x; yð Þ is a nonoscillatory solution of system (15), then one can
easily prove that x is also nonoscillatory. This result was shown by Anderson in [37]
when c tð Þ � 0: Because the proof when c tð Þ =� 0 is very similar to the proof of the
case c tð Þ � 0, we leave it to the readers.

Lemma 4.1 Suppose that x; yð Þ is a nonoscillatory solution of system (15) and
t1, t2 ∈T. If there exists a constant K.0 such that

H tð Þ≥K, t≥ t2, (18)

where H is defined as

H tð Þ ¼ � y t1ð Þ
g x t1ð Þð Þ þD t1; tð Þ þ Y t1; t2ð Þ, (19)

then y tð Þ≤ � Kg x t2ð Þð Þ, t≥ t2.
Proof. Suppose that x; yð Þ is a nonoscillatory solution of system (15). Then, we

have that x is also nonoscillatory. Without loss of generality, assume that x tð Þ.0
for t≥ t1 ≥ t0, where t1, t0 ∈T. Integrating the second equation of system (15) from t1
to t and Theorem 2.8 (v.) gives us

Z t

t1

b sð ÞΔs ¼ y t1ð Þ
g x t1ð Þð Þ �

y tð Þ
g x tð Þð Þ þ

Z t

t1

1
g x sð Þð Þ

� �

Δ

yσ sð ÞΔsþ
Z t

t1

c sð Þ
g x sð Þð ÞΔs: (20)

By applying Theorem 2.3 (iv) and Proposition 3 to Eq. (20), we have

Z t

t1

b sð ÞΔs ¼ y t1ð Þ
g x t1ð Þð Þ �

y tð Þ
g x tð Þð Þ þ

Z t

t1

c sð Þ
g x sð Þð ÞΔs� Y t1; tð Þ, t≥ t1: (21)

Rewriting Eq. (21) gives us

� y tð Þ
g x tð Þð Þ ¼ D t1; tð Þ � y t1ð Þ

g x t1ð Þð Þ þ Y t1; tð Þ, t≥ t1: (22)

Now by using (18) and (19), we get

� y tð Þ
g x tð Þð Þ ≥K þ Y t2; tð Þ, t≥ t2 ≥ t1: (23)

Note that y tð Þ,0 and xΔ tð Þ,0 for t≥ t2 since y tð ÞxΔ tð Þ ¼ a sð Þy sð Þf y sð Þð Þ.0:

Otherwise, we would have �y tð Þ
g x tð Þð Þ .0, which is a contradiction. Let

�v tð Þ
g x tð Þð Þ ¼ K þ Y t2; tð Þ, t≥ t2: (24)
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So one can obtain

�v tð Þ
g x tð Þð Þ

� �

Δ

¼ yσ tð ÞxΔ tð Þ
R 1
0 g0 x tð Þ þ hμ tð ÞxΔ tð Þð Þdh½ �
g x tð Þð Þg xσ tð Þð Þ .0, t≥ t2: (25)

Because x tð Þ is a positive and v tð Þ is a negative function for t≥ t2, we have
�y tð Þ
g x tð Þð Þ ≥

�v tð Þ
g x tð Þð Þ , i.e., y tð Þ≤ v tð Þ,0 for t≥ t2: Therefore, we have by (25) that

�v tð Þ
g x tð Þð Þ

� �

Δ

≥
vσ tð ÞxΔ tð Þ

R 1
0 g0 x tð Þ þ hμ tð ÞxΔ tð Þð Þdh½ �
g x tð Þð Þg xσ tð Þð Þ .0, t≥ t2

since v tð Þ,0 and xΔ tð Þ,0 for t≥ t2: By setting

w tð Þ
g x tð Þð Þ ¼ K �

Z t

t2

wσ sð ÞxΔ sð Þ
R 1
0 g0 x sð Þ þ hμ sð ÞxΔ sð Þð Þdh½ �
g x sð Þð Þg xσ sð Þð Þ Δs (26)

and using (24), we have �v t2ð Þ
g x t2ð Þð Þ ¼ K ¼ w t2ð Þ

g x t2ð Þð Þ : Then, setting

z1 ¼ v tð Þ
g x tð Þð Þ , z2 ¼

�w tð Þ
g x tð Þð Þ , h uð Þ ¼ uσ tð Þ

g x tð Þð Þ in Proposition 2, it follows v tð Þ≤ �w tð Þ, which

implies y tð Þ≤ � w tð Þ, t≥ t2: Note also by Theorem 2.3 (iv) and Proposition 3 that

 
w tð Þ

g x tð Þð Þ

� �

Δ

¼ wΔ tð Þ
g xσ tð Þð Þ �

wσ tð ÞxΔ tð Þ
R 1
0 g

0 x tð Þ þ hμ tð ÞxΔ tð Þð Þdh
g x tð Þð Þg xσ tð Þð Þ , t≥ t2: (27)

Taking the derivative of (26) and comparing the resulting equation with (27)
yield us

wΔ tð Þ
g xσ tð Þð Þ ¼ 0, i:e:, wΔ tð Þ ¼ 0, t≥ t2:

Therefore, we have

w t2ð Þ ¼ K � g x t2ð Þð Þ ¼ w tð Þ, i:e:, y tð Þ≤ � w tð Þ ¼ �K � g x t2ð Þð Þ:

So the proof is completed.

4.1 Results for oscillation

After giving the preliminaries in the previous section, it is presented the condi-
tions for oscillatory solutions in this section.

Theorem 4.2 Let A t0;∞ð Þ ¼ ∞, B t0;∞ð Þ,∞, and C t0;∞ð Þ,∞: Assume

f uð Þf vð Þ≤ f uvð Þ≤ � f uð Þf �vð Þ (28)

and

Z ∞

t0

xΔ sð Þ
f g x sð Þð Þð ÞΔs,∞: (29)

Then system (15) is oscillatory if
Z ∞

t0

a tð Þf B t;∞ð Þ � k � C t;∞ð Þð ÞΔt ¼ ∞ (30)
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for k 6¼ 0.
Proof. Suppose that system (15) has a nonoscillatory solution x; yð Þ such that

x.0 eventually. Then there exist t1 ≥ t0 and a constant k6 such that g x tð Þð Þ≥ k6 for
t≥ t1 by the monotonicity of g. Then by Eq. (22), we have

y tð Þ
g x tð Þð Þ ¼

y t1ð Þ
g x t1ð Þð Þ �D t1; tð Þ � Y t1; tð Þ, t≥ t1: (31)

Note that Y t1; tð Þ,∞. Otherwise, we have a contradiction to the fact that
x tð Þ.0 for t≥ t1 since A t0;∞ð Þ ¼ ∞. Equality (31) can be rewritten as

y tð Þ
g x tð Þð Þ ¼ γ þD t;∞ð Þ þ Y t;∞ð Þ, (32)

where γ ¼ y t1ð Þ
g x t1ð Þð Þ �D t1;∞ð Þ � Y t1;∞ð Þ, t≥ t1: It can be shown that γ ≥0. Oth-

erwise, we can choose a large t2 such that B t;∞ð Þ≤ � γ, Y t2;∞ð Þ≤ �γ

4 , and
R∞
t

c sð Þ
g x sð Þð ÞΔs

�

�

�

�

�

�≤ �γ

4 for t≥ t2. Then H tð Þ≥ �γ

4 .0 for t≥ t2. Then by setting K ¼ �γ

4 in

Lemma 4.1 found, we have y tð Þ≤ � Kg x t2ð Þð Þ for t≥ t2. Integrating the first
equation of system (15) from t2 to ∞ and the monotonicity of f yields us

x tð Þ≤ x t2ð Þ þ f �Kg x t2ð Þð Þð Þ
Z t

t2

a sð ÞΔs, t≥ t2:

So as t ! ∞, we have a contradiction to x.0 eventually. Therefore γ ≥0. Then
by Eq. (32), we have

y tð Þ≥ g x tð Þð Þ
Z ∞

t

b sð ÞΔs� 1
k6

Z ∞

t

jc sð ÞjΔs
� �

, t≥ t2:

By the first equation of system (15), the monotonicity of f and Eq. (28), we have

xΔ tð Þ≥ a tð Þf g x tð Þð Þð Þf
Z ∞

t

b sð ÞΔs� 1
k6

Z ∞

t

jc sð ÞjΔs
� �

, t≥ t2: (33)

Then by Eqs. (33) and (29), we have

Z t

t2

a sð Þf
Z ∞

s
b uð ÞΔu� k

Z ∞

s
jc uð ÞjΔu

� �

≤

Z t

t2

xΔ sð Þ
f g x sð Þð Þð ÞΔs,∞

where k ¼ 1
k6
: But as t ! ∞, this contradicts to Eq. (30). The proof is completed.

Theorem 4.3 System (15) is oscillatory if A t0;∞ð Þ ¼ B t0;∞ð Þ ¼ ∞ and
C t0;∞ð Þ,∞.

Proof. We use the method of contradiction to prove the theorem. Thus, assume
there is a nonoscillatory solution x; yð Þ of system (15) such that the component
function x is eventually positive. Because g is nondecreasing, we have that there
exist t1 ≥ t0 and k7.0 such that g x tð Þð Þ≥ k7 for t≥ t1. Then since C t0;∞ð Þ,∞, we
have that there exists 0, k8,∞ such that

Z t

t1

c sð Þ
g x sð Þð ÞΔs

�

�

�

�

�

�

�

�

≤
1
k7

Z t

t1

∣c sð Þ∣Δs, k8, t≥ t1: (34)
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The first equation of system (15), and the monotonicity of g give us that there
exist K.0 and t2 ≥ t1 so large that

xΔ tð Þ≤ a tð Þf �Kg x t2ð Þð Þð Þ, t≥ t2: (35)

Integrating (35) from t2 to t yields

x tð Þ≤ x t2ð Þ þ k9

Z t

t2

a sð ÞΔs, where k9 ¼ f �Kg x t2ð Þð Þð Þ,0, t≥ t2:

As t ! ∞, we have a contradiction to x tð Þ.0 for t≥ t2: This proves the asser-
tion.

Finally, an example is provided to highlight Theorem 4.3 by finding the explicit
solution of the dynamical system.

Example 4.4 Consider the time scale T ¼ 5Zþ with a tð Þ ¼ tþ4ð Þ
1
3 2tþ7ð Þ

5 tþ1ð Þ
2
3 tþ6ð Þ

,

b tð Þ ¼ t5þt4þt3þt2þtþ1
5 tþ1ð Þ tþ4ð Þ tþ6ð Þ tþ9ð Þ, f zð Þ ¼ z

1
3, g zð Þ ¼ z3 , c tð Þ ¼ �1ð Þ3t �3t5�27t4�125t3�237t2�195t�59ð Þ

5 tþ1ð Þ4 tþ4ð Þ tþ6ð Þ tþ9ð Þ ,

and t ¼ 5n, where n∈N in system (15). We show that A t0;∞ð Þ ¼ ∞, B t0;∞ð Þ ¼ ∞,
and C t0;∞ð Þ,∞. Indeed,

A 5;Tð Þ ¼
Z T

5

tþ 4ð Þ13 2tþ 7ð Þ
5 tþ 1ð Þ23 tþ 6ð Þ

Δt ¼ ∑
t∈ 5;T½ Þ5Zþ

tþ 4ð Þ13 2tþ 7ð Þ
tþ 1ð Þ23 tþ 6ð Þ

:

So as T ! ∞, we have

∑
∞

n¼1

5nþ 4ð Þ13 10nþ 7ð Þ
5nþ 1ð Þ23 5nþ 6ð Þ

¼ ∞ by the limit comparison test: Therefore, A 5;∞ð Þ ¼ ∞:

Similarly,

B 5;Tð Þ ¼
Z T

5

t5 þ t4 þ t3 þ t2 þ tþ 1
5 tþ 1ð Þ tþ 4ð Þ tþ 6ð Þ tþ 9ð ÞΔt ¼ ∑

t∈ 5;T½ Þ5Zþ

t5 þ t4 þ t3 þ t2 þ tþ 1
tþ 1ð Þ tþ 4ð Þ tþ 6ð Þ tþ 9ð Þ

≥ ∑
t∈ 5;T½ Þ5Zþ

t5

tþ 1ð Þ tþ 4ð Þ tþ 6ð Þ tþ 9ð Þ :

Taking the limit as T ! ∞ gives us

B 5;∞ð Þ≥ 625 � ∑
∞

n¼1

n5

5nþ 1ð Þ 5nþ 4ð Þ 5nþ 6ð Þ 5nþ 9ð Þ ¼ ∞

by the limit divergence test. Therefore, B 5;∞ð Þ ¼ ∞ by the comparison test. Finally,
we show C t0;∞ð Þ,∞.

C 5;Tð Þ ¼ ∑
t∈ 5;T½ Þ5Zþ

3t5 þ 27t4 þ 125t3 þ 237t2 þ 195tþ 59

tþ 1ð Þ4 tþ 4ð Þ tþ 6ð Þ tþ 9ð Þ

≤ ∑
t∈ 5;T½ Þ5Zþ

3
t2
þ 27

t3
þ 125

t5
þ 195

t6
þ 59

t7
:

So as T ! ∞, we have

21

Oscillation Criteria of Two-Dimensional Time-Scale Systems
DOI: http://dx.doi.org/10.5772/intechopen.83375



C 5;∞ð Þ≤ ∑
∞

n¼1

3
n2

þ 27
n3

þ 125
n5

þ 195
n6

þ 59
n7
,∞

by the geometric series. One can also show that �1ð Þtþ1

tþ1 ; �1ð Þ3t
tþ1ð Þ tþ4ð Þ

	 


is an oscillatory

solution of system

xΔ tð Þ ¼ tþ 4ð Þ13 2tþ 7ð Þ
5 tþ 1ð Þ23 tþ 6ð Þ

y
1
3 tð Þ

yΔ tð Þ ¼ � t5 þ t4 þ t3 þ t2 þ tþ 1
5 tþ 1ð Þ tþ 4ð Þ tþ 6ð Þ tþ 9ð Þ x

3 tð Þ þ �1ð Þ3t �3t5 � 27t4 � 125t3 � 237t2 � 195t� 59ð Þ
5 tþ 1ð Þ4 tþ 4ð Þ tþ 6ð Þ tþ 9ð Þ

,

8

>

>

>

>

<

>

>

>

>

:

where we define hΔ tð Þ ¼ h σ tð Þð Þ�h tð Þ
μ tð Þ for σ tð Þ ¼ tþ 5 and μ tð Þ ¼ 5 (see [5]).

5. Conclusion

This chapter focuses on the oscillation/nonoscillation criteria of two-
dimensional dynamical systems on time scales. We do not only show the oscillatory
behaviors of such solutions but also guarantee the existence of such solutions,
which might be challenging most of the time for nonlinear systems. In the first and
second sections, we present some introductory parts to dynamical systems and
basic calculus of the time-scale theory for the readers to comprehend the idea
behind the time scales. In Section 3, we consider

xΔ tð Þ ¼ p tð Þf y tð Þð Þ
yΔ tð Þ ¼ r tð Þg x tð Þð Þ

(

and investigate the nonoscillatory behavior of solutions under some
certain circumstances. Recall that system (1) turns out to be a differential equation
system

x0 tð Þ ¼ p tð Þf y tð Þð Þ
y0 tð Þ ¼ r tð Þg x tð Þð Þ




when T ¼ R. And the asymptotic behaviors of nonoscillatory solutions were
presented by Li in [32]. Also when T ¼ Z, system (1) is reduced to the difference
equation system,

Δxn ¼ pnf yn
� �

Δyn ¼ rng xnð Þ,

(

and the existence of nonoscillatory solutions were investigated in [33]. There-
fore, we unify the results for oscillation and nonoscillation theory, which was
shown in R and Z and extends them in one comprehensive theory, which is called
time-scale theory. These results were inspired from the book chapter written by
Elvan Akın and Özkan Öztürk (see [29]). In that book chapter, it was considered a
second-order dynamical system

xΔ tð Þ ¼ p tð Þf y tð Þð Þ
yΔ tð Þ ¼ �r tð Þg x tð Þð Þ

(

(36)
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and delay system

xΔ tð Þ ¼ p tð Þf y tð Þð Þ

yΔ tð Þ ¼ �r tð Þgðx τ tð Þð Þð Þ,

(

(37)

where τ is rd-continuous function such that τ tð Þ≤ t and τ tð Þ ! ∞ as t ! ∞.
When the latter systems were considered, because of the negative sign of the second
equation of systems, the subclasses for Nþ an N� would be totally different. So in
[29], the existence of nonoscillatory solutions in different subclasses was shown.
Another crucial thing on the results is that it is assumed that f must be an odd
function for some main results. However, we do not have these strict conditions on
our results. Another interesting observation for system (37) is that we lose some
subclasses when we consider the delay in system (37). It is because of the setup
fixed point theorem and the delay function τ. Therefore, this is a big disadvantage
of delayed systems on time scales.

Akın and Öztürk also considered the system

xΔ tð Þ ¼ p tð Þ y tð Þj jα sgn y tð Þ

yΔ tð Þ ¼ �r tð Þ x σ tð Þð Þj jβ sgn xσ tð Þ,

(

(38)

where α, β.0. System (38) is known as Emden-Fowler dynamical systems on
time scales in the literature that has been mentioned in Section 1 with applications.
Akın et al. [44, 45] showed the asymptotic behavior of nonoscillatory solutions by
using α and β relations.

For example, system (38) turns out to be a system of first-order differential
equation

x0 tð Þ ¼ p tð Þ y tð Þj jα sgn y tð Þ

y0 tð Þ ¼ �r tð Þ x tð Þj jβ sgn x tð Þ,

(

when the time scale T ¼ R. On the other hand, system (38) ends up with the
system of difference equations

Δxn ¼ pn yn
�

�

�

�

α
sgn yn

Δyn ¼ �rn xnþ1j jβ sgn xnþ1,

8

<

:

when the time scale T ¼ Z. For both cases, several contributions have been made
by Zuzana et al. in [46] and [47], respectively.

Finally, we finish this section with the following tables, showing summaries
about the existence of nonoscillatory solutions of system (1) in Nþ and N�

(Tables 3 and 4).

Nþ
∞,F 6¼ ø P t0;∞ð Þ ¼ ∞ and R t0;∞ð Þ,∞ I2,∞

Nþ
F,F 6¼ ø P t0;∞ð Þ,∞ and R t0;∞ð Þ,∞ I1,∞

Nþ
F,∞ 6¼ ø P t0;∞ð Þ,∞ and R t0;∞ð Þ ¼ ∞ I1,∞

Table 3.
Existence for (1) in Nþ.
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A. Appendix

We give the following exercises to the interested readers that help them prac-
ticing the theoretical results. The examples are in q-calculus which takes too much
attention recently. Recall from Example 3.13 that Δq is defined as

Δqf tð Þ ¼ f tqð Þ � f tð Þ
q� 1ð Þt : (39)

With the help of Eq. (39), we provide the following exercises.
Exercise 6.1 Let T ¼ 2N0 : Consider the following system:

Δqx tð Þ ¼ 1

4t2 1þ tð Þ17
y tð Þð Þ17

Δqy tð Þ ¼ 2t
4t� 1

x tð Þ

8

>

>

<

>

>

:

(40)

and show that 2� 1
2t ; tþ 1

� �

is a nonoscillatory solution of Eq. (40) in Nþ
F,∞ 6¼ ø

by checking the conditions given in Theorem 3.12 for k1 ¼ 1.
Exercise 6.2 Let T ¼ qN0 , q. 1. Consider the following system:

Δxq tð Þ ¼ 1

qt
8
5 2t2 þ 1ð Þ15

y tð Þð Þ15

Δyq tð Þ ¼ qþ 1
q2t2 tþ 1ð Þ x tð Þ,

8

>

>

>

<

>

>

>

:

(41)

where Δhq tð Þ ¼ h σ tð Þð Þ�h tð Þ
μ tð Þ and show that there exists a nonoscillatory solution of

system (41), given by 1þ 1
t ;�2� 1

t2

� �

, in N�
F,F 6¼ ø by Theorem 3.15 for k3 ¼ �1 and

k4 ¼ 1.

N�
F,F 6¼ ø R t0;∞ð Þ,∞ I3,∞

N�
0,F 6¼ ø P t0;∞ð Þ,∞ I4,∞

N�
0,0 6¼ ø P t0;∞ð Þ,∞ I3,∞ and I4 ¼ ∞

N�
F,0 6¼ ø R t0;∞ð Þ,∞ I3,∞

Table 4.
Existence for (1) in N�.
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[47] Cecchi M, Dǒslá Z, Marini M. On
oscillation and nonoscillation properties
of Emden-Fowler difference equations.
Central European Journal of
Mathematics. 2009;7(2):322-334

28

Oscillators - Recent Developments


