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Chapter

Pharmacogenetics and Cancer 
Treatment: Progress and Prospects
Munindra Ruwali

Abstract

The response of cancer patients to chemotherapy follows a very heterogeneous 
pattern. Pharmacogenetics is the study of inherited differences in interindividual 
drug disposition and effects, with the goal of selecting the optimal drug therapy 
and dosage for each patient. Pharmacogenetics for cancer treatment is very signifi-
cant, as cancer therapies exhibit severe systemic toxicity and unpredictable efficacy. 
There is presence of genetic polymorphisms in the genes which code for the meta-
bolic enzymes and cellular targets for the majority of chemotherapy agents, but to 
predict the outcome of chemotherapy in patients is not currently possible for most 
treatments. A greater understanding of the genetic determinants of drug response 
can revolutionize the use of many medications. By identifying the patients at risk 
for severe toxicity, or those likely to benefit from a particular treatment, individual-
ized cancer therapy can be achieved for most cancer patients. The prediction of 
cancer treatment outcome based on gene polymorphisms is becoming possible for 
many classes of chemotherapy agents, and the most clinically significant examples 
of chemotherapy agents are discussed in the chapter. However, further studies are 
needed in well characterized and larger cancer populations with proper validation 
of pharmacogenetic markers in experimental settings before application in clinical 
routine diagnostics.

Keywords: cancer, pharmacogenetics, polymorphism, chemotherapy,  
genetic variations

1. Introduction

The treatment of cancer has witnessed major advances which have resulted from 
the recent revolution in medical interventions. It is commonly observed in clinical 
settings that the same doses of medication cause considerable variations in efficacy 
and toxicity across human populations [1, 2]. These variations can lead to unpre-
dictable life-threatening or even lethal adverse effects in cases receiving the medi-
cations [3, 4]. Genetic factors are important determinants for drug efficacy and 
toxicity since the interindividual variability in drug response cannot be explained 
only by physiological, life style, age, comedication, etc. factors (Figure 1). 
Pharmacogenetics is the study of how genetic inheritance influences response to 
drugs. The term “pharmacogenetics” was coined in the 1950s, with the discovery 
that there is an inherited basis for differences in the disposition and effects of 
drugs and xenobiotics [5]. The studies found that antimalarial drugs and certain 
foods (soy beans) cause hemolytic reactions in patients with glucose-6-phosphate 
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dehydrogenase (G6PD) deficiency. The term pharmacogenomics and pharmaco-
genetics are often used interchangeably. Pharmacogenetics was first used in the 
literature in 1997 and ever since the developments in this field have been greatly 
facilitated by rapid progress in molecular technology, in particular, high throughput 
DNA sequencing, microarrays and genotyping [6].

Figure 1. 
Inter-individual variations in drug response.

Gene Significant 

polymorphisms

Target drug Action Clinical relevance

TPMT TPMT*2, 

*3A,*3B,*3C

6-Mercaptopurine 

(6-MP)

Increased 

levels of 

6-MP

Myelotoxicity

DPD DPD*2A 5-FU Increased 

levels of 

5-FU

Neurologic, 

hematological 

toxicities

UGT1A1 UGT1A1*28 Irinotecan Increased 

levels of 

SN-38

Severe diarrhea, 

neutropenia

GST Deletion, Ile105Val Platinum agents Increased 

DNA 

damage

Drug toxicity 

increased

XRCC1 Arg194Trp, 

Arg280His, 

Arg399Gln

Platinum agents Increased 

DNA 

damage

Drug toxicity 

increased

ERCC1 K751Q Platinum agents Increased 

DNA 

damage

Drug toxicity 

increased

TPMT: thiopurine S-methyltransferase, DPD: dihydropyrimidine dehydrogenase, UGT1A1: UDP 
glucuronosyltransferase family 1 member A1, GST: glutathione S-transferase, XRCC1: X-ray repair cross 
complementing 1, ERCC1: excision repair 1, endonuclease non-catalytic subunit.

Table 1. 
Pharmacogenetic biomarkers and their clinical impact.
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Cancer pharmacogenetics has started getting a lot of attention due to the poten-
tial for individualisation of cancer therapy, minimizing toxicity, while maximizing 
efficacy. Cancer pharmacogenetics allows identification of patients at risk for severe 
toxicity, or those likely to benefit from a particular treatment and thus helps us move 
toward the ultimate goal of individualized cancer therapy. There are significant dif-
ferences between cancer and other disease pharmacogenomics. In cancer, both germ-
line genome of the patient and the somatic genome of the tumor are involved. The 
former is responsible for the inter-individual inherited genetic differences while the 
latter is due to accumulation of acquired somatic mutations resulting in inconsistent 
responses. Cancer pharmacogenomics also faces the problem of conducting human 
studies, availability of healthy volunteers for receiving cancer drugs and multigenic 
control of drug response. Table 1 lists some of the major biomarkers which are 
associated with cancer treatment toxicities while Table 2 lists some of the biomark-
ers associated with cancer treatments mentioned in US FDA-approved drug labels.

2. Candidate genes

The prediction of cancer treatment outcome based on gene polymorphisms is 
becoming a reality for many classes of chemotherapy agents, and the most clinically 
significant examples are discussed below.

2.1 Thiopurines

Thiopurines are a family of drugs that includes 6-mercaptopurine (6-MTP) 
which is a daily component of maintenance therapy for childhood acute 

Cancer Biomarkers Drugs

Breast HER2 Trastuzumab, lapatinib

ESR1 Exemestane, letrozole

Colorectal KRAS Cetuximab, panitumumab

EGFR Cetuximab, panitumumab

DPD 5-Fluorouracil, capecitabine

UGT1A1 Irinotecan

Lung ALK Crizotinib, ceritinib

EGFR Erlotinib, gefitinib

Gastrointestinal stromal tumor c-Kit Imatinib

Melanoma BRAF Vemurafenib, dabrafenib, trametinib

Pancreatic EGFR Erlotinib

Head and neck EGFR Cetuximab

Acute promyelocytic leukemia PML-RARα Arsenic trioxide, tretinoin

Cutaneous T-cell lymphoma CD-25/IL2RA Denileukin diftitox

HER2: human epidermal growth factor receptor 2, ESR1: estrogen receptor 1, KRAS: Ki-ras2 Kirsten rat sarcoma 
viral oncogene homolog, EGFR: epidermal growth factor receptor, DPD: dihydropyrimidine dehydrogenase, 
UGT1A1: UDP glucuronosyltransferase family 1 member A1, ALK: anaplastic lymphoma receptor tyrosine kinase, 
c-Kit: stem cell growth factor receptor, BRAF: B-Raf proto-oncogene, PML-RARα: promyelocytic leukemia/retinoic 
acid receptor alpha, CD-25/IL2RA: cluster of differentiation 25/interleukin 2 receptor subunit alpha.

Table 2. 
Cancer pharmacogenetic biomarkers in FDA drug labelling.
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lymphoblastic leukemia treatment [7], thioguanine and azathioprine. There are 
three major metabolic pathways for 6-MTP namely activation of 6-MTP into 
6-TGN (activating and cytotoxic route for thiopurines) by hypoxanthine gua-
nine phosphoribosyl transferase (HGPRT), inactivation of 6-MTP into thiouric 
acid via oxidation catalyzed by xanthine oxidase and inactivation of 6-MTP via 
S-methylation of the thiol moiety in the liver and red blood cells by thiopurine 
methyltransferase (TPMT). This methylation shunts the active drug away from 
TGN formation. Thiopurines are inactive prodrugs that require metabolism to 
thioguanine nucleotides (TGN) to exert cytotoxicity by incorporation of TGN into 
DNA. This activation is catalyzed by methylation by thiopurine methyltransferase 
(TPMT) of the thiopurine agents azathioprine, mercaptopurine, and thioguanine 
[7, 8], thereby shunting drug away from TGN formation. Genetic variants present 
in TPMT may alter the treatment response in cases receiving chemotherapeutic 
drugs. TPMT exhibits huge variations in enzyme activity with a major portion 
of population (90%) exhibiting high activity while about 10% have intermediate 
activity, and 0.3% have low or no detectable enzyme activity [9, 10]. Out of several 
genetic variants, TPMT*2 (238G>C), *3A (460G>A and 719A>G), *3B (460G>A), 
and *3C (719A>G) account for about 95% of intermediate or low enzyme activity 
cases [7, 11–14]. Caucasians have more prevalence of TPMT polymorphisms and a 
trimodal distribution of TPMT enzyme activity while southeast Asians have less 
prevalence and a unimodal distribution [15–17].

Several studies have shown that TPMT-deficient patients are at very high risk 
of developing severe hematopoietic toxicity if treated with conventional doses of 
thiopurines [18, 19]. Studies have also been carried out to show that patients who 
are heterozygous at the TPMT locus are at intermediate risk of dose-limiting toxic-
ity [20, 21]. In one of our studies, a poor treatment response was observed in head 
and neck cancer patients receiving chemotherapy with cisplatin and 5-FU which 
might be due to the higher intracellular concentration of cisplatin due to lower or 
intermediate TPMT enzyme activity [22]. Liu et al. [23] examined primary eryth-
rocyte TPMT activity in children with leukemia in a genome-wide association study 
and found that TPMT was the only gene that reached genome-wide significance. 
In another study of 67 patients treated with azathioprine for rheumatic disease, 6 
patients (9%) were heterozygous for mutant TPMT alleles, and therapy was discon-
tinued in 5 of 6 patients because of low leukocyte count within 1 month of starting 
treatment [20].

2.2 5-Fluorouracil (5-FU)

5-Fluorouracil (5-FU) is a uracil analog that is widely used to treat solid 
tumors, such as colorectal and breast cancer and requires activation to 5-fluoro-
2-deoxyuridine monophosphate (5-FdUMP). At least 85% of 5-FU is inactivated by 
dihydropyrimidine dehydrogenase (DPD) to dihydrofluorouracil in the liver. [24] 
5-FdUMP acts by inhibiting the tumor cell replication via inhibition of thymidylate 
synthase (TS), an enzyme that is required for de novo pyrimidine synthesis. DPD 
inactivates 5-FU in the liver and has huge differences in activity among individuals 
leading to excessive amounts of 5-FdUMP in patients with low activity which causes 
gastrointestinal, hematopoietic, and neurological toxicities [25–32].

The DPD gene has several reported polymorphisms associated with reduced 
DPD activity [32, 33]. In general, 3–5% of individuals are heterozygous carriers of 
mutations that inactivate DPD, and 0.1% of individuals are homozygous for muta-
tions that inactivate DPD [27, 34–36]. DPD*2A allele is caused by a G>A transi-
tion at a GT splice donor site flanking exon 14 of the DPD gene (IVS14+1G>A). 
A decreased DPD activity has been found to be associated with severe or fatal 
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toxicity from standard doses of 5-FU [37]. Another mutation at codon 534 leads to 
a 1601G>A nucleotide change. In one of our study, head and neck cancer patients 
exhibited a poor treatment response which had IVS14+1G>A genetic variant. [22] 
Similarly, it was also reported that IVS14+1G>A was associated with increased 
toxicity and poor treatment response in patients of invasive ductal carcinoma and 
head and neck cancer. Zhao et al. [38] found that DPD variant c.85T>C (rs1801265, 
DPYD*9A) was associated with treatment outcome in acute lymphoblastic 
leukemia.

2.3 Irinotecan

Irinotecan, a topoisomerase I inhibitor, is used to treat various solid tumors, 
and requires activation by carboxylesterase to its active metabolite, SN-38. The 
toxicities associated with Irinotecan, namely diarrhea and leucopenia, are due to 
increased levels of SN-38. UDP-glucuronosyltransferase 1A1 (UGT1A1) present in 
liver metabolizes SN-38 by glucuronidation to produce the more polar and inactive 
SN-38 glucuronide, which is removed in the bile and urine [39]. In chemotherapy, 
a decreased rate of glucuronidation has been shown to be an important factor in 
prediction of toxicity. The rate of glucuronidation is reduced as a consequence of 
reduced transcription rate due to abnormal dinucleotide repeat sequences  
(5–8 repeats) within the TATA box of the UGT1A1 gene promoter [40]. An inverse 
relationship exists between the number of TA repeats and the UGT1A1 transcrip-
tion rate. The variant allele UGT1A1*28 results from the presence of seven repeats, 
instead of the wild-type number of six. The UGT1A1*28 allele is associated with 
reduced UGT1A1 expression, and leads to reduced SN-38 glucuronidation [41].

(TA)n TAA promoter polymorphisms are more frequent in Caucasians than in 
Asians which have more missense polymorphisms in the exons [42]. Studies have 
shown that the UGT1A1*28 allele leads to significantly increased amounts of the 
active metabolite SN-38, and consequently an increased chance of developing side 
effects such as diarrhea and leukopenia during irinotecan therapy. [41, 43]. In one 
study of 20 patients with solid tumors treated by irinotecan, severe toxicity was 
observed in UGT1A1*28 heterozygotes and homozygotes [41]. In another retrospec-
tive study of 118 cancer patients treated with irinotecan, a significant proportion of 
the 26 patients suffered from severe diarrhea or neutropenia. Upon examination, 
all 26 were UGT1A1*28 homozygotes or heterozygotes (15 and 31%, respectively), 
whereas only 3% UGT1A1*28 homozygotes and 11% UGT1A1*28 homozygotes were 
found among 92 patients without toxicity [43]. Font et al. [44] reported that 34% of 
non-small cell lung carcinoma (34%) patients with the common genotype achieved 
disease control (partial response or stable disease) compared with 13 of 24 patients 
(54%) with the variant genotypes.

2.4 Platinum agents

Platinum agents like cisplatin, carboplatin and oxaliplatin act by inhibiting cell 
replication as a result of formation of DNA adducts. However, sometimes the effect 
of platinum agents is compromised as a result of decreased drug accumulation, 
detoxification, reduced or no DNA adduct formation and an increased activity 
of DNA repair system. One of the factors that can influence response to platinum 
chemotherapy agents is polymorphisms in glutathione (GSH)-dependent enzymes. 
Glutathione-S-transferases (GSTs) catalyze the conjugation of GSH to platinum 
agents, forming less toxic and more water-soluble conjugates. There are five sub-
classes of the GST family (GSTA1, GSTP1, GSTM1, GSTT1, and GSTZ1) [61] that 
influence cytotoxicity to a variety of chemotherapeutic agents [45].
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Several genetic variants exist in the GSTs which may lead to complete absence 
(GSTM1 and GSTT1) or partially deficient enzyme (GSTP1) activity. Ethnic differ-
ences are reported in the distribution of null or variant allele frequencies of GSTM1, 
GSTT1 and GSTP1. Studies from our laboratory have shown association of poly-
morphism in drug metabolizing cytochrome P450s (CYPs) and GSTs with head and 
neck cancer [46]. Studies also revealed significant increase in head and neck cancer 
risk in cases with null genotypes of GSTM1 or GSTT1, though inconsistent reports 
are also available. Likewise, no consistent data is available on the association of 
GSTP1 polymorphism with head and neck cancer risk [47]. Further, site specificity 
is also reported in the expression of GSTs in the squamous mucosa of head and neck 
which may lead to the differences in the susceptibility when analyzed according 
to the tumor location. An association between the GSTM1 and GSTT1 null geno-
type for non-laryngeal upper aero-digestive tract (UADT) or oral cancer risk was 
reported in smokers or tobacco chewers. In contrast, no site specific differences in 
the distribution of GST variant forms have also been observed in few studies [48].

The null genotypes for GSTM1 or GSTT1 were associated with a reduction in 
risk of relapse in several tumor types treated with chemotherapy such as acute 
lymphoblastic leukemia, acute myeloblastic leukemia, breast cancer, ovarian 
cancer, and lung cancer. In addition to null phenotypes, single nucleotide polymor-
phisms (SNPs) also affect response to chemotherapy and survival of patients as 
seen in breast cancer patients with an I105V SNP in the GSTP1 gene. Women with 
the low-activity VV genotype had better survival upon cyclophosphamide-based 
chemotherapy [49]. Dasgupta et al. [50] compared the role of the I105V genotype 
in multiple myeloma treated with standard or high dose chemotherapy and found 
that the patients with the 105VV homozygote allele had an improved progression 
free survival. The substitution of isoleucine with valine at position 105 reduces 
enzyme activity against alkylating agents. Stoehlmacher et al. [51] showed that 
SNP in GSTP1 was associated with overall survival in 107 patients with metastatic 
colorectal cancer who received 5-FU/oxaliplatin combination chemotherapy. In 
this study, 10 patients (9%) were homozygous for valine, 45 patients (42%) were 
heterozygous, and 52 (49%) were homozygous for isoleucine. Interestingly, GSTM1 
and GSTT1 mutations that abolish enzyme activity had no predictive power for 
patient outcome.

Anticancer agents act by causing DNA damage in tumor cells which is subse-
quently repaired by the DNA repair machinery of the cell. Thus, more the active 
DNA repair system, less will be the treatment outcome. XRCC1 is a prominent 
gene involved in DNA repair via the base excision repair pathway which repairs 
single strand breaks through interaction of XRCC1 with PARP-1, PNK, Polb, and 
Lig3a [52]. XRCC1 has several genetic variants out of which the prominent ones 
are Arg194Trp on exon 6, Arg280His on exon 9, and Arg399Gln on exon 10 [53]. 
A study conducted by Quintela-Fandino et al. [54] in head and neck cancer cases 
found that XRCC1 Gln/Gln was responsible for 61.5% of cases with complete 
response. The role of XRCC1-Gln399Gln genotype was also investigated by Duell 
et al. [55]. It was reported that the allele results in high rate of sister chromatid 
exchange after exposure to ionizing radiation in human lymphocytes. There are 
also reports which suggest the role of XRCC1 G28152A Arg399Gln polymorphism 
in development of lower grade of fibrosis as a result of radiotherapy in 60 naso-
pharyngeal cancer patients [56]. Mahimkar et al. [57] studied clinical outcome in 
advanced oral cancer patients treated with postoperative radiotherapy and did not 
observe a significant association between polymorphisms of XRCC1 and clinical 
outcome. Zhai et al. [58] observed that Codon399 Gln/Gln allele was associated 
with a higher tumor regression ratio after radiotherapy for primary nasopharyngeal 
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neoplasm and metastatic lymph nodes. Ghazali et al. [59] conducted a systematic 
review and found that risk of severe acute mucositis was associated with the G allele 
of XRCC1 (1196A>G) in head and neck cancer patients treated with radiotherapy 
alone or chemotherapy.

Excision-repair cross-complementing 1 (ERCC1) gene encodes a helicase which 
is required for the nucleotide excision repair pathway. Several polymorphisms 
in ERCC1 which result in differing DNA repair capacities have been identified. 
Lowered mRNA production was observed as a result of a silent C118T SNP in 
ovarian carcinoma cell lines [60]. The TT genotype resulted in a reduction in codon 
usage by half with a reduction in ERCC1 mRNA production and therefore be associ-
ated with reduced DNA repair capacity [61]. Platinum is a standard chemotherapy 
for advanced non-small cell lung cancer (NSCLC), and platinum-induced DNA 
lesions are repaired by ERCC1. Studies have shown that patients homozygous for 
the ERCC1 118C allele demonstrated a significantly better survival. In colorectal 
carcinoma patients treated with 5-fluorouracil and oxaliplatin, the K751Q SNP 
of the ERCC2 (Xeroderma pigmentosum group D gene, XPD) determined in 
peripheral blood lymphocytes was of prognostic relevance. The patients having KK 
homozygotes responded more frequently to chemotherapy and lived significantly 
longer than did heterozygotes or QQ homozygotes [62]. Time to progression was 
significantly higher in cisplatinum-treated patients with non-small cell lung cancer 
harboring the K751Q ERCC2 genotype than those harboring the K751K genotype. 
However, contradictory results on the association of ERCC2/XPD variant alleles 
with decreasing overall survival of non-small cell lung cancer patients after cis-
platinum-based therapy were also reported [63]. A nonsynonymous SNP, altering 
a lysine to glutamine at codon 751 of the XPD protein, was significantly associated 
with treatment outcome in patients with metastatic colorectal cancer [62].

3. Pharmacogenetics: challenges and next generation approaches

The current pharmacogenetics approaches face many stumbling blocks. 
Candidate gene-based approaches do not provide a reliable prediction of tumor 
drug response and normal tissue toxicity because of a lack of understanding of the 
precise role of all participating factors. Genome wide association study provide 
a more robust platform for pharmacogenetic analysis as has been demonstrated 
by Watters et al. [64]. A number of other issues plague SNP genotyping in the 
clinical settings such as quality control which is due phenotypic heterogeneity, a 
long duration involved in validation of pharmacogenetic markers in experimental 
settings, the combined effects of many low-risk polymorphisms, selection of the 
most appropriate panel of SNPs, analyzing the correlation between genotype, 
gene expression, and enzyme activity, criteria for risk assessment and thresholds, 
consideration of ethnic variations as the distribution and frequency of SNPs vary 
among different ethnic groups which makes it difficult to extrapolate the findings 
of one group on another [65]. Newer targeted therapies are also gaining popularity. 
Trastuzumab (herceptin), a humanized recombinant monoclonal antibody (IgG) 
targets Human Epidermal Growth Factor Receptor 2 (HER2), Gefitinib (Iressa) 
inhibits the tyrosine kinase activity of the Epidermal Growth Factor Receptor, 
Bevacizumab (Avastin) is an anti-angiogenesis agent, the addition of which to 
standard chemotherapy regimens has shown improved response rates and survival 
rates in the treatment of metastatic colorectal cancer [66]. Likewise, Cetuximab 
(Erbitux), a monoclonal antibody, targeting EGFR has also shown promising 
results in colorectal cancer and head and neck cancers.
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Future developments in some key areas will play a critical role in decid-
ing the overall influence of pharmacogenetics data on therapeutic decisions. 
Improvements are needed in genome-wide technologies such as development of 
gene expression arrays, high throughput technologies, SNP chips, genome-wide 
scans which could potentially identify previously unidentified, functionally 
important candidate genes and SNPs. Mouse models could be used for genome-
wide scans in offspring from phenotypically distinct mice from resistant and 
susceptible strains. Knockout and transgenic techniques could also be used for 
establishing the key elements that contribute to drug response and disposition. 
Candidate gene approach could be enhanced by knowledge gained from genome 
wide techniques and by incorporating a metabolic pathway approach. The cost of 
SNP/genomic technology should reduce which needs to be counterbalanced by 
the huge costs incurred due to adverse drug reactions/toxicities. For inclusion of a 
genetic test into clinical practice, it must provide reliable, predictive, and action-
able information that would have otherwise been unknown [67]. Before clinical 
implementation, strong evidence from randomized controlled clinical trials is 
needed.

The future of pharmacogenetics should focus on specimen collection of both 
germline and tumor DNA from early and later phase clinical trials with prospec-
tively collected efficacy and toxicity data which will be vital in the discovery and 
validation of pharmacogenomic associations. At next steps, genes that have under-
gone replication and validation should be assessed for clinical implementation. 
A large retrospective case-control validation and replication studies and Phase II 
biomarker-driven clinical trials may allow for a more efficient and rapid method of 
translation from bench to bedside.

4. Conclusions

The major problems of cancer chemotherapy are the development of drug resis-
tance and the severe side effects. Since many chemotherapeutic agents have modest 
tumor specificity, normal tissues are also damaged. This prevents the application of 
sufficient high doses of drugs to eradicate the less sensitive tumor cell populations. 
Thereby, tumors develop drug resistance that leads to treatment failure and fatal 
consequences for patients. Genetic variations in genes have explained a great deal 
of interindividual variation in response and toxicity of anticancer drugs. Cancer 
treatment utilizes multiple therapeutic agents with a wide variety of toxicities, 
often with narrow therapeutic indices. Pharmacogenetics has the potential to 
revolutionize cancer therapy. Though there has been substantial success in situ-
ations where single genes play a large role in overall drug response, the future of 
cancer treatment lies in whole-genome approaches. Reduction of the toxicogenetic 
and toxicogenomic side effects has been one of the major goals in the search for new 
anticancer drugs and therapy protocols. SNP genotyping should be introduced into 
clinical settings to facilitate clinical decision making regarding treatment strategies 
to avoid adverse drug reactions while achieving the best drug response. Few of 
the studies discussed do provide a stronger scientific basis for the use of genomic 
information for the individualization of cancer therapy based on a patient’s genetic 
profile.
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