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1. Introduction 

Since the advent of the magneto-optical trap (MOT) in 1987 (Raab et al., 1987), it has been 
intensively studied and widely used as a pre-cooled atomic source for various experiments 
(Metcalf & van der Straten, 1999). In addition, there have been intensive studies on the MOT 
itself such as cold collisions (Walker & Feng, 1994), nonlinear optics (Tabosa et al., 1991), 
existence of sub-Doppler force (Wallace et al., 1994), or limit of density (Townsend et al., 
1995). Nevertheless MOT itself is far from quantitative understanding and still keeps 
providing surprises as unexplored characteristics and applications are being developed. In 
the perspective of nonlinear dynamics in a MOT, there were several reports as follows: 
Sesko et al. observed several variations of atomic spatial distribution and abrupt change 
between the distributions when there exist laser beam misalignment, intensity imbalance or 
radiation trapping (Walker et al., 1990; Sesko et al., 1991). They explained the phenomena by 
optical torques exerted by the misaligned trapping lasers. Based on the studies of Sesko et 
al., Bagnato et al. have observed the limit cycles and some abrupt changes of atomic spatial 
distributions (Bagnato et al., 1993; Dias Nunes et al., 1996). Recently, Wilkowski et al. found 
the instability phenomena in a MOT and explained them by means of shadow effect 
(Wilkowski et al., 2000; di Stefano et al, 2003). In addition, MOT exhibits very unique 
collective effects and critical behaviors when the number of atoms increases such as 
instability-induced pulsation (Labeyrie et al., 2006), and plasma oscillations of ultracold 
neutral plasma (Kulin et al., 2000).  
In this article we present experimental and theoretical works on the applications of the 
magneto-optical trap by modifying the trap conditions, which is termed as an asymmetric 
magneto-optical trap (AMOT). This article is composed of three parts: In Sec. 2, we describe 
the parametric resonance achieved by the modulation of the trap laser intensities. When the 
modulation frequency is near twice the natural frequency of the trap and the modulation 
amplitude exceeds a threshold value, the parametric resonance can be excited; i.e., the 
trapped atoms are divided into two parts and oscillate in opposite directions. The various 
theoretical and experimental studies are presented. Section 3 is devoted to measurement of 
trap parameters by the method of parametric resonance and transient oscillation. By 
decreasing the modulation amplitude of the parametric excitation down to its threshold 
value one can measure the trap frequency. In the case of transient oscillation, the trap 
frequency and damping coefficient were obtained by measuring the trajectory of the atoms 
returning to the original trap center, after the applied uniform magnetic field, used for 
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displacing the trap center, was turned off. In Sec. 4, we discusses adjustable trap where the 
trap-laser frequencies are unequal to one another. When the detuning of the laser along the 
symmetric axis is different from those of the transverse lasers, an array of several sub-
Doppler traps with adjustable separations between the traps which are proportional to the 
relative laser-detuning difference. 

2. Parametric resonance in a magneto-optical trap 

The parametric resonances are ubiquitous phenomena: e.g., we can find them in vertically 
driven pendulum, fluid mechanics, ion trap such as a Paul trap or a Penning trap, optical 
dipole trap, and a lot of different fields (Landau & Lifshitz, 1976; Nayfeh & Moore, 1979). In 
an optical lattice or a dipole trap, the modulation of the potential depth was often used to 
measure the vibrational frequencies (Friebel et al., 1998). In a Paul trap, the observation of 
higher order resonance up to n = 10 has been reported (Razvi et al., 1998). Above all, our 
study is very analogous to parametrically-pumped electron oscillators in the Penning trap 
(Tan & Gabrielse, 1991; 1993; Tseng et al., 1999; Lapidus et al., 1999). The simple observed 
features of electrons in the cylindrical Penning trap are related to the cooperative behavior 
and nonlinear dynamics. The electron oscillators exhibit a rich and varied nonlinear 
dynamics which our systems also manifested. 
In this section, we present the theoretical and experimental results of the parametrically driven 
MOT by using the modulation of the MOT potential, especially the cooling laser intensity (Kim 
et al., 2003; 2004). When we modulate the intensity of the cooling laser at about twice the 
resonant frequency of the trap, the atoms in the MOT are divided into two parts and oscillate 
reciprocally with the finite amplitude due to nonlinearity of the trap. The amplitude of 
oscillation and the phase with respect to the modulation of cooling laser are measured with the 
images of atomic cloud and compared to the theoretical calculations. Direct observation of the 
sub-Doppler trap in the parametrically driven MOT is also described (Kim et al., 2004). 

2.1 Theory 
The atomic motion in a parametrically-driven MOT can be described in terms of simple 

Doppler cooling theory. In the MOT the σ +(σ –) polarized light propagates from the –z(+z) 

axis, while the σ –(σ +) polarized light propagates from the –x(+x) and –y(+y) axis. Also the 
inhomogeneous magnetic field is applied, which is given by 

ˆ ˆ ˆ ,
2 2

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

f x y
B b x y zz  

where b is the magnetic field gradient for z-axis. The laser intensities are modulated to excite 
the parametric resonance. Although intensities of all laser beams are simultaneously 

modulated with the frequency ω, we can excite the resonance for one specific axis by 
controlling the parameters such as laser intensity or the detuning. In this study we only 
excite the parametric resonance for z-axis. 
The atomic motion for z-axis can be described by the following equation for a two-level 
atom (Metcalf & van der Straten, 1999), 

 = ( , , ),mz F z z t$$ $  (1) 

with 
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where k is the wave vector, μB is Bohr magneton, m is the mass of an atom, Γ is the decay 

rate of the excited state (=2π×5.9 MHz), and δ(= ωL – ωA) is the detuning of the laser 

frequency ωL relative to the atomic resonance frequency ωA. Here s0(= I/Is) is the 

unmodulated saturation parameters with I being the laser intensity of a laser beam for z-axis 

and Is (=1.62 mW/cm2) being the saturation intensity for a 85Rb atom, and the term 

(1+hcosωt) describes the modulated laser intensity, where h is the modulation amplitude 

and ω is the modulation frequency. 

In addition to the Doppler force in Eq. (2), we need to include the sub-Doppler force and the 

random force (Chang & Minogin, 2002). The sub-Doppler force describes the tight 

confinement in the vicinity of the origin of velocity or position and explains the bright and 

small trap at the origin. In the former part of Sec. 2, we ignore this force, since we do not 

consider the small trap and describes the motion with large amplitude. The random force 

which stems from the recoil of the emitted photon from atoms contributes to the 

determination of the width of trap and the transitions between the stable attractors. As far as 

the center of motion is concerned, however, we do not need to include this force. When we 

discuss the simulations about the width of oscillating clouds, we will include this force. 

We present analytic solutions from the approximation of Eq. (1) in order to have concrete 
understanding of the system. When we expand the Eq. (1) up to third orders in position (z) 
and velocity ( z$ ), Eq. (1) can be approximately written by 
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where the natural frequency (ω0), the damping coefficient (β), and the nonlinear coefficient 
(A0) are given by 
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respectively. Here we have assumed that h2 1 and the damping is weak, that is, β2ω0. 

When we neglect the nonlinear term in Eq. (3), i.e., the term in the right hand side of Eq. (3), 
it becomes 

 2

0 (1 cos ) = 0,z z h t zβ ω ω+ + +$$ $  (5) 

which is a well-known Mathieu equation (Landau & Lifshitz, 1976; Nayfeh & Moore, 1979). 
The solutions of Mathieu equation exhibit the parametric resonance which occurs when the 

modulation frequency is ω = 2ω0/n, where n is the integers. In practice, it is hardly possible 

to observe higher order resonances (n > 1). In the absence of damping of the system (β = 0), 
the parametric resonance occurs in the range 

 0 0 0

1 1
< 2 < ,

2 2
h hω ω ω ω− −  (6) 

which is expressed as dotted lines in Fig. 1(a). Here the horizontal axis is the modulation 
amplitude (h), and the vertical axis is the modulation frequency normalized to the trap 

frequency (ω/ω0). When the modulation frequency lies inside this region, the solution 
diverges and shows instability. If we take into account the damping, the parametric 

resonance range slightly changes from Eq. (6) to ω1 < ω < ω2 as shown in Fig. 1(a) (solid 

curve), where the characteristic frequencies, ω1 and ω2, are given by 
  

 
                                                  (a)                                                                 (b) 

 
                                               (c)                                                                  (d) 

Fig. 1. (a) The instability region of the parametrically driven MOT. (b) The numerically 
calculated map from Eq. (1) as solid curves, while the result with the linearized Mathieu 
equation is plotted as a dotted line or curves. The calculated amplitude R (c) and the phase 

ψ (d) of the limit cycle at the modulation amplitude of h = 0.7. 
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Here a threshold value (hT) of the modulation amplitude above which the parametric 

resonance can occur is given by hT = 2β/ω0. 

Including the nonlinear terms, Eq. (3) can be analytically solved by means of usual 

averaging method (Nayfeh & Moore, 1979; Strogatz, 2001). In this case, the stability map is 

changed (Fig. 1(b)). In the steady-state regime in the rotating frame with the angular 

frequency ω/2, the nontrivial solutions of Eq. (3) can be written by 

 ( ) = ( )cos ( ) ,
2

z t R t t t
ω ψ⎡ ⎤+⎢ ⎥⎣ ⎦

 (8) 

where the amplitude R(t) and the phase ψ(t) satisfy the following equations: 
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The solution in Eq. (8) is called a limit cycle motion, which comes from the reduction of the 

divergent solution to the finite one owing to the nonlinear term in Eq. (3). 

The steady state solutions can be obtained by equating dR/dt =0 and dψ/dt =0 in Eq. (9). We 

immediately notice that there exists a trivial solution R = 0. As well, we have the nontrivial 

steady-state solutions for Eq. (9) as 
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where the upper (lower) sign denotes the stable (unstable) solutions and η(= ω/ω0) is the 
normalized modulation frequency. The calculated results for the amplitude and phase are 
shown in Fig. 1(c) and 1(d), respectively, for h =0.7. In Figs. 1(c) and 1(d), the stable 
(unstable) solutions are represented as solid (dotted) lines. We can see that there exist three 

characteristic frequencies (ω1, ω2 and ω3) which characterize the existence of solutions. The 

frequencies ω1 and ω2 are already defined in Eq. (7) and the new frequency ω3 is given by 

 2

3 0= 1 4 .
2

T

T

h
h

h
ω ω

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 (11) 

The frequency ω3 does not exist for solutions of the Mathieu equation and arises when the 

nonlinear term is included. As shown in Fig. 1(b) (dotted line), the frequency ω3 is linearly 

dependent on the modulation amplitude h. 
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In Figs. 1(c) and 1(d), for the frequency range ω1 < ω < ω2 (Region I), as well as an unstable 
solution (R = 0), there exist two stable solutions. This is because for a given amplitude R, we 
have two solutions of the phase with the difference of 180° (Fig. 1(d)). When the nonlinear 
terms are neglected, the solution in this region exhibits instability. Due to the nonlinear 
terms, however, the solution ceases to diverge and have a finite value, which is called a limit 

cycle. When the frequency lies at the range ω2 < ω < ω3 (Region II), we have three stable 
(solid line and curves) and two unstable solutions (dotted curves). Of three stable solutions, 
one is a stable attractor at the origin (R = 0) and the others are limit cycles with phase 

difference of 180°. In the other frequency region (ω < ω1 or ω > ω3), there exists one stable 
attractor at the origin. As can be seen in the experiment, while a limit cycle motion is 

presented as oscillating clouds with the frequency of ω/2, the stable attractor at the origin is 
represented by a stationary trap. 
When the modulation frequency increases, a trivial solution (stable attractor at the origin) 

converts to the limit cycle motion at the frequency ω = ω1, which is called a super-critical 
Hopf bifurcation (Strogatz, 2001). In contrast, when the frequency decreases from the larger 
frequency region, the combination of a stable attractor at the origin and the limit cycle 

motions changes to the limit cycle motions alone at the frequency ω = ω2, which is called a 
sub-critical Hopf bifurcation (Strogatz, 2001). In general we observe the hysteresis: when we 

increase the frequency across the frequency ω2 we follow the nontrivial solution at Region II 

in Fig. 1(c). On the contrary, when we sweep down the frequency crossing the frequency ω3, 
the solution is merely a trivial solution (R = 0). In reality, however, it is not possible to 
observe this normal hysteresis effect, which will be explained later. Comparison of 
numerical calculations of Eq. (1) with the results with the analytic solutions are shown in 
Fig. 1(b). In Fig. 1(b), the dotted curve denotes the results of Fig. 1(a). That is, they were 
obtained for the linearized Mathieu equation (Eq. (5)). Also the solid curve is the result of 

the numerical calculation. We can notice that ω1 and ω2 are slightly shifted towards smaller 
values. 
The atomic motion can be described more clearly in the rotating frame with the angular 

velocity of ω/2. In that frame, Eq. (9) can be transformed to the following equations: 

( )2 21 0
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2 2 2
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where the dimensionless amplitudes are defined by q1 = q cosψ and q2 = q sinψ, with 

2 2 2 2 2 0
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The calculated stability regions in the rotating frame are plotted in Fig. 2(a) for ω/ω0 = 2.0 

(Region I in Fig. 1(c)) and Fig. 2(b) for ω/ω0 = 2.5 (Region II in Fig. 1(c)). In Fig. 2 the stable 
(unstable) points are denoted by the filled circles (triangles). In Fig. 2(a), there are two 
stability regions, which are divided by two spiral-shaped regions. We have two stable points 
inside the regions and one unstable point at the border of two regions. An atom with initial 
condition in one specific region converges to a stable point which belongs to that region. In 
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Fig. 2(b), there exist three stable points and two unstable points. The regions are divided by 
three spiral-shaped regions. The behaviors of atomic motions are analogous to those in Fig. 
2(a). 
 

 
                                                   (a)                                                             (b) 

Fig. 2. The stability regions for the frequency Region I (a) and Region II (b). 

When the modulation frequency corresponds to Region II in Fig. 1(b) or Fig. 1(c), in the 

experiment, the initial conditions of trapped atoms reside in the central spiral-shaped region 

in Fig. 2(a). Thus we only observe a stationary trap when the frequency is swept down 

across ω3. On the contrary, when we sweep up the frequency crossing ω2, we only observe 

the two limit cycle motions, because the initial conditions reside in the two large spirals. 

That is to say, we may observe hysteresis. However, in Region II, as will be seen in the next 

subsection, we can always observe the limit cycle motions as well as the central trap 

independent of the direction of the frequency sweeping. There are two reasons for the 

disappearance of the hysteresis effect. The first one is the fact that the atoms are always 

loaded from background atoms and lost due to the collisions with them. Thus the initial 

conditions cover the broad regions including three spiral-shaped regions. As a result, both 

the central trap and the limit cycle motions can be observed simultaneously in the 

experiment. The second reason is the existence of the diffusion. In the experiment there 

always exists diffusion which provokes atoms to make transition from the fixed point to the 

limit cycle motions. Therefore, although the frequency is swept downwards crossing ω3, we 

can observe the limit cycles as well as the stationary trap. In reality, both reasons exist 

simultaneously, and contribute to the disappearance of the hysteresis effect. 

2.2 Experimental and simulation results 
We study parametric resonance of atoms in a standard vapor-cell MOT where the intensity 

of cooling laser is modulated. We used the first order diffracted laser beam by an acousto-

optic modulator (AOM), which can vary the laser power in accordance with the applied 

voltage. The 85Rb atoms in the MOT have three dimensional confinements with the natural 

frequency ω0 (ω0/ 2 ) for z (x or y)-axis, where ω0 is defined in Eq. (4a). In order to observe 

the parametric resonance and limit cycle motion in the MOT, the s0 should be very small (< 

0.1). In the experiment we excite parametric resonance for z-axis (the axis of anti-Helmholtz 

coils). For z-axis, s0 = 0.042 (or 0.05), b = 9 G/cm, δ = –2.9 Γ, and h = 0.9 (or 0.7). Accordingly, 

ω0 = 2π × 31.5(34.3) s–1 and hT = 0.40 (or 0.44). Thus the modulation amplitude should be 
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greater than 0.40 (0.44) to excite parametric resonance, even if the modulation frequency is 

exactly twice the resonance frequency. On the other hand, the normalized laser intensity for 

x- or y-axis is about 5s0. Accordingly the corresponding threshold modulation amplitude is 

0.9, which is not smaller than the modulation amplitude in the experiment. This is why only 

in the z-axis there occurs parametric resonance, although the cooling laser intensities for all 

three directions are modulated at the same frequency and modulation amplitude. 

When the intensity of the cooling laser is modulated at about twice of its natural frequency, 

the atoms are divided into two parts and oscillate in opposite directions with the finite 

amplitudes. The typical photos of oscillating atomic clouds are shown in Fig. 3. The images 

of the cloud are taken at every 1 ms for 1/2400 s of exposure time. Here s0 = 0.042, and the 

modulation frequency is 75 Hz (ω/ω0 = 2.38) for (a) and 95 Hz (ω/ω0 = 3.02) for (b). In all 

cases the modulation amplitude is 0.9. The modulation frequencies for the results in Figs. 

3(a) and 3(b) belong to Region I and Region II in Fig. 1(b) or Fig. 1(c), respectively. As 

explained in the previous subsection, we have two stable points (limit cycles) in Region I 

(Fig. 3(a)) and three stable points (one fixed point and two limit cycles) in Region II (Fig. 

3(b)). The bright spot in Fig. 3(b) is due to this sub-Doppler force (see Sec. 2.3). Figure 4 

shows the series of signals measured for Region I (a) and Region II (b). The whole period is 

2π/ω, which is the period of modulation signal and half the period of atomic oscillations, 

and the signals are equally separated in time. We can clearly see that the atomic clouds are 

divided into two parts and oscillate in opposite directions. 

 

 

Fig. 3. The typical images of oscillating atomic clouds. The modulation frequency is 75 Hz 
for (a) and 95 Hz for (b). 

The experimental results for the dependence of the amplitude and phase of limit cycles on 

the modulation frequency [amplitude] are presented in Fig. 5(a) and Fig. 5(b) [Fig. 5(c) and 

Fig. 5(d)], respectively. In Figs. 5(a) and (b), h = 0.7 and 0.9. Figs. 5(a) and (b), the solid 

[dotted] lines and curves are calculated results from the Eq. (1) while the filled squares 

[hollow circles] denote the experimental results at the modulation amplitude of h=0.9 [0.7]. 

In Figs. 5(c) and (d), the modulation frequency is ω = 2π × 65 Hz. The threshold amplitude 

(hT) is 0.40, but we need at least h = 0.6 to observe the parametric resonance. In Fig. 5, we can 

clearly see the good agreement between the experiments and the calculations. 
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Fig. 4. Profiles of the oscillating clouds at the various phases with respect to the modulations 
at the frequency of Region I (a) and Region II (b). 
 

 

                                                    (a)                                                      (b) 

 

                                                     (c)                                                       (d) 

Fig. 5. The dependence of amplitude (a) [(c)] and phase (b) [(d)] of limit cycles on the 
modulation frequency [amplitude]. 
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2.3 Observation of sub-Doppler trap 
In this subsection we describe the direct observation of sub-Doppler part of the MOT 
through the parametric resonance (Kim et al., 2004). Typical experimental parameters are as 

follows: in the z-axis, s0 = 0.05, b = 9 G/cm, the amplitude of modulation h = 0.9, and δ/Γ = –

2.9. Thus ωdop is about 2π× 34.3 Hz, and ωsub (will be explained later) is 2π× 460 Hz. The full 
width of MOT beams at the e–1/2 intensity point is 2.5 cm in order to cover the whole range 

of atomic motion (2R). The total number of atoms in the unmodulated MOT is about 2 × 108 

and that in the modulated MOT is about 8 ×107. Figure 6 shows the photos of parametrically 
excited atoms at the modulation frequency of 80 Hz (a) and 95 Hz (b). Both frequencies 
belong to region I and II in Fig. 1(c), respectively. We can easily notice that the broad and 
large trap in Fig. 6(b) is attributable to the third fixed point at the origin of the magnetic field 
with the Doppler theory. On the other hand, the narrow and sharp traps in Fig. 6(a) and (b) 
have a different origin, which can be very well understood by including the sub-Doppler 
cooling theory (Chang & Minogin, 2002; Jun et al, 1999). 
 

 
                                        (a)                                                                                  (b) 

Fig. 6. The typical appearance of (a) double and (b) triple fixed points in experiments. The 
modulation frequency is 80 Hz (a) and 95 Hz (b). 

There exist two kinds of trap in a normal MOT: One is due to one photon process, that is, 
Doppler cooling theory, and the other is due to two photon process, which makes sub-
Doppler temperature (Jun et al, 1999). Thus the force exerted on an atom is given by 

 dop sub( , , ) = ( , , ) ( , , ),F z v t F z v t F z v t+  (13) 

where the Doppler force (Fdop(z,v, t)) is given in Eq. (2) and the sub-Doppler force for a  
F = 1 → F’= 2 atomic transition line is analytically given by (Jun et al, 1999) 

 sub ( , , ) = .
g Bg bzkv

F z v t f
μ⎛ ⎞

+⎜ ⎟Γ Γ⎝ ⎠¥
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Here the function f (x) is given by 
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with gg the g–factor of the ground state and s(t) = s0(1 + hcosωt). Fig. 7(a) shows the typical 
calculation of the total force and Fig. 7(b) shows the same force for the detailed region for F 

= 1 → F’= 2 atomic transition line. We can see that the sub-Doppler force exists only near the 
origin. Although the sub-Doppler force for other transition lines can be calculated 
numerically (Walhout et al., 1992), we used Eq. (14) for the sub-Doppler force the transition 
F = 3→F’= 4 of 85Rb atoms with gg = 1/3. The trap frequency can be derived from Eq. (14) as 
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with the coefficients P1 = 24/17 and P2 = 4/5 for 1→2, P1 = 6.84 and P2 = 2.72 for 2→3, and P1 

= 12.5 and P2 = 3.57 for 3→4 transition line. 
 

 
                                                       (a)                                                      (b) 

Fig. 7. The calculated total force in the enlarged (a) and detailed region (b). 

 

 
                                                      (a)                                                   (b) 

Fig. 8. Upper and Lower panels of (a)[(b)] is the profile of Fig. 6(a)[(b)] along α and β-line, 
respectively. In each panel, the left one is the measured profile and the right one is the 
simulation result. 

The profiles of Fig. 6 are compared to the Monte-Calro simulations with and without 
considering the sub-Doppler force. Upper [Lower] panel of Figure 8(a) and 8(b) is the profile 

of Fig. 6(a) and 6(b), respectively along the α [β]-line. In the figures the left one is the 
experimental data and the right one is the simulation result. In Fig. 8(a), the experimental 
(simulation) result of width (twice the standard deviation in the Gaussian distribution) of 
broad peaks is approximately 2.1 mm (2.2 mm). Also the experimental (simulation) width of 
central peak is 0.45 mm (0.28 mm). In Fig 8(b), the experimental (simulation) width of 
oscillating broad peak, central broad peak, and the central sharp peak is 1.7 (1.9) mm, 5.6 
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(5.2) mm, and 0.68 (0.26) mm, respectively. We can see the good agreements between the 
experimental and simulation results. We used the combined force (Eq.(13)) in the 
simulation. In addition, we also take into account the random recoil force, fr, from the 
spontaneously emitted photons. The random force is related with the momentum diffusion 
via the following equation: 

 < ( ) ( ) >= 2 ( ) ( ) ,r r zzf t f t D t t tδ′ ′−  (16) 

where Dzz(t) is the momentum diffusion coefficient for z-axis and the left-hand side of Eq. 
(16) denotes the average of product of the force at the different time over long time. The 
momentum diffusion coefficients for various transition lines are presented in Fig. 9(a) 
(Walhout et al., 1992), where we have assumed the unmodulated laser intensity, i.e., s(t) = s0. 
In Fig. 9(a) the result for F = 0→ F’ = 1 corresponds to that of Doppler theory. The calculated 
results for the detailed region are shown in Fig. 9(b). Near the center of the velocity, there 
exists a sharp dip, which exhibits the feature of two-photon resonance, that is, sub-Doppler 
laser cooling theory. In the simulation we have used the calculated momentum diffusion 
coefficient in the sub-Doppler cooling theory for F = 3→ F’ = 4 transition line. 
 

 

                                                   (a)                                                                 (b) 

Fig. 9. (a) The calculated momentum diffusion coefficients for various atomic transition 
lines. (b) The detailed plots near the origin. 

3. Measurement of trap parameters 

3.1 Parametric resonance method 
Since the spring constant is one of the basic parameters of a MOT, there has been much 
effort to measure the spring constant, inferred from the measured spatial profile and the 
temperature by means of the equi-partition theorem (Drewsen et al., 1994; Wallace et al., 
1994), by using the beam imbalance (Wallace et al., 1994; Steane et al., 1992) or by using the 
imposed oscillating magnetic field (Kohns et al., 1993; Hope et al., 1993). Authors in Ref. (Xu 
et al., 2002) have used the method of free oscillation of atoms after rapid turning-off the 
constant pushing laser beam and study the three-dimensional Doppler cooling theory for 
two-level atoms. In Sec. 3, we present two methods to measure the trap parameters of the 
MOT such as the trap frequency and the damping coefficient. The first method, described in 
this subsection, is based on the parametric resonance described in the preceding section 
(Kim et al., 2005). The second is the method of transient oscillation of atomic trajectory (Kim 
et al., 2005), which is presented in the next subsection. 
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With a larger modulation amplitude, the parametric resonance occurs at a wider range of 
the modulation frequency. However, when the modulation amplitude decreases towards its 
threshold value, the amplitude becomes a Gaussian-like shaped function centered at twice 
the natural frequency. Therefore, one can accurately measure the trap frequency and thus 
the spring constant as well. In the experiment, the laser intensity in the z-axis was Iz = 0.099 
mW/cm2, while the intensities along the transverse directions were Ix = Iy = 5Iz. The 
modulation amplitude is decreased down to h = 0.5 to observe the trap frequency accurately. 
The full width of laser beams at the e–1/2 intensity point is 2.5 cm to cover the whole atomic 
motion. When atoms are parametrically excited, the number of atoms decreases to about 8 

×107. The laser detuning is about Δ = –2.3Γ, where Γ = 2π × 5.9 MHz is the decay rate of the 
excited state. In the experiment we vary the magnetic field gradient to study the dependence 
of the spring constant on the magnetic field gradient. 
By varying the modulation amplitude, we measure the amplitudes of limit cycle motions as 

presented in Fig. 10(a). When h is large, two oscillating clouds with the phase difference of π 
can be clearly seen. As h decreases, two peaks approach each other and merge into a single 
cloud. In Fig. 10(a), the modulation frequency is f = 84 Hz. Figure 10(b) shows the typical 
experimental results for three values of the magnetic field gradients (b). For a given b, we 
vary the modulation frequency ( f ) and measure the width of single-merged cloud. Varying 
f , the amplitude has a peak at a certain frequency, which is approximately given by f = 2 f0. 
 

 

                                         (a)                                                                             (b) 

Fig. 10. (a) The measured profiles of limit cycle motions at the various modulation 
amplitudes h ( f = 84 Hz). (b) The measured profiles as functions of the modulation 
frequency for three magnetic filed gradients. 

The measured trap frequencies (filled squares) for several magnetic field gradients are 
shown in Fig. 11(a). The curves in Fig. 11(a) are the theoretical results. The curves A and C 

are the results calculated by Eq. (4a) with the normalized saturation intensities s0 = Iz/Is and 
s0 = Iz/(Is)av, respectively. Here (Is)av = 3.78 mW/cm2 is the averaged saturation intensity 
(Wallace et al., 1994). With the averaged saturation intensity, the result agrees well with 
experimental results. The curves B and D are the calculated results based on the rate 
equation model for Fg = 0 → Fe = 1 and Fg = 3 → Fe = 4 transition lines, respectively. We can 
see that the results of line C and D are almost equal and agree with the experimental results. 
The details of calculation using the rate equation model are presented in Ref. (Kim et al., 

2005). The results for κ/b for the varying the intensities of Ix + Iy are shown in Fig. 11(b), 

where κ = m 2

0ω  is the spring constant. Since the spring constant is proportional to the 

www.intechopen.com



 Recent Optical and Photonic Technologies 

 

402 

magnetic field gradient (b), we have a constant value for all experimental data. As the laser 

intensity for the transverse directions increases, κ0/b decreases. In Fig. 11(b), we find that 
the use of the averaged saturation intensity ((Is)av) is a good approximation at the broad 
range of the transverse laser intensities. 
 

 

                                             (a)                                                                       (b) 

Fig. 11. (a) The measured trap frequencies versus the the magnetic field gradients (filled 
squares). (b) The spring constants divided by the magnetic filed gradient. 

3.2 Transient oscillation method 
In this subsection, we present measurement of the trap frequency as well as the damping 

coefficient by detecting the temporal oscillatory behavior of the pushed atomic cloud as the 

magnetic field gradient or the laser detuning is varied (Kim et al., 2005). The atomic motion 

in the MOT is simply given by a damped harmonic oscillator model with the damping 

coefficient β and the trap frequency f0. When a uniform magnetic field (Bz) is applied to the 

MOT, the position of the trap center is shifted by Bz/b, where b is the magnetic field gradient 

in the z-axis of the MOT. When the uniform magnetic field is suddenly turned off, the 

atomic cloud returns to the original trap center. In case of the underdamped motion, one can 

extract the trap parameters by measuring the trajectory of the released atomic cloud. The 

trajectory of the atomic cloud center is simply given by 

 0 0 0

0

( ) = exp( / 2) cos2 sin 2 ,
4

z t z A t f t f t
f

ββ π π
π

⎛ ⎞
+ − +⎜ ⎟

⎝ ⎠
 (17) 

where f0 = ω0/(2π) is the trap frequency, β is the damping coefficient, z0 is the equilibrium 

position, and A is the initial displacement from equilibrium. 

Figure 12(a) shows the contour-plot of the typical absorption signals of the 16-channel 

photodiode array versus time (taken at 1/5000 s time interval), superposed by a curve 

corresponding to the maximum brightness. Here the vertical axis shows the position of the 

photodiode array and horizontal axis represents the time elapsed after switch off of the 

magnetic field. Figure 12(b) shows the same curve as in Fig. 12(a) and its fitted result using 

Eq. (17) for the region after elapse of one period, which is shown in the lower panel. From 

the fit presented in Fig. 12(b) one can obtain the trap frequency and the damping coefficient. 
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                                                       (a)                                                                        (b) 

Fig. 12. (a) The contour plot of the signals showing a typical oscillating motion of atomic 
cloud. (b) The same curve as in (a) and the fitted curve obtained by Eq. (17). The detailed 
plot after one period is shown in the lower panel. 

We have measured the trap parameters by varying the laser intensity, detuning, and 
magnetic field gradient. The results are presented in Figs. 13. Fig. 13 shows the dependence 
of trap frequency (a)[(c)] and damping coefficient (b)[(d)] on the magnetic field gradient 

[detuning]. In Figs. 13(a) and (b), Δ = –2.71Γ, and Iz = 0.10 mW/cm2 (filled square), 0.13 
mW/cm2 (filled circle) and 0.17 mW/cm2 (filled triangle), respectively. Note that the laser 
intensities in the transverse directions (Ix = Iy) are 0.62 mW/cm2. The solid, dashed, and 
dashed-dotted lines in the figure are the calculated results from a theoretical model. In Figs. 
13(c) and (d), Iz = 0.17 mW/cm2, Ix = Iy = 0.62 mW/cm2, and b = 10 G/cm. Note that the solid 
line is obtained from the rate equation for the Doppler theory, whereas the dashed line is 
from the simple Doppler theory for two level atom where the saturation intensity is  
 
 

 

Fig. 13. The dependence of the trap frequency (a)[(c)] and damping coefficient (b)[(d)] on the 
magnetic field gradient [detuning]. 
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substituted by the averaged value (Is)av = 3.78 mW/cm2. As shown in Fig. 13, the trap 
frequencies are in good agreement with the theoretical values. The damping coefficients, on 
the other hand, are about twice larger than the simple theoretical predictions. We provide a 
quantitative description of the theoretical model and explain the discrepancy found in the 
damping coefficient. 
The summary of the data of Fig. 13 is presened in Fig. 14. The damping coefficient and the 

trap frequency are presented as a function of s0δ/(1+4δ2)2 and 0bs δ /(1+4δ2), respectively. 

 

 

Fig. 14. The damping coefficient versus s0δ/(1 + 4δ2)2 [filled circles, experimental data; 
dashed line, calculated results; dashed-dotted line, calculated results multiplied by 1.76] and 

the trap frequency versus 0bs δ /(1 + 4δ2) [filled squares, experimental data; solid line, 

calculated results]. 

One can observe that the measured trap frequencies are in excellence agreement with the 

calculated results. On the other hand, one has to multiply the simply calculated damping 

coefficients by a factor 1.76 to fit the experimental data. We find that the discrepancy in the 

damping coefficients results from the existence of the sub-Doppler trap described in Sec. 2.3. 

In order to show that the existence of the sub-Doppler force affects the Doppler-cooling 

parameters, we have performed Monte-Carlo simulation with 1000 atoms. In the simulation, 

we used sub-Doppler forces and momentum diffusions described in Sec. 2.3. The results are 

presented in Fig. 15. Here we averaged the trajectories for 1000 atoms by using the same 

parameters as used in Fig. 12. We have varied the intensity (I) associated with Fsub without 

affecting the intensity for the Doppler force, and obtained the averaged trajectory, where 

Iexpt =0.17 mW/cm2 is the laser intensity used in the experiment [Fig. 13]. We then infer the 

damping coefficient and the trap frequency by fitting the averaged trajectory with Eq. (17). 

The fitted results for the damping coefficient and the trap frequency are shown in Fig. 15(b). 

While the trap frequency remains nearly constant, the damping coefficient increases with 

the intensity. Note that to obtain an increase of factor 1.76 as shown in Fig. 14, one should 

use I/Iexpt = 1.6. The reason for the increase of the damping coefficient can be well explained 

qualitatively from the simulation. 
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                                             (a)                                                               (b) 
Fig. 15. The Monte-Carlo simulation results. (a) The averaged trajectories for 1000 atoms 
together with the fitted curves obtained from Eq. (17). (b) The damping coefficient (filled 
square) and the trap frequency (filled circle) as a function of the laser intensity. 

4. Adjustable magneto-optical trap 

When the detuning and intensity of the longitudinal (z-axis) lasers along the symmetry axis 
of the anti-Helmholtz coil of the MOT are different from those of the transverse (x and y 

axis) lasers, one can realize an array of several sub-Doppler traps (SDTs) with adjustable 
separations between traps (Heo et al., 2007; Noh & Jhe, 2007). As shown in Fig. 16(a), it is 
similar to the conventional six-beam MOT, except that the detunings (δx and δy) and 
intensities (Ix and Iy) of the transverse lasers can be different from those of the longitudinal 
ones (δz and Iz). In the case of usual MOT, one obtains a usual Doppler trap superimposed 
with a tightly confined SDT at the MOT center, exhibiting bimodal velocity as well as spatial 
distributions (Dalibard, 1988; Townsend et al., 1995; Drewsen et al., 1994; Wallace et al., 
1994; Kim et al., 2004). Under equal detunings but unequal intensities (Ix, Iy 4  Iz), which 
typically arise in the nonlinear dynamics study of nonadiabatically driven MOT (Kim et al., 
2003; 2006), one still obtains the bimodal distribution. However, as the transverse-laser 
detuning δt (≡ δx = δy) is different from the longitudinal one δz with the same configuration of 
laser intensity, the SDT at the center becomes suppressed with the usual Doppler trap still 
present. The existence of the central SDT, available at equal detunings, contributes not only 
to the lower atomic temperature but also to the larger damping coefficients than is expected 
 

 

                                           (a)                                                                    (b) 

Fig. 16. (a) Schematic of the asymmetric magneto-optical trap. (b) Measured damping 
coefficients versus normalized laser-detuning differences. 
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by the Doppler theory. In order to confirm the enhanced damping, we have measured the 
damping coefficients of MOT versus the laser detuning differences, δt – δz, by using the 
transient oscillation method described in Sec. 3.2 (Kim et al., 2005). As is shown in Fig. 16(b), 
one can observe a ‘resonance’ behaviour; the damping coefficient is suppressed by more 
than a factor of 2 and approaches the usual Doppler value at unequal detunings, which is 
directly associated with the disappearance of the central SDT. 
When the transverse laser intensity is increased above a certain value at unequal detunings, 
we now observe the appearance of novel SDTs. In Fig. 17, the fluorescence images of the 
trapped atoms, obtained with It ≡ Ix + Iy = 11.4Iz fixed, are presented for various values of  
δt – δz. The central peak, corresponding to the usual SDT, becomes weak when the detunings 
are different, as discussed in Fig. 16(b). However, the two side peaks, associated with the 
novel SDTs, are displaced symmetrically with respect to the MOT center, in proportion to δt 

– δz. In addition to these two adjustable side SDTs, there also exist another two weak SDTs 
located midway between each side SDT and the central one, which will be discussed later. 
 

 

Fig. 17. (a) Fluorescence images that show two adjustable side SDTs for several values of δt –

δz. (b) SDT pictures plotted in series with the increasing detuning differences. 

In Fig. 18(a), we plot the positions of the two side SDTs for various values of δt – δz, 
represented by filled squares, which are also shown in Fig. 17(b). Attributed to the 
coherences between the ground-state magnetic sublevels with Δm = ±1 transitions (see Fig. 
18(b)), the two side SDTs appear at the positions ( ) ( )= /

S t z g B
z g bδ δ μ± −¥  and thus their 

separation satisfies, 

 = ,S

B g

z h

bgν μ
Δ

±
Δ

 (18) 

where Δν = (δt – δz)/(2π) and μB is the Bohr magneton. Since the ground-state g-factor is gg = 
1/3 for 85Rb atoms and the magnetic field gradient is b = 0.17 T/m, the calculated value 
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(solid line) is Δz/Δν = 1.26 mm/MHz, which agrees well with the experimental result of 1.25 
(±0.12) mm/MHz, considering 10% error of position measurements. On the other hand, the 
two weak SDTs, resulting from the coherences due to Δm = ±2 transitions (refer to Fig. 
18(b)), are located midway at zM = zS/2, as shown in Fig. 18(a) (open circles). The fitted result 
is 0.61 mm/MHz, which is almost half the value given by Eq. (18), in good agreement with 
the ‘doubled’ energy differences of the Δm = ±2 transitions with respect to the Δm = ±1 ones, 
responsible for the side SDTs. 
 

 
                                                             (a)                                                (b) 

Fig. 18. Measured positions of available SDTs versus negative detuning differences. 

In order to have a qualitative understanding of the detuning-difference dependence, we 
have calculated the cooling and trapping forces in two dimension by using the optical Bloch 
equation approach (Dalibard, 1988; Chang & Minogin, 2002; Noh & Jhe, 2007). In Fig. 19(a), 
we present the calculated forces F(z,v = 0) for Fg = 3→ Fe = 4 atomic transition. In the 
presence of the transverse lasers, the ground-state sublevels with Δm = ±1 transitions can be 
coupled by a π photon from the transverse lasers in combination with a σ ± photon from the 
longitudinal lasers (see Fig. 18(b)). As a result, for unequal detunings, there exists a position 
where the Zeeman shift compensates the laser-frequency difference, such that 
 

 
                                                    (a)                                                              (b) 

Fig. 19. (a) Calculated forces F(z,v =0) for various detuning differences. The maximum forces 

at 0.3 Γ corresponds to 5 × 10–3 ¥ kΓ. Here δz = –2.7Γ, Iz = 0.11 mW/cm2, and It = 5.6Iz. (b) 
Five SDTs, including two weak SDTs midway between the two side SDTs and the central 

one, for δt – δz = –0.24Γ. 
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 = .
z t g B

g bzω ω μ− ±¥ ¥  (19) 

At this position, atoms can feel the sub-Doppler forces associated with the Δm = ±1 
coherences and thus the novel SDT is obtained at two positions of ± ¥ (δx – δz)/(ggμBb), as 
confirmed in Fig. 18(a). As shown in Fig. 19(b), the two weak midway SDTs arise because 
the weak σ ± photons, in addition to the dominant π ones, from the transverse lasers can 
contribute to the atomic coherences in the z-direction. Therefore, besides the Δm = ±1 
transitions responsible for the side SDTs, the two-photon-assisted Δm = ±2 coherences (here, 
each σ ± photon comes from the longitudinal and the transverse laser, as shown in Fig. 18(b)) 
can be generated, and atoms at the position zM, satisfying the relation ¥ ωt – ¥ ωz = 
±2ggμBbzM, feel this additional coherence. As a result, the midway SDTs can be obtained at 
zM = zS/2 (see Fig. 18(a)). The typically observed image and the calculated force are 
presented in Fig. 19(b). 

5. Conclusions 

In this article we have presented experimental and theoretical works on the asymmetric 

magneto-optical trap. In Sec. 2, we have studied parametric resonance in a magneto-optical 

trap. We have described a theoretical aspect of parametric resonance by the analytic and 

numerical methods. We also have measured the amplitude and phase of the limit cycle 

motions by changing the modulation frequency or the amplitude. We find that the results 

are in good agreement with the calculation results, which are based on simple Doppler 

cooling theory. In the final subsection we described direct observation of the sub-Doppler 

part of the MOT without the Doppler part by using the parametric resonance which. We 

compared the spatial profile of sub-Doppler trap with the Monte-Carlo simulation, and 

observed they are in good agreements. 

In Sec. 3, we have presented two methods to measure the trap frequency: one is using 
parametric resonance and the other transient oscillation method. In the case of parametric 
resonance method, we could measure the trap frequency accurately by decreasing the 
modulation amplitude of the parametric excitation down to its threshold value. While only 
the trap frequency were able to be obtained by the parametric resonance method, we could 
obtain both the trap frequency and the damping coefficient by the transient oscillation 
method. We have made a quantitative study of the Doppler cooling theory in the MOT by 
measuring the trap parameters. We have found that the simple rate-equation model can 
accurately describe the experimental data of trap frequencies. 
In Sec. 4, we have demonstrated the adjustable multiple traps in the MOT. When the laser 

detunings are different, the usual sub-Doppler force and the corresponding damping 

coefficient at the MOT center is greatly suppressed, whereas the novel sub-Doppler traps are 

generated and exist within a finite range of detuning differences. We have found that π and 

σ ±atomic transitions excited by the transverse lasers in the longitudinal direction are 

responsible for the strong side and the weak middle sub-Doppler traps, respectively. The 

adjustable array of sub-Doppler traps may be useful for controllable atom-interferometer-

type experiments in atom optics or quantum optics. 

The AMOT described in this article can be used for study of nonlinear dynamics using cold 

atoms such as critical phenomena far from equilibrium (Kim et al., 2006) or a nonlinear 

Duffing oscillation (Nayfeh & Moore, 1979; Strogatz, 2001). 
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