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Chapter

Gene Regulation in Ruminants: A 
Nutritional Perspective
Johan S. Osorio and Sonia J. Moisa

Abstract

This chapter will focus on cellular regulatory programs implemented by the 
ruminant physiology in order to respond to external stimuli such as nutrition as well 
as important physiological events such as parturition. The increasing adoption of 
“omics” technologies and bioinformatics in nutrition and physiology in ruminant 
research have allowed us to delineate a clearer picture on what regulates major 
biological process at a molecular level such as milk synthesis and meat quality and 
fatty acid composition as well as pathological conditions such as ketosis, mastitis, 
and heat stress. The assembly of such plethora of information in a blend among 
nutritional research, molecular biology, and novel tools to study the response of the 
genome to nutrition has led to emerging disciplines such as nutritional genomics or 
“nutrigenomics.”

Keywords: nutrigenomics, transcription factors, ruminants

1. Introduction

The increasing adoption of molecular biology techniques and bioinformatics in 
nutrition and physiology in ruminant research has provided a wealth of knowledge 
on regulatory mechanisms of major biological processes related to milk synthesis and 
meat quality and marbling at a cellular level. This body of knowledge has prompted a 
compelling case for a change in the paradigm in ruminant nutrition, where nutrients 
in ruminant diets can act as bioactive molecules and exert alterations in molecular 
mechanisms depending on the animal physiological state. Such alterations can be 
carried out through gene regulation mechanisms, also known as nutrigenomics. The 
continuous accumulation of nutrient-gene interactions in ruminant research will 
eventually lead to practical applications where nutritional interventions may be made 
in order to improve performance and efficiency in milk yield or skeletal muscle.

1.1 Ruminant model for nutrient-gene interactions

The adoption of advanced molecular technologies in basic nutritional research 
in ruminants has led to a more robust notion of how nutrients can affect the animal 
at the cellular level. Then, this body of knowledge has led toward a general notion 
in ruminant nutrition, where nutrients in the diet can no longer be considered 
only as: (1) the building blocks for cells, tissue, and organs or (2) energy source for 
cell metabolism and basic cell function, but rather a new alternative concept for 
nutrient is that they (3) act as bioactive molecules that can regulate fundamental 
molecular mechanisms depending on the animal physiological stage.
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Because of the inherited gastrointestinal differences between ruminants and 
monogastrics, the final effect of a nutrient at the molecular level will differ primar-
ily based on how susceptible such a nutrient is to rumen fermentation. Therefore, 
rumen fermentation and kinetics play an important role in the context of nutrient-
gene interaction in ruminants (Figure 1). Then, from a nutrigenomic standpoint, 
a given nutrient in a ruminant diet will likely be fermented or bypass the rumen. 
If fermented in the rumen, this nutrient will become either part of the microbial 
biomass or an intermediate metabolite such as volatile fatty acids (VFA) which can 
be absorbed through the rumen wall and enter the metabolism of ruminants. In 
the case of nutrients bypassing the rumen, these can be converted to intermediate 
metabolites [1], produce a signal transduction cascade [2, 3], or directly bind and 
activate specialized cellular proteins called transcription factors (or nuclear recep-
tors) [4, 5] which are responsible for carrying out the final change in gene expres-
sion by binding to specific sections in the DNA upstream of the target gene. Some 
transcription factors can create a secondary wave of change in gene expression by 
upregulating the transcription of subsequent transcription factor [6], and previ-
ously, it has been proposed that transcription factors may work in an orchestrated 
fashion creating a network of transcription factors that respond to dietary effects 
[7]. An alternative effect from intermediate metabolites is the production of DNA 
or histone modifications by changing the available information in the DNA [8], 
also known as epigenetic effects. A potential epigenetic mechanism mediated by 
transcription factors is the increased transcription of noncoding RNAs such as 
microRNAs [9], which upon transcription these small RNAs will target coding RNA 
prior to their translation into proteins.

Figure 1. 
Proposed ruminant model for gene expression regulation of dietary nutrients through transcription factor 
activation and epigenetic mechanism (i.e., DNA or histone methylation and noncoding RNA).
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1.2 Mediators of nutrient-gene interactions in ruminants

Nutrients and bioactive compounds in regular ruminant diets will mainly 
interact indirectly with the genome through mediators in the form of specialized 
molecular proteins such as transcription factors, DNA methyltransferases, histone 
methyltransferases, among others. Here, we provide a brief overview of the major 
mediators of nutrient-gene interactions in ruminants known to date. Based on 
the ruminant model for nutrient-gene interactions (Figure 1), the specific tran-
scription factors, enzymes, or cellular mechanisms with in vivo or in vitro data in 
ruminants are presented in Table 1. Among the known transcription factors with 
nutrigenomic potential, the peroxisome proliferator-activated receptors (PPARs) 
have been well studied in ruminants [10]. These transcription factors belong to the 
ligand-dependent nuclear receptors (LdNR) family [11], and their importance for 
nutrigenomic interventions in ruminants relies on their ability to bind and be acti-
vated by long-chained fatty acids (LCFA) commonly present in ruminant diets. The 
PPAR isotypes (e.g., α, γ, and δ) play multiple roles across several tissues in mam-
mals, for instance, PPARγ has been observed to regulate adipogenesis and insulin 
sensitivity [12, 13], while PPARα has a crucial role in hepatic fatty acid catabolism 
[14]. In contrast to PPARγ and PPARα, PPARδ has been studied to a lesser extent; 
however, it is known for its role in fatty acid catabolism in skeletal muscle [15] 
and regulation of glucose uptake [7]. Additionally, Bionaz and collaborators [10] 
proposed a model for the concomitant and orchestrated regulation of major physi-
ological adaptations by the three isotypes of PPARs in dairy cows going from late 
pregnancy into lactation. These effects are exerted across several tissues (e.g., liver, 
skeletal muscle, mammary gland, adipose, immune cells, etc.) where PPARs have 
a strong effect, and their ability to be activated by dietary fatty acids makes them 
a strong candidate for nutrigenomic effects in ruminants. The PPARs exert similar 
effects as observed in dairy cows in other ruminants, for instance, PPARγ has been 
associated with adipogenic effects in beef, cows [16, 17], and goats [18] as well as 
fatty acid oxidation by PPARα in transition dairy goats [19].

Similar to the PPARs, the liver X receptor (LXR) belongs to the LdNR family 
and has a prominent role in controlling cholesterol synthesis [15]. The LXR is 
known to be activated by oxysterols and derivatives from cholesterol metabolism, 
and fatty acids [15]. From the two known isoforms of LXR (e.g., α and β), the 
LXRα presents interesting characteristics including the potential control of sterol 
regulatory element-binding transcription factor 1 (SREBF1) gene expression [20], 
which is a major transcription factor associated with the regulation of milk fat 
synthesis [21]. The ability of LXRα to regulate SRBEF1 expression confers this TF a 
strong potential to enhance milk fat synthesis in ruminants; however, most of the 
current data on LXRα activity have been conducted with synthetic agonist [20, 22].  
Therefore, a stronger case for the nutrigenomic potential of this TF could be 
made by future research including its activation by common fatty acids present in 
ruminant diets.

Retinoids are metabolites derived from vitamin A, and they can regulate gene 
expression through two classes of receptors: retinoic acid receptors and retinoid 
X receptors (RXR). The latter can form homodimers and be activated in the 
presence of the retinoid 9-cis-retinoic acid and consequently activating specific 
target genes [23]. From the two isoforms (i.e., α and β) of RXR, the RXRα has 
been the most evaluated in ruminants, primarily because it can form heterodi-
mers with most LdNR including PPAR, LXR, and VDR [24]. Although the latter 
confers RXRα a tremendous biological significance, there are limited data in 
ruminants on the potential nutrigenomic effects of vitamin A and derivative 
retinoids such as 9-cis-retinoic acid through RXRα.
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Common name Protein 

symbol

Gene 

symbol

Agonist Main function Ruminant1 Reference

Transcription factors

Peroxisome proliferator-

activated receptor α

PPARα PPARA Fatty acids Fatty acid metabolism, inflammation, and tissue 

regeneration

B, D, G, 

and S

[10, 24], [126, 

127]

Peroxisome proliferator-

activated receptor γ

PPARγ PPARG Fatty acids Adipogenesis, insulin sensitivity, and lipogenesis B, D, G, 

and S

[10, 16–18, 24], 

[126]

Peroxisome proliferator-

activated receptor β

PPARβ PPARD Fatty acids Fatty acid metabolism, tissue regeneration, and glucose 

uptake in mammary tissue

B, D, G, 

and S

[10], [127–130]

Liver X receptor α LXRα NR1H3 Oxysterols/fatty 

acids

Cholesterol homeostasis, macrophage functions, and 

inflammation

B, D, and G [22, 62], [131]

Retinoic X receptor α RXRα RXRA 9-cis-retinoic 

acid

Forming heterodimers with other LdNR and neutrophil 

differentiation

B and D [132–134]

Sterol regulatory element-

binding protein 1

SREBP1 SREBF1 N/A Cholesterol and fatty acid synthesis B, D, G, 

and S

[25, 26], [135]

DNA methyltransferases

DNA methyltransferase 1 DNMT1 DNMT1 N/A Maintenance of methylation patterns B and D [72, 105]

DNA methyltransferase 3 α DNMT3a DNMT3A N/A Creates de novo methylation patterns. Present in 

cytoplasm and nucleus

B and D [72], [136]

DNA methyltransferase 3 β DNMT3b DNMT3B N/A Creates de novo methylation patterns restricted to 

nucleus

B and D [137, 138]

Noncoding RNA

MicroRNA 33 miR33b Regulates lipogenesis D [30]

MicroRNA 192 miR192 Regulates myogenesis S [139]
1Ruminant as B = beef cows, D = dairy cows, G = goats, and S = sheep.

Table 1. 
Important mediators associated with nutrient-gene interactions in ruminants via transcriptional regulatory factors (transcription factors) and epigenetic factors (DNA methyltransferases and 
noncoding RNAs).
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The study of milk fat depression revealed the importance of SREBP1 in milk 
fat synthesis [25], which resulted in a deep understanding how t10,c12 CLA, and 
a milk fat-depressing diet consistently downregulate SREBF1 in bovine mam-
mary tissue [21]. Consequently, this effect downregulates the expression of genes 
associated with milk fat synthesis such as fatty acid synthase (FASN), lipoprotein 
lipase (LPL), and insulin-induced gene 1 (INSIG1) [21]. The importance of this 
TF for nutrigenomics in ruminants cannot be overstated since this was the first 
nutrigenomic effect documented. And the importance of this TF in the regulation 
of fat synthesis has also been observed in beef cattle and translated in marbling and 
meat quality [26]. A section on this commonality between dairy and beef cattle is 
dedicated at the end of this chapter.

Epigenetic mechanisms play a significant role as mediators of nutrient-gene 
interactions in ruminants and the ramifications of these effects in ruminant nutri-
tion and physiology are only beginning to be uncovered, and they add another layer 
of complexity to our model (Figure 1). From a nutrigenomic standpoint, methyl 
donors present in common diets fed to ruminants such as folate, vitamin B (e.g., 2, 
6, 12), choline, and methionine can regulate epigenetic modifications through the 
one-carbon metabolism where the intermediate s-adenosylmethionine (SAM) is 
produced and subsequently used as the universal methyl donor for DNA and his-
tone methylations [27]. These effects are carried out through specialized enzymes 
such as DNA and histone methyltransferases. While the effect of dietary methyl 
donors on DNA methyltransferases has been evaluated in ruminants, the effect 
of methyl donors on histone methyltransferases in ruminants remains unknown. 
Similarly, other histone modifications such as acetylation and phosphorylation have 
not been investigated within the context of nutrigenomics in ruminants.

Among the various epigenetic mechanisms, noncoding RNA and specifically 
microRNAs have received a lot of notoriety in recent years [28], and, in contrast, 
long noncoding RNAs (LncRNAs) are only beginning to be evaluated in ruminants 
[29]. Examples of microRNAs with a potential application to improving milk and 
meat quality are the miR33b and miR192 (Table 1). The former has been previously 
associated with lipogenesis in the mammary gland of dairy cows as well as having 
the greatest upregulation from pregnancy into lactation [30]. In the case of miR192, 
it has been observed to influence muscle development through myogenesis in sheep. 
Since the interactions between microRNAs and coding mRNAs are one-to-many, 
meaning that a single microRNA can regulate the translation of several coding 
mRNAs, special caution should be applied when interpreting this type of data. The 
LncRNAs are relatively new in the context of ruminant nutrition and physiology 
and are commonly characterized by containing >200 nt that are not translated into 
proteins [31]. This work provided nuances on the role of LncRNAs in the mammary 
gland in terms of mastitis and milk quality and production.

The importance of understanding these multiple mediators of nutrient-gene 
interactions cannot be overstated. The authors envision that the continuous accu-
mulation of this wealth of knowledge will lead to accurate and consistent manipula-
tion of the ruminant genome to access or unlock the full genetic potential with the 
aim to produce ruminant products more efficiently, with a targeted effect on human 
health, and with a lesser cost for the environment.

2. Gene regulation in dairy cattle

Milk is one of the most nutritious foods known to man, and milk from dairy cattle has 
been part of the human diet from approximately 9000 years ago [32]. And, currently, 
the consumption of milk and milk-derived products around the world is expected to 
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increase, primarily due to an increase in world population and increased consumption in 
countries where milk has not traditionally been considered popular [33]. Until now, the 
demand of milk worldwide has been supplied by a large increase in milk yield per cow, 
which has been a product primarily from the selection and enhancement of manage-
ment practices, including improved nutrition. However, because of the ever-increasing 
demand for milk and milk-derived products as stated above, there is a need to continue 
increasing milk production efficiency.

Milk and milk products are an excellent source of macronutrients such as fat, 
protein, and carbohydrates, and contain a variety of bioactive molecules associ-
ated with health benefits, for instance, conjugated linolenic acid (CLA). The CLA 
has been associated with reductions in cancer development [25]. Because of its 
ability to contain bioactive molecules, milk has been considered a functional food. 
However, our ability to understand and yet manipulate the cow genome through 
nutrigenomic approaches to enrich specific bioactive molecules in milk is in its 
infancy. This calls for a continuous development of a wealth of knowledge around 
the various complex nutrient-gene interactions in dairy cows as well as development 
of nutritional models that can account for both traditional aspects of ruminant 
nutrition and more novel molecular regulation of nutrient metabolism.

2.1 Gene regulation and milk biosynthesis

During the lactation, the mammary gland is in charge of the final biosynthesis 
of milk using preformed elements from other organs (e.g., glucose synthesized in 
the liver) or compounds synthesized within the mammary epithelial cells  
(e.g., de novo fatty acids). The biosynthesis of milk in the mammary gland is highly 
regulated for several factors including nutrient supply (e.g., glucose, AA, and fatty 
acids) and hormones primarily related to hormonal changes during the onset and at 
the decline of the lactation.

2.1.1 Lactogenesis and the mammary gland transcriptome

Lactogenesis is the hallmark of mammalians, and as such, this biological process 
conveys a tremendous impact in gene regulation with the objective to induce the 
mammary gland to lactate and coincides with the formation of colostrum and 
occurs in coordination with parturition. The strong effects of lactogenesis on the 
mammary gland at the cellular level have been consistently recorded through 
transcriptomic analysis (i.e., microarray or RNA sequencing) across several mam-
mals including mouse [34–36], rats [37, 38], bovine [39–41], sheep [42], goat [43], 
human [44–46], pig [47], kangaroo [48], and seal [49]. The extreme changes in 
the transcriptome from pregnancy to lactation underscore the importance of such 
change in the transcriptome in the mammary gland to initiate and maintain milk 
synthesis. In the case of bovine, a closer look at such transcriptional changes due 
to the onset and throughout the lactation was reported previously in terms of fat 
[50] and protein [51] synthesis. During the lactation, the milk fat biosynthesis in 
the bovine mammary gland had a marked upregulation in the expression of genes 
associated with FA uptake from blood, intracellular transport/channeling, and key 
transcription factors associated with lipogenesis (i.e., PPARG and SREBF2) [50]. 
Then, in terms of milk protein synthesis, it was observed that cell membrane trans-
porters, especially for AA and glucose, played an essential role along with insulin 
signaling through mTOR for the regulation of protein synthesis in the bovine 
mammary gland [51]. At a greater scale, the impact of lactogenesis in the mammary 
gland transcriptome has been associated with epigenetic changes that result in 
alterations in the DNA structure and consequently the available genetic information 
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for transcription [39]. Bionaz [39] observed chromatin changes (i.e., euchromatin 
or active transcribed chromatin and heterochromatin or tightly packed and tran-
scriptionally unavailable chromatin) associated with lactogenesis, where a decrease 
of euchromatin status was observed as lactation begins and followed by an increase 
in euchromatin status as milk yield decreases during late lactation. The latter could 
be associated with natural response to lactation in the mammary gland to inhibit 
further epigenetic effects during the onset of lactation and to maintain a consistent 
transcriptome until milk synthesis declines in late lactation.

2.1.2 Milk biosynthesis in the dairy cattle from a nutrigenomic approach

Nutrigenomics is a coined term to refer to the interactions between nutrients and 
the genome. However, the term nutrigenomics does not refer to the effect of nutri-
ents on the sequence of DNA, but rather the nutrient-gene interactions through the 
intermediate action of transcription factors (TFs) in the short to medium term and 
epigenetic factors in the medium to long term. Bioactive compounds with potential 
nutrigenomic effects can be found in regular diets of dairy cattle, and such com-
pounds can directly or indirectly activate or repress the activity of TF.

Nutrigenomics is a product of the postgenome era and its impact on human, 
companion animals, and livestock species has gained more attention in recent years 
[52–55]. In dairy cattle, and overall in ruminants, the field can be considered in its 
infancy but, as argued by Coffey [56], holds great potential to improve health and 
productivity.

2.1.3 Transcription factors with nutrigenomic potential in dairy cattle

The TFs are fundamental to the study of nutrigenomics; they can act as inter-
mediaries between dietary nutrients and the final alteration in gene expression. TFs 
that respond to nutrient effects can be activated directly or indirectly by nutrients, 
and upon activation, they translocate from the cytoplasm to the nucleus where they 
alter the transcription of specific target genes. Transcription factors can bind spe-
cific short DNA sequences (i.e., 6–12 nucleotides) called response elements located 
in the enhancer regions upstream of the actual gene sequence [57]. The ability of 
TF to modulate gene expression upon activation by nutrients confers these proteins 
a central stage in the field of nutrigenomics. Therefore, accurate identification and 
characterization of TF responding to specific nutrients and to what extent these TF 
can be manipulated through dietary effects should be the focus of future research in 
nutrigenomics in dairy cattle.

Although between 2000 and 3000 TFs with sequence-specific DNA-binding 
domains in the human genome were estimated, only ~100 have been experimentally 
verified for their DNA-binding and regulatory functions [58]. The AnimalTFDB 
website had collected information for almost 1300 TF and almost 400 transcription 
cofactors for Bos taurus [59]. Rather than TF working independently, a regulatory 
network of TF has been suggested, which is essential to coordinate the response to 
external stimuli and translate this into changes in gene expression [60].

Among the known TF, the nuclear receptor superfamily of TF, with 48 members 
in the human genome, is the most important group of nutrient sensors [61]. From 
this superfamily, a short list of TFs has been identified as ligand-dependent nuclear 
receptors (LdNR), which can bind and be activated by macro- and micronutri-
ents [55]. Recently, the main LdNR with a potential role in nutrigenomics with 
an emphasis in large [62] and small [24] ruminants has been reviewed. Among 
the LdNR associated with macronutrients such as fatty acids are the peroxisome 
proliferator-activated receptors (PPAR), liver X receptors (LXR), and hepatic 
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nuclear factor 4 (HNF4) [63]. The LdNR associated with micronutrients are 
primarily vitamin-specific and include retinoid X receptors (RXR) and retinoic 
acid receptors (RAR) activated by retinoic acids or metabolites of vitamin A [64], 
vitamin D receptor (VDR), and pregnane X receptor activated by vitamin E [65].

The PPAR belongs to the LdNR group of TF and requires to form heterodimers 
with RXR in order to be functional. The main characteristic of PPAR is to have a 
prominent role in controlling expression of genes involved in lipid metabolism and 
inflammation. The potential nutrigenomic role of PPAR in ruminants has been 
reviewed at length previously [10]. This review discussed the role of PPARα in con-
trolling lipid metabolism and inflammation in liver, the potential role of PPARβ/δ 
in controlling glucose uptake in mammary tissue, and the potential role of PPARγ 
in controlling milk fat synthesis and mastitis [10]. An interesting feature of PPAR 
is their capacity for binding and be activated by LCFA in both monogastrics and 
ruminants [10, 66]. However, in the case of ruminants, data indicate that activation 
of the PPAR isotypes PPARα and PPARγ is more consistent with saturated LCFA, 
primarily palmitate and stearate, than unsaturated LCFA [10].

2.1.4 Nutriepigenomics in dairy cattle

Environment factors such as diet and ambient conditions can not only affect the 
short- and medium-term gene expression, but there is also a medium- to long-term 
regulation of genes. The latter is primarily carried out through changes in the avail-
ability of gene sequences to be transcribed into mRNA. This concept is referred to 
epigenetics, where “epi” is a Greek-derived term meaning “over” then, epigenetics 
is commonly referred as “on-top-of genetics.” The implications of epigenetics indi-
cate that there could be a set of inherited characteristics, phenotypes, and chemical 
entities that are superimposed on the DNA and do not follow basic Mendelian laws. 
Every individual will have a set of epigenetic marks throughout the genome, which 
is also known as the epigenome.

Epigenetic modifications are carried out through several biological processes 
including DNA methylation, histone modifications (e.g., methylation and acetyla-
tion), noncoding RNA (e.g., micro- and long-RNA). And, when these biological 
processes respond to nutrients and compounds in the diet, it is associated with 
nutriepigenomic effects. In ruminants, such effects could serve important physi-
ological adaptations during the onset of lactation including increasing the availabil-
ity of gene sequences through alterations in DNA methylation for the transcription 
of essential proteins such as caseins in the mammary gland of dairy cows [67]. This 
new spinoff of nutrigenomics (i.e., nutriepigenomics) will provide essential infor-
mation to our understanding of how nutrients can affect the biology of ruminants 
at a molecular level. However, at the same time, nutriepigenomics will add another 
layer of complexity to our field, where such interactions have to be fully under-
stood, and in time, manipulated through dietary interventions.

Methylation is a major route for epigenetic modifications, through DNA and 
histone methylation. Therefore, methyl donors (e.g., choline, methionine, folic 
acid, etc.) found in the diets of dairy cattle can have a nutriepigenomic effect. 
These dietary methyl donors will likely increase the synthesis of SAM, which is the 
major biological methyl donor in the body [68]. The essential role of SAM within 
the context of the transition cow relies on the multiple biological processes that 
require this methyl donor, including transsulfuration, polyamine biosynthesis, 
DNA methylation [69], and histone methylation [70]. Among these, the epigenetic 
modifications caused by DNA and histone methylation are particularly important 
in order to understand the potential nutriepigenomic alterations caused by dietary 
methyl donor (e.g., methionine) supplementation.
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DNA methylation occurs through specialized enzymes called DNA methyltrans-
ferases, which utilized the methyl group provided by SAM to methylate cytosines 
within a Cyt-phosphate-Gua (CpG) region (“island”) in the DNA and eventually 
creating methylated CpG patterns in the mammalian genome [71]. In ruminants, 
supplementation of rumen-protected to dairy cows resulted in a prepartal upregu-
lation of DNMT3A, a gene that encodes for a DNA methyltransferase in charge of 
the de novo methylation of the DNA [72]. And, more recently, the significance of 
these findings was confirmed by observing alterations due to methionine supple-
mentation in the liver of transition dairy cows in terms of global DNA methylation 
and specific region methylation of an important TF, the peroxisome proliferator-
activated receptor alpha PPARα [8]. The characteristics and uniqueness of this TF 
within the context of the transition dairy cow were initially presented by Drackley 
[73], and since then, this nuclear receptor has become an exciting area of research 
in dairy cattle nutrigenomics (i.e., nutrient-gene interaction) [10]. Therefore, 
the connection between Met and PPARα upregulation through DNA methylation 
during the transition period is another suitable mechanism to explain the consistent 
improvements in performance (e.g., milk yield and DMI) observed in transition 
dairy cows supplemented with Met [74].

In the cellular nuclei, the DNA is normally packed in condensed structures 
called chromatins, consisting primarily of histone proteins, which serve as spools 
where the DNA winds around. Then, the genetic information contained in the DNA 
exists in two states: unavailable or wind around histone proteins, and available or 
unwound. Chromatin remodeling is the main mechanism by which DNA is wind 
or unwound from histones and these dynamic modifications occur by enzymatic 
modifications including acetylation, phosphorylation, ubiquitination, and methyla-
tion [75]. The latter being a potential mechanism through which Met can alter gene 
expression in dairy cows. Currently, the limited amount of data on histone meth-
ylation in dairy cows has been conducted in immune cells [76] primarily related 
to subclinical mastitis [77]. This work has provided nuances on the interactions 
between mastitis-related pathogens and histone methylation; however, dietary 
effects on histone methylation have not been investigated.

3. Gene regulation in beef cattle

3.1 Mutations

In order to understand how changes in a single gene could significantly alter the 
body structure and physiology of beef cattle, we need to focus in mutations that 
occur in specific areas in the bovine genome. For example, a 11-nucleotide deletion 
in the Myostatin gene (MSTN) determines double muscling in Belgian Blue cattle, 
and a single nucleotide change produces the same effect on Piedmontese cattle 
[78]. Furthermore, the leptin gene (LEP) presents several single nucleotide poly-
morphisms (SNP), like AJ236854:c.73 T > C, which induces a cysteine-to-arginine 
amino acid substitution that could affect protein functionality [79]. The c.73C allele 
of LEP is associated with higher average daily gain (ADG), lower dressing percent-
age, and higher marbling scores [79], which are desirable characteristics in a beef 
carcass. Finally, intramuscular fat deposition could also be affected by a mutation 
in the fatty acid synthase gene (FASN), contributing to the characteristic fatty acid 
composition of Japanese Black beef [80]. However, not all mutations have beneficial 
effects on the productivity of meat-producing animals. There are also mutations 
that are considered lethal, affecting, for example, the reproductive performance 
of females through early embryonic loss [81], or mutations that produce genetic 
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disorders in beef cattle [82]. The Arachnomelia syndrome in Simmental cattle [83] 
that produce malformations of the skeleton mainly affecting the legs, the spinal 
column, and the skull is an example of these genetic disorders. These types of 
inborn errors can be prevented nowadays with techniques like genome editing [83]. 
Although the implementation of this technique in the animal production industry 
might generate controversy, it will offer tremendous potential for breeding animals 
with desirable traits.

Undesired mutations present in the bovine genome are difficult to avoid when 
they occur. Through the implementation of selection plans and genotyping the 
herds in order to avoid the reproduction of carrying individuals is the most com-
monly utilized strategy. Similarly, selection of animals that carry biomarkers in 
their genomes that will make them improve their meat production and marbling 
efficiency is the general goal of researchers passionate about beef production. 
Currently, identification of relevant genetic and genomic markers is ongoing, 
especially for tenderness—a top priority quality attribute [84].

3.2 Nutrigenomics in beef cattle

In spite of the emergence of new alternatives to beef production (e.g., cultivated 
meat) in order to meet the growing world population’s food demand, researchers in 
beef production are also focusing on techniques to regulate the bovine genome with 
a more natural approach (i.e., nutrigenomics). Nutrigenomics study the interactions 
between nutrients and genes [85], that is how the nutrients present in the diet can 
affect gene expression. In beef animals, nutrigenomics was widely studied [26]; fol-
lowing, a more detailed description of how specific nutrients regulate the expression 
of genes related to muscle growth and intramuscular fat deposition will be addressed.

The composition of adipose tissue produced in a meat-producing animal can 
be “manipulated” by diet, with some variability between breeds. For example, 
high silage-based diets produce less proportion of the fatty acid 18:2 n-6, with the 
consequent decrease in the amount of total polyunsaturated fatty acids (PUFA), as 
compared to low silage-based diets in subcutaneous adipose tissue [86]. This vari-
ability in fatty acids composition was attributed to greater activity of fatty acid bind-
ing protein 4 (FABP4), lipoprotein lipase (LPL), and stearoyl CoA desaturase (SCD) 
genes in subcutaneous adipose tissue of animals fed a low silage-based diet [86].

In the same way, we are able to regulate the fatty acid profile composition of 
a specific fat depot by dietary changes, researchers are trying to prioritize the 
growth and development of the intramuscular fat that will lead to greater marbling. 
Intramuscular fat starts to accumulate in the late stages of growth, as compared to 
other adipose tissue depots that normally develop first (i.e., visceral, intermuscular, 
and subcutaneous fat). The ultimate goal is to improve marbling scores that will 
lead to premium prices for the carcasses that classify as prime or choice according to 
the USDA carcass grading scale [87].

When comparing dairy and beef cattle breeds, subcutaneous fatty acid profile 
presents several differences in terms of fatty acids profile, probably due to the 
difference in the degree of fatness, which is always lower for dairy cattle [88]. 
The important variability in fat composition between breeds could be explained 
by the variability in relative SCD1 expression in subcutaneous fat [88]. SCD1 
seems to have a role in a depot-specific fashion.

3.3 How management decisions can affect gene expression

The combination of early weaning and high dietary starch leads to a 
strong programming effect in skeletal muscle tissue, with PPARγ and CCAAT 
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enhancer-binding protein alpha (CEBPA) as the central coordinators of this 
response. The implementation of early weaning (e.g., 2 months of age) in beef 
calves provides a different type of diet as compared to a calf weaned normally at 
6–7 months of age. Therefore, the early administration of starch in a beef produc-
ing animal produces a precocious and sustained activation of the PPARG and its 
target genes, leading to greater intramuscular fat deposition and consequently more 
carcasses grading as “Choice” [89].

Castration increases intramuscular fat (IMF) deposition, improving beef quality 
in cattle. In a transcriptome analysis performed in longissimus muscle (LM) sam-
ples, when comparing bulls and steers, castration showed to upregulate transcription 
of genes for lipogenesis, fatty acid oxidation, and also genes coding for enzymes 
associated with the tricarboxylic acid cycle and oxidative phosphorylation [90]. 
Therefore, castration shifts the transcriptome of lipid/energy metabolism to favor 
intramuscular fat deposition in the LM following castration.

Another beef producer decision that can affect the expression of genes is the 
selected calving season (i.e., different temperature/humidity index = THI). For 
example, two groups of pregnant cows that calved during thermoneutral tempera-
ture conditions (THI = 67.3) and cows that calved in summer season (THI = 79.9) 
were bleed during their transition period (i.e., cows between 3 weeks before 
and 3 weeks after calving) for RNA extraction of white blood cells [91]. Results 
showed that expression of CASP-3, BCL-2, BAK, P53, and ratio of BAX/BCL-2 in 
white blood cells increased during summer as compared to thermoneutral condi-
tions, suggesting the susceptibility of these cells to apoptosis or cell death [91]. 
Consequently, cows calving in two different calving seasons will present differences 
in their inflammatory response, affecting the maternal recognition of the fetus 
during early pregnancy [92] or also will have a negative impact in the cow’s milking 
ability postcalving [93].

3.4 Feedlot versus pasture

The beef industry has two main ways to produce beef: pasture-base, and grain-
based or feedlot. Consuming energy above requirements helps to increase the 
intramuscular fat deposition in beef cattle. Feeding high concentration of cereal 
grains is the way to reach surplus energy that can be utilized in the rumen and the 
small intestine to produce volatile fatty acids for glucose and energy production. 
The starch present in the grain is fermented by microbes in the rumen, producing 
propionate (a glucose precursor), which will be the signal received by the mem-
brane receptors present in the cell activating a cascade of events that will end up 
with the activation of genes related to the process of adipogenesis. This type of diet 
is more commonly administered during the so-called finishing or fattening phase.

When the diet is mainly based on the forage available, the rumen population con-
sists of microbes that produce a greater proportion of acetic acid which increases the 
activation of 5′-prime-AMP-activated protein kinase alpha (AMPK) phosphorylation, 
reducing the transcriptional activity of the sterol regulatory element-binding protein 
1c (SREBP1C) and the carbohydrate responsive element-binding protein (MLXIPL), 
which decreased the expression of lipogenic genes [94]. In beef cattle finished under 
a forage-based diet, the fatty acid profile varies considerably as compared to animals 
finished under feedlot diets. Beef finished under forage-based diets presents greater 
concentration of polyunsaturated fatty acids (PUFAs), especially the fatty acids with 
nutraceutical value (20:5 or EPA and 22:6 or DHA). These types of beef products are 
in the eye of consumers who care about eating healthy foods. These PUFAs mentioned 
above are upstream regulators of genes related to fatty acid synthesis and transport. 
FABP4, FASN, and PPARG are particularly activated by these additional PUFAs 
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generated due to the administration of forage-based diets [95]. Even though we could 
expect a greater proportion of IMF due to the mentioned additional PUFAs, there is 
an overall lower fat content in a grass-fed beef product. Furthermore, grass-fed beef 
is known to have a different flavor and aroma as compared to grain-fed beef when 
cook on the grill [96].

3.5 Fetal programming in beef cattle

The fetal programming concept is related to the important physiological changes 
that can occur due to environmental/nutritional events during prenatal develop-
ment. For example, nutrient restriction of 85% as compared to 140% of total 
metabolizable energy requirements during the second half of gestation can alter in 
fetal muscle the expression of both, myogenic and adipogenic genes, without appar-
ent differences in fetal phenotype [97].

The canonical Wnt pathway, a β-catenin-dependent signaling pathway called the 
Wnt/β-catenin signaling pathway is key in establishing the fate of the undifferenti-
ated stem cells; hence, β-catenin plays an essential role in the regulation of embry-
onic, postnatal, and oncogenic growth of many tissues. If the β-catenin pathway 
is blocked, the total number of myocytes will be reduced, and the differentiation 
of mesenchymal stem cells into mature adipocytes will be potentiated [98]. In the 
same way, adipogenesis is initiated around mid-gestation in ruminant animals; 
therefore, a strategic maternal nutritional plan in order to enhance the number of 
mesenchymal cells committed to adipogenesis will increase the number of intra-
muscular adipocytes in a process known as hyperplasia; therefore, this outcome 
will be translated as more marbling in the offspring postnatally. PPARG alone can 
stimulate adipocyte differentiation [99], although the continuation of this process is 
regulated by many PPARG target genes [100].

Bioinformatics analysis revealed a pseudoinflammatory process in early-weaned 
beef calves during their growing phase [101], which it is associated with the activa-
tion of the innate immune system presumably due to macrophage infiltration of 
intramuscular fat [101], which is a typical obesity symptom. These results could be 
considered as a biological sign of a precocious beginning of the adipogenic meta-
bolic machinery in young beef calves.

3.6 Epigenetics regulations in beef cattle

Changes caused by chromatin (the complex of DNA and histone proteins that 
forms chromosomes within the nucleus) modification due to environmental factors 
is called epigenetics [102]. Another epigenetics regulation approach is through 
microRNAs, which are endogenous noncoding small RNA molecules (20–24 base 
pairs) that prevent the production of a particular protein by binding to and destroy-
ing the messenger RNA that would have produced the protein [103].

Epigenetics regulation is based on chromatin remodeling rather than alteration of 
the DNA code. With the aim to identify methylated genes affecting bovine growth, 
an elegant study provides a genome-wide landscape of DNA methylomes and their 
relationship with mRNA and miRNA for fetal and adult muscle of Chinese Qinchuan 
beef cattle [104]. Presence of SNPs in epigenetic-related genes was analyzed in differ-
ent beef breeds. Interestingly, three DNA (cytosine-5)-methyltransferases (DNMTs), 
DNMT1, DNMT3a, and DNMT3b were found significantly associated with beef quality 
parameters on the carcass. In particular, DNMT3b presented five SNPs related to carcass 
traits, becoming a potential candidate gene for beef quality improvement [105].

In the bovine genome, no microRNAs were identified on chromosome Y, while 
microRNA related to adipose tissue are expressed in chromosome X [106]. This 
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could be a reason that explains the sexual differences in fat metabolism in mam-
mals. Furthermore, there are highly expressed microRNAs for beef adipose tissue, 
miR-378 which was found upregulated in steers with high levels of subcutaneous 
fat [107] and miR-2478 [108] which potentially targets ELOVL fatty acid elongase 
6 (ELOVL6) and stearoyl CoA desaturase (SCD), is bovine specific and had higher 
expression in grass-fed as compared to grain-fed cattle.

A study in bovine skeletal muscle development used next-generation small RNA 
sequencing, a total of 512 miRNAs were identified [109]. Thirty-six miRNAs were 
differentially expressed between prenatal and postnatal stages of muscle develop-
ment including several myomiRs (miR-1, miR-206, and let-7 families). Compared 
to miRNA expression between different muscle tissues, 14 miRNAs were upregu-
lated and 22 miRNAs were downregulated in the muscle of postnatal stage [109]. 
Furthermore, a genome-wide landscape of DNA methylomes and their relationship 
with mRNA and miRNA for bovine fetal and adult muscle recently discovered will 
provide a solid basis for exploring the epigenetic mechanisms of muscle growth and 
development [104].

Muscling in cattle influenced by genetic background, ultimately affecting 
beef yield is of major interest to the beef industry. The best alternative to promote 
muscle development is through satellite cell proliferation [110]. In fact, myoblast or 
satellite cells are utilized for the proliferation and differentiation of cultured meat 
[111]. The transcription factor Sp1, an activator of myosin D (MyoD) and a suppres-
sor of cyclin-dependent kinase inhibitor 1A (CDKN1A), plays an important role in 
bovine muscle cell proliferation and differentiation. This transcription factor is a 
target of miR-128 and, if this microRNA is overexpressed, it inhibits muscle satellite 
cell proliferation and differentiation [112]. Furthermore, miR-1 and miR-206 
facilitate bovine skeletal muscle satellite cell myogenic differentiation by restrict-
ing the expression of their target genes, and that inhibition of miR-1 and miR-206 
increased the paired box 7 (Pax7) and histone deacetylase 4 (HDAC4) protein levels 
enhancing satellite cell proliferation [113].

In Biceps femoris muscle of Japanese Shorthorn cattle, a grazing period up to 
4 months increased the expression of miR-208b, which has a muscle fiber type-
associated role. Furthermore, a target for miR-208b, MyoD, a myogenic regulatory 
factor associated with the shifting of muscle property to the fast type, had lower 
expression in the grazed cattle after 4 months of grazing, as compared to feedlot 
cattle. During skeletal muscle adaptation to grazing, miR-206 expression remained 
higher as compared to housed animals in which it decreases [114]. MiR-206 is 
known as the skeletal muscle-specific myomiRNA [115].

Offspring’s health depends on the maternal body condition at mid-gestation, 
which will make them be more predisposed to develop obesity at an early age, which 
in beef production is desirable. Fetal intramuscular adipogenesis was enhanced at 
mid-gestation due to alteration of microRNA expression; downregulation of let-7g 
was the main cause for this outcome [116]. This microRNA inhibits the mRNA 
expression of PPARG and CEBPA, both important regulators of adipogenesis [117]. 
Furthermore, cow plane of nutrition during the last third of gestation showed 
epigenetic effects on the offspring’s skeletal muscle through the downregulation of 
miR-34a that has a role on the activation of cell cycle arrest by suppressing SIRT1 
expression, which promotes adipocyte differentiation [118].

4. Molecular nutrition in ruminants

The importance of ruminants to the world food security is reflected in their 
contribution to the demand for animal protein around the world and particularly 
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in developing countries, and such demand is expected to increase in the future 
[119]. To face this demand, advancements in ruminant nutrition and physiology 
will require improvements on feed efficiency and development of novel functional 
foods from ruminants by enriching specific compounds associated with health ben-
efits in humans. The latter will need a deep understanding and wealth of knowledge 
of molecular regulatory mechanisms in response to physiological conditions and 
nutrition. In this context, this vast amount of multilayered data in terms of mRNA, 
proteins, metabolites, and phenotypes can only be undertaken with powerful tools 
such as omics technologies and bioinformatics. In fact, these are the foundations of 
modern system biology, a field of study with the aim to enhance the understanding 
of complex biological models and interactions occurring within cells and tissues. 
Understanding this complexity and the outcomes of nutritional interventions and 
physiological conditions will allow the formulation of novel theories and ideas 
to enhance feed efficiency, development of new functional foods derived from 
ruminant products, and reduce carbon footprint.

Even though the outcome is different, there are similarities in dairy and beef 
cattle from a nutrigenomic perspective. For instance, both the synthesis of milk fat 
in dairy cows and the synthesis of intramuscular fat in beef steers are regulated by a 
similar network of TF. Nutrients or stimulus received with the diet (PUFAs, insulin, 
etc.), activates PPARα in the liver of the dairy cow and PPARγ in the intramuscular 
preadipocyte of a beef steer. The activated PPARs form a heterodimer with retinoic 
X receptor alpha (RXRA), leading to the upregulation of their lipogenesis-related 
target genes (Figure 2). Furthermore, in the same way, the activation of the PI3K/
Akt/mTOR signaling pathway will lead to the synthesis of milk protein in dairy 
cows [120], the activation of the same metabolic pathway might lead to muscle 
hypertrophy in beef cattle, but this is a concept that has not been completely 
elucidated [121]. It is also worth to mention the importance of fatty acid binding 
proteins (FABPs) in ruminants, which bind and transport LCFA. FABP4 affects 
milk yield and milk protein content, both economically important traits in the dairy 
industry [122], and FABP4 also presents gene polymorphisms that have been associ-
ated with meat quality traits in beef cattle [123].

Figure 2. 
Example of nutrigenomics linkage between beef and dairy cattle.
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In a study aiming to use the fibroblast model to explore differences between a 
dairy breed (Holstein) and a beef breed (Angus) in their innate responses to LPS 
exposure, several immune-associated differentially expressed genes between breeds 
were found [124]. Within them, TLR4, which is the extracellular receptor respon-
sible for recognition of LPS presented higher level of expression in Holstein cows 
as compared to Angus, suggests the Holstein animals will detect and respond to 
Gram-negative bacteria more vigorously than Angus animals.

Finally, epigenetic differences between beef and dairy cattle could also be 
observed mainly because of the different environments the offspring are exposed 
after birth. While a beef calf usually stays with the dam approximately until 
6–7 months old, a dairy calf is separated from its mother as soon as it finishes 
consuming colostrum or earlier. Although there are studies that started to analyze 
the epigenetic differences between breeds [124], this is a promising area that needs 
to be studied in deep.

5. Conclusions

The general nutrigenomic model for ruminants needs to be updated based on 
emerging nuance information with the ever-growing pace in ruminant nutrition 
research with “omics” technologies. The dissection of what intermediate compo-
nents or processes such as intermediate metabolites, signal transduction, TF, etc., 
are utilized by specific nutrients will allow for accurate predictions of the nutrig-
enomic outcomes of such nutrients in a practical setting. However, the multilayered 
and multifactorial nature of the nutrigenomic model will require the implementa-
tion of additional tools such as system biology and network theory in order to have 
a more holistic approach to understand how nutrients regulate milk synthesis or 
skeletal muscle gain and marbling.

One of the greatest challenges in ruminant nutrigenomics is to account for 
the final products from rumen fermentation, where several factors such as 
rate of passage, intake, particle size of the diet can affect rumen fermentation 
and kinetics. The latter can be avoided by feeding nutrients encapsulated or 
protected from ruminal degradation; however, this does not eliminate the need 
to account for the substantial impact the rumen fermentation and its products 
may have on the overall nutrigenomic effect from a particular diet. Because of 
this reason, the resurgence of the field of the microbiome in ruminant nutrition 
research promise to add valuable information on rumen microbes response to 
nutrients in the diet and correlate this with final nutrigenomic responses at the 
whole animal level.

Our understanding of the impact of nutrition on regulatory mechanisms at 
the cellular level in the ruminant animal has grown an accelerated pace over the 
last decades. As pointed out by Drackley 12 year ago [125], the marriage between 
“omics” technologies with measurements of tissue metabolism and the final 
performance (e.g., milk yield and skeletal muscle gain) has been enlightening 
and essential to identify key responses to nutritional changes and physiology. 
However, there is still too much to learn in the complex nutrient-gene interac-
tions in the context of the ruminant animal. The future of nutrigenomics in 
ruminants is to develop technologies and algorithms to predict the final molecu-
lar outcomes of nutrients and diets fed to ruminants in a practical setting. This 
monumental task can only be accomplished by generating a wealth of knowledge 
in several orders of magnitude of what we currently have on nutrigenomics in 
ruminants.
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