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Chapter

Bioconvective Linear Stability of
Gravitactic Microorganisms
Ildebrando Pérez-Reyes and Luis Antonio Dávalos-Orozco

Abstract

Interesting results on the linear bioconvective instability of a suspension of
gravitactic microorganisms have been calculated. The hydrodynamic stability is
characterized by dimensionless parameters such as the bioconvection Rayleigh
number R, the gyrotaxis number G, the motility of microorganisms d, and the
wavenumber k of the perturbation. Analytical and numerical solutions are calcu-
lated. The analytical one is an asymptotic solution for small wavenumbers (and for
any motility number) which agrees very well with the numerical solutions. Two
numerical methods are used for the sake of comparison. They are a shooting method
and a Galerkin method. Marginal curves of R against k for fixed values of d and G
are presented along with curves corresponding to the variation of the critical values
of Rc and kc. Moreover, those critical values are compared with the experimental
data reported in the literature, where the gyrotactic algae Chlamydomonas nivalis is
the suspended microorganism. It is shown that the agreement between the present
theoretical results and the experiments is very good.

Keywords: bioconvection, hydrodynamic stability, Galerkin method

1. Introduction

Since many years ago, efforts in the experimental and theoretical investigation
of the bioconvection phenomenon have been made. These efforts, which lead to the
understanding of bioconvective instability, have produced novel and interesting
applications. For example, Noever and Matsos [1] proposed a biosensor for moni-
toring the heavy metal Cadmium based in bioconvective patterns as redundant
technique for analysis, a number of researchers [2–6] have been working on the
control of bioconvection by applying electrical fields (as in galvanotaxis) to use it as
a live micromechanical system to handle small objects immersing in suspensions,
Itoh et al. [7, 8] use some ideas of bioconvection in a study for the motion control of
microorganism groups like Euglena gracilis to manipulate objects by using its pho-
totactic orientation (as in phototaxis), and more recently possibly bioconvection
seeded the investigation of Kim et al. [9, 10] for using a feedback control strategy to
manipulate the motions of Tetrahymena pyriformis as a microbiorobot, among
others. Perhaps, further applications on biomimetics [11–13] at the nano- and
microscale could be driven by this contribution.

The term bioconvection was first coined by Platt [14] as the spontaneous pattern
formation in suspensions of swimming microorganisms. This phenomenon has
some similarity with Rayleigh-Benard convection but originates solely from
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diffusion and the swimming of the organisms. Reviews about this topic have been
published by Pedley and Kessler [15] and Hill and Pedley [16]. Ideas and theories on
cellular motility can be found in the book of Murase [17], and the effect of gravity
on the behavior of microorganisms is widely explained in the book of Hader et al.
[18]. In 1975, Childress et al. [19] presented a model for bioconvection of purely
gravitactic microorganisms and their results of a linear theoretical study, and later
Harashima et al. [20] studied the nonlinear equations of this model. According to
the model of Childress et al. [19], the critical wavenumber at the onset of the
instability is always zero. In ordinary particles and colloidal suspensions, the inter-
nal degrees of freedom like the internal rotation or spin are important under some
geometrical and physical conditions [21, 22]. The case of a suspension of microor-
ganisms is not an exception. For this case, Pedley et al. [23] proposed a gyrotactic
model for a suspension of infinite depth. Their model includes the displacement of
the gravity from the geometric center in the organisms along their axis of symme-
try. Hill et al. [24] performed an analysis of the linear instability of a suspension of
gyrotactic microorganisms of finite depth using the model of Pedley et al. [23]. Hill
et al. [24] found finite wavenumbers at the onset of the instability, but agreement
with the experiment was not good. Later, Pedley and Kessler [25] reported a model
for suspensions of gyrotactic microorganisms where account was taken of random-
ness in the swimming direction of the cells. In a study of the linear instability of the
system based on the model of Pedley and Kessler [25], Bees and Hill [26] found
disagreement between their theoretical results and the experimental data reported
by Bees and Hill [27]. Several experimental investigations of bioconvection have
been reported by Loeffer and Mefferd [28] and Fornshell [29], by Kessler [30] and
Bees and Hill [27] who take into account the gyrotaxis, by Dombrowski et al. [31]
and Tuval et al. [32] who take into account the oxitaxis, and more recently by
Akiyama et al. [33] who observed a pattern alteration response characterized by a
rapid decrease in the bioconvective patterns. Pattern formation has been observed
in cultures of different microorganisms such as Chlamydomonas nivalis,
Chlamydomonas reinhardtii, Euglena gracilis, Bacillus subtilis, Paramecium tetraurelia,
and Tetrahymena pyriformis.

More recently, investigations have been reported for a semi-dilute suspension of
swimming microorganisms where cell–cell interactions are considered [34–38]. On
the other hand, Kitsunezaki et al. [39] investigated the effect of oxygen and depth
on bioconvective patterns in suspensions with high concentrations of Paramecium
tetraurelia. Bioconvection is also studied from other points of view in gravitational
biology. Interesting results are also available in Refs. [40–42] about the pattern
formation in suspensions of Tetrahymena and Chlamydomonas subject to different
gravity conditions. Further results are due to Sawai et al. [43] who investigate the
proliferation of Paramecium under simulated microgravity, to Mogami et al. [44]
who report an investigation of the formed patterns by Tetrahymena and
Chlamydomonas as well as a physiological comparison, to Takeda et al. [45] who
give an explanation of the gravitactic behavior of single cells of Paramecium in
terms of the swimming velocity and swimming direction, to Mogami et al. [46] who
present theory and experiments of two mechanisms of gravitactic behavior for
microorganisms, and to Itoh et al. [47] who investigate the modification of
bioconvective patterns under strong gravitational fields.

This chapter presents interesting results about the bioconvective linear stability of
a suspension of swimming microorganisms. Use is made of the equations presented
by Ghorai and Hill [48, 49] some years ago. In their approach, Ghorai and Hill
[48, 49] used a different dimensionalization scale for the concentration microorgan-
isms which gives distinct meaning to the basic state for the concentration of microor-
ganisms and a bioconvective Rayleigh number defined in terms of the mean cell
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concentration. To the authors best knowledge, those equations along with the change
in the basic state and Rayleigh number definitions have not been used to determine
the linear bioconvective instability in an infinite horizontal fluid layer and to compare
the results with experiment. These results were obtained by means of both numerical
and analytical techniques. The critical values of the Rayleigh number Rc and the
wavenumber kc, for fixed values of the gyrotaxis number G and the motility of
microorganisms d, that characterize the hydrodynamic stability of the system are
compared with the experimental data presented in Table I of Bees and Hill [27] and
Table II of Bees and Hill [26] where the gyrotactic biflagellate alga Chlamydomonas
nivalis is used as suspended microorganism. Below, it is shown for the first time that
the numerical results have a very good agreement with the experimental data.

The chapter is organized as follows. The governing equations and boundary
conditions [48, 49] as well as the basic state can be found in Section 2. Nondimen-
sionalization and linearization of the system of equations is outlined in Section 3. In
Section 4, use is made of an asymptotic expansion [50–53] method and a Galerkin
method [54] to find limiting cases and predict critical values of R and k for the
instability. The numerical calculations done by means of the shooting method along
with the graphics corresponding to the marginal curves are given in Section 5. In
Section 6, the experimental data [27] are compared with the numerical results. A
discussion is given in the final section.

2. Equations of motion

We consider an infinite horizontal layer of a suspension of gyrotactic microor-
ganisms. The fluid layer is bounded at z∗ ¼ �H,0. The fluid where the cellular
microorganisms swim is water with density ρ. Each cell has a volume υ and density
ρþ Δρ, where Δρ≪ ρ. The suspension is considered dilute and incompressible.
Density fluctuations in the suspension are small enough such that the Boussinesq
approximation is valid and the corresponding governing equations are

ρ
Du∗

Dt∗
¼ �∇p∗ � n∗υgΔρkþ μ∇2u∗ (1)

∂n∗

∂t∗
¼ �∇ � J∗ (2)

∇ � u∗ ¼ 0 (3)

where t∗ is the time, u∗ is the suspension velocity, p∗ is the pressure, gk is the
acceleration due to gravity, k is the vertical unit vector, μ is the viscosity, n∗ is the
concentration of microorganisms, and J∗ is the flux density of organisms through
the fluid defined as

J∗ ¼ n∗u∗ þ n∗Vcp
∗ �Dc∇n

∗ (4)

where Vc is the cell swimming speed, p∗ is a unit vector representing the average
orientation of cells, and Dc is a scalar microorganism mass diffusion coefficient
independent of the other parameters of the problem. Use is made of Cartesian
coordinates with the z-axis in the vertical direction. The walls at z∗ ¼ �H,0 are
considered to be rigid. As pointed out by Hill et al. [24] although the top boundary
is open to the air, algal cells tend to collect at the surface forming what appears to be
a packed layer, and it is unlikely that the boundary is ever fully stress-free. Then the
boundary conditions are
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u∗ ¼ 0atz∗ ¼ �H,0 (5)

J∗ � k ¼ 0atz∗ ¼ �H,0 (6)

In the basic state, the fluid velocity is zero and n∗ ¼ n∗0 zð Þ and p0 ¼ k. Thus for
n∗0 zð Þ from Eq. (2) with the boundary conditions (6), we have

n∗0 zð Þ ¼
nVcH exp Vcz

∗=Dc½ �

Dc 1� exp �VcH=Dc½ �ð Þ
(7)

where n represents the average concentration of organisms. Eq. (7) is the same
basic state as presented by Ghorai and Hill [48, 49] whose linear stability will be
investigated. It differs from that of Childress et al. [19] and Hill et al. [24] by the
coefficient

VcH

Dc 1� exp �VcH=Dc½ �ð Þ

3. Linear stability

Wemake the governing Eqs. (1–3) nondimensional by scaling all lengths withH,

the time with H2=Dc, the fluid velocity with Dc=H, the pressure with νDcρ=H
2, and

the cell concentration with nHVc=Dc. Now the dimensionless variables are
expressed without star. The boundaries are located at z ¼ �1,0 and the basic state is

u0 ¼ 0, p0 ¼ k, n0 zð Þ ¼
edz

1� e�d

where the nondimensional quantity d ¼ VcH=Dc is the ratio of swimming speed
of microorganisms and their representative mass diffusion velocity. Here, d is called
the motility of the microorganisms. In order to investigate the linear stability of the
system, small perturbations have to be considered. They are

u ¼ u0 þ δu1, p ¼ p0 þ δp1, p ¼ p0 þ δp1, n ¼ n0 þ δn1

where δ≪ 1. The components of u1 are u1; v1;w1ð Þ. In this way, the
nondimensional governing Eqs. (1–3) are linearized to order O δð Þ. Then, we have
the following linear equations

Sc�1 ∂u1

∂t
¼ �∇p� Rn1kþ ∇2u1 (8)

∂n1
∂t

¼ �w1
dn0
dz

� d
∂n1
∂z

� dn0∇ � p1 þ ∇2n1 (9)

∇ � u1 ¼ 0 (10)

where

Sc ¼
ν

Dc
, R ¼

nυgΔρH3d

Dcνρ

are the Schmidt and bioconvection Rayleigh numbers, respectively. Pedley and
Kessler [55] give a definition of the vector p1 for swimming microorganisms with
spheroidal shape. They determine p1 in terms of u1 that in nondimensional form is
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p1 ¼ G 1þ α0ð Þ
∂u1⊥

∂z
� 1� α0ð Þ∇⊥w1

� �

(11)

G ¼
BDc

H2 (12)

where the subscript ⊥ denotes the horizontal component, α0 is the cell eccen-
tricity, and G is the nondimensional form of the gyrotactic orientation parameter B.
Finally after substitution of p1 and n0, the governing equations become

Sc�1 ∂u

∂t
¼ �∇p� Rnkþ ∇2u (13)

∂n

∂t
¼

dedz

1� e�d
�wþ G 1þ α0ð Þ

∂
2w

∂z2
þ 1� α0ð Þ∇2

⊥w

� �� �

� d
∂n

∂z
þ ∇2n (14)

∇ � u ¼ 0 (15)

with boundary conditions

u ¼ 0atz ¼ �1,0 and
∂n

∂z
� dn ¼ 0atz ¼ �1,0 (16)

where the superscripts have been deleted. Notice that the adimensionalization of
the equations is different from that of Hill et al. [24]. Here, an application of a more
general asymptotic analysis for any magnitude of d is used. An analytic Galerkin
method and a shooting numerical method for the solution of the proper value
problem allowed us to have an interesting perspective of the stability of the present
problem under research. The results are used here to compare with the experimen-
tal data of the flagellated alga Chlamydomonas nivalis.

By elimination of the pressure from Eqs. (13–15), it is possible to obtain a
coupled system of two equations, for w and n, to describe the instability of the
system. The perturbations of the variables will be analyzed in terms of normal
modes of the form

w ¼ W zð Þ exp kxxþ kyy
� �

iþ σt
� 	

,

n ¼ Φ zð Þ exp kxxþ kyy
� �

iþ σt
� 	

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

is the wavenumber of the disturbance and σ is the growth

rate. The wavenumber is scaled as k ¼ k∗H corresponding to a nondimensional
wavelength λ ¼ 2π=k. Thus, the governing equations become

�Rk2Φ ¼
σ

Sc
þ k2 �D2

� �

k2 �D2
� �

W (17)

σþ dDþ k2 �D2
� �

Φ ¼
dedz

1� e�d
�1þG 1þ α0ð ÞD2 � 1� α0ð Þk2

� 	�

W
�

(18)

subject to the boundary conditions

W ¼ DW ¼ DΦ� dΦ ¼ 0 at z ¼ �1,0 (19)

where D ¼ d=dz. The variables of the above problem can be changed in order to
simplify the analysis. The change of dependent variable is

Φ ¼ F zð Þedz
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Then, Eqs. (17) and (18) and the boundary conditions Eq. (19) become

�Rk2Fedz ¼
σ

Sc
þ k2 �D2

� �

k2 �D2
� �

W (20)

σ� dDþ k2 �D2
� �

F ¼
d

1� e�d
�1þG 1þ α0ð ÞD2 � 1� α0ð Þk2

� 	�

W
�

(21)

subject to the new boundary conditions

W ¼ DW ¼ DF ¼ 0 at z ¼ �1,0 (22)

In this form, the equations are very similar to those of the well-known problem
of thermal convection in an infinite horizontal fluid layer between nonconducting
boundaries [50–53, 56]. The familiar fixed heat flux boundary condition is the main
characteristic of those thermal convection problems and is analogous to that
presented in Eq. (22). The equations derived by Childress et al. [19] can also be
analyzed from the present view point of this change of variable. In the theory of
thermal convection as in that of Childress et al. [19], a zero critical wavenumber is
found as a result of the fixed flux boundary condition. In more recent models,
which include the effects of gyrotaxis, the similarity with the thermal convection
problem is not valid unless G ¼ 0.

4. Asymptotic analysis

In this section, the eigenvalue problem stated in the system of Eqs. (13–15) with
boundary condition Eq. (16) is investigated by means of two analytic methods. The
magnitude of the marginal value of R is a function of all the other parameters. The
way in which the solution of the stability problem is to be carried out is as follows.
For a given value of d and G, we must determine the lowest value for R with respect
to the wavenumber k. The values obtained are the critical Rayleigh numbers Rc at
which instability will first occur.

4.1 Asymptotic analysis

We conducted a general asymptotic analysis in comparison with those used
before [19, 24, 26] which included the restrictions of the limits d≪ 1 for shallow
layers and d≫1 for deep layers along with different restrictions for G. In a similar
way, as in other problems of convection, we follow the steps of Chapman and
Proctor [51], Dávalos-Orozco [52], and Dávalos-Orozco and Manero [53]. Under
the above conditions, the analysis is very complex, the reason why use has been
made of the Maple algebra package. Thus, we look for a solution to Eqs. (20) and
(21) using the following expansions:

W ¼ W0 þ εW1 þ…, (23)

Φ ¼ Φ0 þ εΦ1 þ…, (24)

R ¼ R0 þ εR1 þ…, (25)

σ ¼ εσ0 þ ε2σ1 þ… (26)

where ε≪ 1. We also consider no restrictions for d and G and rescale the

wavenumber as k ¼ ε1=2~k. Thus, after substitution of expansions Eqs. (23–26) and
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the mentioned scalings in Eqs. (20) and (21) with boundary condition Eq. (22), we
obtain the following systems of equations at different orders.

At order O 1ð Þ

D4W0 þ ~k
2
R0e

dzF0 ¼ 0, (27)

D2 þ d
� �

F0 ¼ 0 (28)

subject to

W0 ¼ DW0 ¼ DF0 ¼ 0 at z ¼ �1,0: (29)

At order O εð Þ

D4W1 � 2~k
2
þ
σ0

Sc

� �

D2W0 þ ~k
2
edz R0F1þR1F0Þ ¼ 0,ð (30)

d

1� e�d
G 1þ α0ð ÞD2 � 1
� 	

W0 � σ0 þ ~k
2

� �

F0 þ D2 þ d
� �

F1 ¼ 0 (31)

subject to

W1 ¼ DW1 ¼ DF1 ¼ 0 at z ¼ �1,0: (32)

At order O ε2ð Þ

D4W2 � 2~k
2
þ
σ0

Sc

� �

D2W1 þ ~k
4
þ
σ0~k

2

Sc
�
σ1

Sc
D2

 !

W0 þ ~k
2
edz R0F2 þ R1F1 þ R2F0ð Þ ¼ 0,

(33)

d

1� e�d
G 1þ α0ð ÞD2 � 1
� 	

W1 � G 1þ α0ð Þ~k
2
W0

n o

� σ0 þ ~k
2

� �

F1 � σ1F0 þ D2 þ d
� �

F2 ¼ 0

(34)

subject to

W2 ¼ DW2 ¼ DF2 ¼ 0 at z ¼ �1,0: (35)

The systems of equations at order O εð Þ and higher are inhomogeneous and must
satisfy their corresponding solvability conditions allowing to compute the Rayleigh
number R as an eigenvalue in terms of the other parameters of the problem. Solv-
ability conditions are found as usual [57]: each inhomogeneous system is multiplied
by the solution to the adjoint of the homogeneous system and integrated over the
range of the independent variable. The resulting integral must vanish.

Thus, the solvability conditions at O εð Þ and O ε2ð Þ are, respectively,

0 ¼
d

1� e�d

ð0

�1
edz G 1þ α0ð ÞD2 � 1
� 	

W0dz� σ0 þ ~k
2

� �

ð0

�1
edzF0dz (36)

0 ¼
d

1� e�d

ð0

�1
edz G 1þ α0ð ÞD2 � 1

� 	

W1;�G 1þ α0ð Þ~k
2
W0

n o

dz

� σ0 þ ~k
2

� �

ð0

�1
edzF1dz� σ1

ð0

�1
edzF0dz

(37)

The solutions of the system of equations at leading order are
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F0 ¼ 1, W0 ¼ f 1 z; dð ÞR0
~k
2

(38)

where the function f 1 z; dð Þ can be obtained from the authors upon request. For
convenience, the solution F0 has been normalized to 1. The next step is to evaluate
the solvability condition Eq. (36) at O εð Þ and obtain an expression for σ0

σ0 ¼ ~k
2

1� d2G 1þ α0ð Þ
� 	

A0R0 � 1
 �

(39)

The constant A0 is large and can be obtained from the authors upon request. At
order O εð Þ similar steps as those for solving the system of equations at O 1ð Þ are
followed to find F1 and W1. Then, algebraically F1 is

F1 ¼ G 1þ α0ð Þf 2 z; dð Þ þ f 3 z; dð Þ
� 	

R0
~k
2

(40)

After substitution of F0, W0, F1, and σ0 into Eq. (30), the velocity W1 can be
calculated subject to its corresponding boundary condition Eq. (32). Because of the

term edz appearing in the system of equations at O 1ð Þ, the expression of W1 is very
large and complicated and will not be given here. The evaluation of the solvability
condition at order O ε2ð Þ given in Eq. (37) yields

σ1 ¼ 1� d2G 1þ α0ð Þ
� 	

~k
2
A0R1 � G2 1þ α0ð Þ2A1 þ G 1þ α0ð ÞA2 þ A3

h i

R2
0

n

þG 1� α0ð ÞA4R0 þ R0 1� d2G 1þ α0ð Þ
� 	

G 1þ α0ð ÞA5 þ A6½ �R0f

þA7 þ 1� d2G 1þ α0ð Þ
� 	

A8R0 þ A7=2
� �

=Sc
�

~k
4

(41)

The growth rate can now be obtained by substitution of σ0 and σ1 into the
expansion for σ given in Eq. (26). However σ is omitted to save space but can be
obtained from the authors upon request. Finally, use is made of the expansion
Eq. (25) for R.

Now, the transition from stability to instability via a stationary state is investi-
gated by setting σ ¼ 0. Thus, the corresponding value of R for the marginal state is

R ¼
1

1� d2G 1þ α0ð Þ
� 	

A0

þ
k2

1� d2G 1þ α0ð Þ
� 	

A0

G 1� α0ð Þ

1� d2G 1þ α0ð Þ
� 	þ

G 1þ α0ð ÞA5 þ A6

1� d2G 1þ α0ð Þ
� 	

A2
0

þ
G2 1þ α0ð Þ2A1 þ G 1þ α0ð ÞA2 þ A3

1� d2G 1þ α0ð Þ
� 	2

A2
0

þ
A7

A0

)(

(42)

where some simplifications have been made with the use of R0 obtained from
Eq. (39). The functions f 2 z; dð Þ and f 3 z; dð Þ and the coefficients A1 to A8 appearing
in the above expressions are functions of d and can be obtained from the authors
upon request. The result for R0 is

R0 ¼
1

1� d2G 1þ α0ð Þ
� 	

A0

(43)

From the expression for the Rayleigh number given in Eq. (42), it is possible to
calculate the limit for d≪ 1. In this case, we consider d and k to be of the same order
in such a way that kd ¼ k=d and kd � O 1ð Þ. Then, under these assumptions, the
approximation of R k; d;G; α0ð Þ is
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R ¼ 720 1þ d2
17

420
þ G 1þ α0ð Þþ k2d

17

462
�

2

7
G 5� 2α0ð Þ

� ���

þ O d3
� �

��

(44)

Here we point out that in the present chapter, our definition of the Rayleigh
number differs from that defined by Hill et al. [24]. If our approximation given in

Eq. (44) is multiplied by d
1�e�d ¼ 1þ d=2þ d2=12� d4=720…

� �

, the same approxi-

mation by Hill et al. [24] is obtained. Moreover, if G ¼ 0 this becomes that given by
Childress et al. [19]. In the more general expression of R for a small wavenumber
approximation, Eq. (42) has a special characteristic due to its dependence on the
square of the wavenumber k. The first coefficient at zeroth order in k corresponds
to R0, and that at the second order in k is R1. Even though in the experiments on
bioconvection [27], only finite critical wavenumbers kc >0 have found these coeffi-
cients are very useful. For example, it can be shown from R0 that if A0 >0 and

1� d2G 1þ α0ð Þ >0 (45)

then R0 <0. This corresponds to a stable stratification, which is not the case here.
The second coefficient R1 in Eq. (42) is a very important result, because it provides
information about the shape of the marginal curve with respect the critical
wavenumber. That information can be obtained by making zero the coefficient R1

and calculating the following critical value of the gyrotaxis number Gc

0 ¼ G2 1þ α0ð Þ2 A1 � d2A5 � d2A2
0

1� α0

1þ α0

� �

þ G 1þ α0ð Þ

½A2 þ A5 � d2 A6 þ A7A0ð ÞþA2
0

1� α0

1þ α0

�

þ A3 þ A6 þ A7A0

(46)

From this equation, two admissible cases are possible when Eq. (45) is satisfied.
First, for fixed values of d, α0, and G >Gc, the marginal curve starts at k ¼ 0 and
then decreases monotonically. However, according to the numerical analysis
presented below, the marginal curves in fact first decrease and then start to grow
monotonically after a minimum is attained, at the critical wavenumber. In the
second case, for fixed values of d, α0, and G <Gc, the marginal curves start at k ¼ 0
and then grow monotonically. Here, the critical wavenumber is always zero. The
importance of these results is that the magnitude of Gc agrees very well with the
results of the marginal curves found in the numerical analysis given below. This
critical value determines the magnitude for which the curves have a finite critical
wave number (G >Gc) or a zero critical wavenumber (G <Gc). It is of interest to
note that some of the magnitudes of the gyrotaxis parameter G calculated from the
data in the literature are very near but above of Gc. This is the reason why some of
the curves found from numerical analysis are almost flat in a range of wavenumbers
near to zero. Because the experimental critical wavenumbers found for gyrotactic
bioconvection are always finite, we conclude thatGc is important to point out where
to find the theoretical limitations of the model.

4.2 Analytic Galerkin method

Here use is made of the analytical Galerkin method to study the eigenvalue
problem of Eqs. (17)–(18) with the boundary condition Eq. (19). This method has
been used before by Pellew and Soutwell [58], Chandrasekhar [54], and Gershuni
and Zhukovitskii [59]. Even though this is an approximate method, it has a very
high precision. The advantage of the method is that it is possible to obtain an
explicit expression of the Rayleigh number R. Here, it is supposed that σ ¼ 0.
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Briefly, the method consists in assuming a trial function which satisfies the
boundary conditions for each of the dependent variables. Let that variable be Φ
which after substitution in one of the equations of the problem allows for the exact
solution of the other variables, let us sayW. Both trial functions are now substituted
into the other coupled equation. Then, use is made of the orthogonality properties
of the solutions in this equation to obtain the proper value of the Rayleigh number
as a function of the other parameters [60].

In this way, the proposed expansions of Φ and W are

Φ ¼ ∑
∞

n¼0
Bn exp dzð Þ cos πnz and W ¼ ∑

∞

n¼0
BnWn (47)

then, after substitution of Φ of Eq. (47) into Eq. (20), Wn is the solution of the
following differential equation:

D2 � k2
� �2

Wn ¼ �Rk2 exp dzð Þ cos πnz (48)

which is subjected to the conditions

Wn ¼ DWn ¼ 0 at z ¼ �1:0: (49)

The solution is

Wn ¼ a1 cos πnzþ a2 sin πnzð Þedzk2Rþ c1e
kz þ c2e

�kz þ c3ze
kz þ c4ze

�kz (50)

where c1 to c4 are constants of integration which can be found by evaluating in
the boundary condition Eq. (49).

Next, Eq. (18) is multiplied by Φ and is integrated in the range z ¼ �1 to z ¼ 0,
to get

d

1� e�d

ð0

�1
Φ �1þ G 1þ α0ð ÞD2 � 1� α0ð Þk2

� 	� �

Wdz

�

ð0

�1
Φ D e�dzD

� �

� k2e�dz
� 	

Φdz ¼ 0

(51)

After substitution of Φ and W, given in Eqs. (47) and (50) and some simplifica-
tions, we obtain

d

1� e�d

ð0

�1
Φm �1þ G 1þ α0ð ÞD2 � 1� α0ð Þk2

� 	� �

Wndz

�

�

�

�

�

ð0

�1
Φm D e�dzD

� �

� k2e�dz
� 	

Φndz

�

�

�

�

¼ 0

(52)

This determinant, calculated with the help of the software Maple, is the solv-
ability condition from which the eigenvalue R is calculated. The resulting algebraic
expression of the integrals in this equation is very complex and will not be
presented here. However, the first approximation of R, corresponding to the ele-
ment (0,0) of the matrix in the determinant Eq. (52), is

R ¼
1� e�d
� �

A10

de�d 1þ G 1� α0ð Þk2 � d2G 1þ α0ð Þ
� 	

A9

(53)

where A9 and A10 are functions of the wavenumber k and d and can be obtained
from authors upon request. This result is new because it includes, for the first time,
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all the parameters of the problem without any approximation. In the limit of
d, k,G ! 0, R reduces to the well-known value of 720. Higher-order estimates of R
can be obtained from Eq. (52), which provides a useful check on numerical calcu-
lations. The comparison of R given in Eq. (42), obtained from the asymptotic
analysis, and that of Eq. (52) shows that in the limit k ! 0, the agreement was very
good.

5. Numerical computations by a shooting method

Here, the shooting method [61] is used to solve the eigenvalue problem posed by
the system of Eqs. (20) and (21) subjected to the boundary condition Eq. (22).
Curves of marginal stability in the plane k;Rð Þ were calculated for fixed values of
the parameters d, G, and α0. Notice that very good agreement was always found
among the values of the R of the asymptotic analysis (in the limit k ! 0), of the
Galerkin method, and of the numerical computations. Calculations were made in
two ways. First, the parameters d, G, and α0 were varied in order to obtain a
representative set of marginal curves for the problem of bioconvection. Second,
experimental data were also used to fix the values of d, G, and α0 and used to find
theoretical values of kc and Rc that could be compared with their corresponding
experimental values. Here, in particular, a selection is made of α0 ¼ 0:4, which
corresponds to the flagellated alga Chlamydomonas nivalis. Figures 1–3 show mar-
ginal curves for different values of the gyrotaxis parameter G, while d remains fixed
with magnitudes 0.1, 1, and 5, respectively. These figures clearly show the effect the
gyrotaxis parameter G has on the critical wavenumber. When the magnitude of G is
large enough, the critical wavenumber changes from zero to a finite value which
increases with G, as shown by the squares located at the minimum value of R.
Notice that it is found that the critical value Gc, which represents the magnitude at
which the properties of the marginal curves change, from having kc ¼ 0 to kc >0, is
very well approximated by Eq. (46). This critical value is important because it
represents the magnitude of G below which the present theory ceases to predict the
experimental results which always show critical wavenumbers kc >0.

In the curves shown in Figure 1a–b, the critical values of the gyrotaxis parame-
ter are Gc ¼ 0:0306;0:0266;0:0060, respectively. As mentioned above for G >Gc,
the critical wavenumber is finite, and for G < Gc the critical wavenumber is always
zero. The combined effects of the velocity of the swimming of microorganisms, d,

Figure 1.
(a) Graphs of log R vs. k for fixed d ¼ 0:1. (b) Graphs of log R vs. k for fixed d ¼ 1. The black square markers
indicate the position of the critical wavenumber and Rayleigh number.
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and that of gyrotaxis, G, change the location of the critical wavenumber. Note also
that for fixed d, when G increases, the system becomes more unstable. From the
Figure 1a and b, it can be seen that the most unstable case corresponds to that for
d ¼ 0:1 and G ¼ 10 where kc ¼ 4:45 and Rc ¼ 9:0618. This may be understood by
the fact that the accumulation of microorganisms near to the top of a shallow layer
is faster than in a deeper one. This is due to the important role that the mass
diffusion of microorganism Dc and the depth of suspension H play on the instability
of the system. The value of Gc in the limit of d, k ! 0 can also be calculated from
Eq. (46) by means of an asymptotic analysis. That is,

Gc ¼
17

132 5� 2α0ð Þ
þO d2

� �

(54)

Here, some theoretical curves are presented of which some have a very good
agreement and others a reasonable agreement with the experiments 2, 4, 9, 10, 13,
16, 20, 24, 26, 27, 28, 29, 31, and 35, performed by Bees and Hill [27].

The values for the motility d and the gyrotaxis parameter G used in Figures 2
and 3 were calculated based on experimental data by Bees and Hill [26, 27], which

Figure 2.
(a) Graphs of log R vs. k for fixed d ¼ 5. (b) Graphs of log R vs. k for experiments 35, 2, 4, and 9 with d
increasing from the curve below to above. The black square markers indicate the position of the critical
wavenumber and Rayleigh number.

Figure 3.
(a) Graphs of log R vs. k for experiments 26–29, 24, 31, and 16 with d increasing from the curve below to
above. (b) Graphs of log R vs. k for experiments 13, 10, and 20 with d increasing from the curve below to
above. The black square markers indicate the position of the critical wavenumber and Rayleigh number.

12

Heat and Mass Transfer - Advances in Science and Technology Applications



in here are presented in Tables 2 and 3 of the following section. In order to observe
in detail the position of the critical point kc;Rcð Þ in Figures 2 and 3, a local magni-
fication is included.

Here, a comparison is done of our theoretical results of kc;Rcð Þ with the theoret-
ical ones presented by Bees and Hill [26] in their Table VI. According to Bees and
Hill [26], experiments 2 and 23 in their Table V have kc;Rcð Þ of comparable order
with those in their Table VI. In our Table 1, we reproduce the comparison made by
Bees and Hill [26] of their own theoretical and experimental results of their Table V,
and we added the corresponding error in percent of the wavenumbers and Rayleigh
numbers, respectively. Note that the value α0 ¼ 0:4 corresponds to flagellated
microorganisms such as Chlamydomonas nivalis, while α0 ¼ 0:2 corresponds to
nonflagellated. Notice that their experimental and theoretical values of d are not
exactly the same.

For the sake of comparison of our theoretical results with those of the experi-
ments, Table 1 shows the percent of error calculated by taking the difference of the
experimental and theoretical values and then dividing by the smallest one. In
Table 1, the more realistic value α0 ¼ 0:4 for Chlamydomonas nivalis is included,
which corresponds to the second line of experiment 2 of Bees and Hill [26] pre-
dictions. It is clear from Table 3 that our theoretical results show a very important
improvement in the reduction of the percent error with respect to experiment 2.

6. Comparison with experiments

In this section a comparison is done of our theoretical results of Rc and kc with
the corresponding experimental values obtained by Bees and Hill [27]. Here use is
made of the results of the 39 experiments shown in Table I of Bees and Hill [27].
Besides, the more realistic value of the parameter α0 ¼ 0:4, corresponding to the
flagellated algae Chlamydomonas nivalis, is also used to calculate d, G, and R.

In Table 3, the values of d, G, and R resulting from the experimental data are
presented. Note in Table 2 that the experimental results of the cell swimming speed
V s and of the cell diffusivity Dc are given inside a range of values. In this case, a
particular value inside the range has to be selected. The swimming speed used here

is 63�10�4cm=s. The decision is based on the results obtained by Hill and Hader
[62], Pedley and Kessler [25], and Bees and Hill [26]. The value of the cell diffusiv-
ity was decided to be that corresponding to an average over the range given in

Table 2, that is, Dc ¼ 27:5� 10�5cm2=s.
Very recent experimental measurements on the diffusivity for different micro-

organisms like the biflagellated alga Chlamydomonas reinhardtii have been reported

Experimental results Theoretical predictions Error (%)

EN dBH kc RBHc �106
� �

dBH dBH2η α0 kc RBHc �106
� �

k RBH

2 44.7 5.11 3.25 40 16 0.2 51 5.0 898 53

40 16 0.4 51 9.0 898 176

23 204 7.84 863 200 32 0.2 270 1700 3343 96

EN represents the experiment name. Subscript BH indicates that the definition of Bees and Hill, [26] for the
parameters d and R is used. η is the gyrotactic parameter [26].

Table 1.
Experimental measurements of Bees and Hill [27] and their theoretical prediction [26].
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by Polin et al. [63]. Bees and Hill [27] state that there is some evidence to suggest
that cells of Chlamydomonas nivalis are not gyrotactic during the first week of
subculturing; then if it is not the case for the cells of Chlamydomonas reinhardtii,
more measurements for the parameters α0, B, V s, H, n, and kc would be needed in
order to perform comparison between theoretical and experimental results. The
definitions of d, G, and R are related with those of Bees and Hill [26] dBH, η, and
RBH, respectively, as follows:

d ¼
V2

s τK2

DcK1
dBH, G ¼

Dc

V2
s τ

η, R ¼
K2

2τ
3V5

s

D2
cHK2

1

1� exp �
K1H

K2Vsτ

� �� �

RBH (55)

where the constants K2 ¼ 0:15 and K1 ¼ 0:57 (see [26] for more details). τ is a
direction correlation time which equals 1:3s in the nonflagellated case and 5s in the
flagellated case. The data corresponding to the suspension depth H and the average
cell concentration of microorganisms n of each experiment (see [27] for more
details) have not been reported in Table 3. Only the parameters d, G, k, and R are
presented in that table. It is also found that the value of the G of each experiment is
greater (but sometimes near) than their corresponding critical value Gc of Eq. (46).
Under these conditions, all the critical wavenumbers have to be kc >0.

By using the data of our Table 2 and Table I of Bees and Hill [27], the experi-
mental values for d, G, and RE were calculated and listed in Table 3. The experi-
mental value of the wavenumber kE was also obtained from Table I of Bees and Hill
[27] and was calculated as follows: the wavelength λ0 cmð Þ is nondimensionalized
with the corresponding suspension depth H cmð Þ to get λE, and then the critical
wavenumbers were calculated from kE ¼ 2π=λE. RT and kT are our theoretical
wavenumber and Rayleigh number obtained by the shooting method. The curves of
marginal stability corresponding to experimental results with good and very good
agreement with theory are shown in Figures 2 and 3. As explained above, we have a
substantial improvement in the agreement of the critical wavenumbers and Ray-
leigh numbers with respect to the experimental results (see Table 3). A great
number of experimental data have been compared with the present theory in
Table 3.

Name Description Value

ϑ Cell volume 5 � 10�10 cm3

g Acceleration due to gravity 103 cms�2

Dc Cell diffusivity 5 � 10�5
–5 � 10�4 cm2s�1

ρ Fluid density 1 gcm�3

ρþ Δρ Cell density 1.05 gcm�3

ν Kinematic viscosity 10�2 cms�2

Vc Cell swimming speed 0–2 � 10�2 cms�1

B Dimensional gyrotaxis parameter 3.4 s

B Including flagella 6.3 s

α0 Cell eccentricity 0.20–0.31

α0 Including flagella 0.4

Table 2.
Estimates and measurements of typical parameters for a suspension of the alga Chlamydomonas nivalis
[24, 25, 64, 65].
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NE d G� 10�2
RE RT kE kT Error k (%) Error R (%)

1 7.63 1.56 7043.64 10384.23 5.67 5.65 0.353 47.6

2 9.07 1.10 10599.14 17075.28 5.12 6.22 21.5 61.1

3 8.36 1.30 23319.62 13531.06 8.59 5.95 44.4 72.3

4 10.2 0.879 24835.78 23783.25 5.96 6.71 12.6 4.42

5 11.9 0.636 12433.03 37984.11 6.81 7.69 12.9 205

6 16.7 0.326 59993.82 105787.08 6.61 10.9 64.9 76.3

7 9.14 1.09 4676.34 17544.33 6.01 6.31 4.99 275

8 8.73 1.19 7198.47 15309.02 7.25 6.09 19.0 112

9 10.4 0.833 20618.78 25437.60 8.33 6.84 21.8 23.4

10 15.8 0.364 88709.37 89546.43 8.34 10.3 23.5 0.943

11 6.46 2.18 3700.78 6613.53 5.24 5.31 1.33 78.7

12 12.1 0.621 39993.68 40261.72 5.66 7.94 40.3 0.670

13 14.8 0.416 77622.32 73779.00 7.85 9.71 23.7 5.20

14 8.80 1.17 8561.41 15655.83 6.93 6.11 13.4 82.9

15 7.28 1.71 4022.37 9146.74 5.46 5.54 1.46 127

16 7.10 1.80 6960.80 8540.98 6.43 5.49 17.1 22.7

17 10.7 0.788 18965.81 27708.92 4.16 7.02 68.7 46.1

18 10.7 0.788 18965.81 27708.92 8.32 7.02 18.1 46.1

19 10.7 0.788 18965.81 27708.92 4.89 7.02 43.5 46.1

20 16.6 0.331 107793.38 104192.94 8.7 10.9 25.3 3.45

21 8.80 1.17 8561.41 15655.83 7.01 6.11 14.7 82.9

22 8.13 1.37 6910.81 12466.94 6.11 5.84 4.62 80.4

15 B
iocon

vective
L
in
ea
r
Sta

b
ility

of
G
ra
vita

ctic
M
icroorga

n
ism

s
D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.83724



NE d G� 10�2
RE RT kE kT Error k (%) Error R (%)

23 10.7 0.791 41777.52 27799.28 7.84 7.06 11.0 50.3

24 6.67 2.04 6260.75 7202.62 6.07 5.36 13.2 15.0

25 4.26 5.01 1044.17 2301.46 6.22 4.82 29.0 120

26 6.46 2.18 5663.12 6613.53 6.71 5.31 26.4 16.8

27 6.46 2.18 5663.12 6613.53 6.05 5.31 13.9 16.8

28 6.46 2.18 5663.12 6613.53 5.37 5.31 1.13 16.8

29 6.46 2.18 5663.12 6613.53 5.94 5.31 11.9 16.8

30 7.83 1.48 33599.24 11220.81 7.46 5.74 30.0 199

31 6.80 1.96 6478.07 7585.38 6.00 5.39 11.3 17.0

32 4.47 4.56 4519.70 2583.99 6.66 4.86 37.0 74.9

33 2.70 12.4 475.88 2180.73 4.97 6.52 31.2 358

34 3.85 6.14 1958.29 4879.03 6.21 6.46 4.02 149

35 7.42 1.65 8259.40 9655.91 6.15 5.60 9.82 16.9

36 7.83 1.48 33599.24 11220.81 6.49 5.74 13.1 199

37 5.22 3.33 2418.53 3794.61 6.37 4.99 27.6 56.9

38 6.87 1.92 20572.53 22011.51 10.4 7.13 46.0 6.99

39 6.87 1.92 20572.53 22011.51 10.8 7.13 51.9 6.99

EN means experiment name, and subscripts E and T indicate experimental and theoretical data. Cell eccentricity α0 ¼ 0:4 is used.

Table 3.
Experimental measurements of wavenumbers [27] and present theoretical predictions.
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Some numerical results agree very well with experiments, as can be seen in the
experiments 4, 10, 12, 13, 20, and 35 of Table 3. Others are good, such as the results
of experiments 9, 16, 24, 26, 27, 28, 29, and 31. With respect to the other data in
Table 3, it might be possible that if the experimental measurements are improved,
the agreement with theory will be better. The results given here show that the
approximate and numerical solutions of the system of governing equations
presented in this paper may bring a light to the solution of many other problems of
bioconvection.

7. Conclusions

The governing equations of bioconvection were used to investigate the problem
of an infinite horizontal microorganism suspension fluid layer. The theoretical pre-
dictions of the critical wavenumber kc and Rayleigh number Rc were compared with
their experimental counterparts [27]. Very good, good, and fair agreements were
found. But in general, we may say that our numerical results improve by far those
obtained by Bees and Hill [26].

With the asymptotic analysis for k < < 1, it was possible to calculate a Rayleigh
number not reported before without any restrictions on the magnitudes of d and G.
This result is important because it was also possible to calculate a critical value of
the gyrotaxis parameter Gc which indicates the boundary between the possibility of
a marginal curve with kc ¼ 0 (G < Gc) and another one with kc >0 (G > Gc).

However, it is clear from the experimental results that the critical wavenumbers
are finite and large and that the former case is not physical. Therefore, this Gc also
defines the limit of validity of the theory. Note that it agrees very well with numer-
ical analysis.

An analytic Galerkin method was also used to obtain a general expression of R
without any restriction on the magnitudes of d, G, and k � O 1ð Þ. This gave us an
explicit expression of R not reported before which proved to be very useful when
checking with the numerical computations.

Numerical results have shown that the system becomes more unstable
when the layers are shallow. The physical interpretation of such situation is that
the accumulation of microorganisms near the top of the layer in the shallow case
is faster than in the deeper case, due to the smaller depth of suspension H. A
consequence of this is that the critical wavenumber is smaller for shallower
layers. This can be explained by means of the boundary conditions of the
microorganism concentration. If the parameter d tends to zero, the boundary
conditions tend to those similar to the “fixed heat flux” boundary conditions of the
problem of natural convection heated from below [50–53, 56]. Moreover, it has
been shown above that by a change of variable, it is possible to transform the
boundary conditions of the concentration into those similar to the “fixed heat flux”
boundary conditions. In that problem it has been shown that the critical
wavenumber tends to zero. However, due to the gyrotaxis, the critical wavenumber
is not zero in the present problem if G > Gc, which, from the experimental results, is
the case here. But notice in Figures 1–3 that in fact, also in this case, the critical
wavenumber decreases with a decrease of d. The change of the critical wavenumber
with respect to G is also clear in the figures. The critical wavenumber decreases with
a decrease of G.

Finally, we would like to point out that it is our hope that the results presented in
this chapter may stimulate researchers to make more new and precise experiments
on bioconvection in the near future.
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Nomenclature

B dimensional gyrotactic parameter, s
k wavenumber
Dc cell diffusivity, cm2s�1

d motility of microorganisms
G dimensionless gyrotactic parameter
g acceleration due to gravity, cms�2

H layer depth, cm
J∗ flux density of organisms
n average cell concentration
n∗ concentration of microorganisms
p pressure
R Rayleigh number
Sc Schmidt number
t∗ time
Vc cell swimming speed, cms�1

u∗ fluid velocity
x∗ Cartesian coordinates
Greek symbols
α0 cell eccentricity
μ viscosity, gcm�1s�1

ν kinematic viscosity, cm2s�1

ρ water density, gcm�3

ϑ cell volume, cm�3

Subscripts
BH result obtained by Bees and Hill [26]
c critical value
E experimental result
T theoretical result
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