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Abstract

In this chapter, some recent advances in the area of generalizedWeierstrass representations
will be given. This is an approach to the theory of surfaces in Euclidean three space.
Weierstrass representations permit the explicit construction of surfaces in the designated
space. The discussion proceeds in a novel and introductorymanner. The inducing formulas
for the coordinates of a surface are derived and important conservation laws are formu-
lated. These lead to the inducing mechanism of a surface in terms of solutions to a system
of two-dimensional Dirac equations. A set of fundamental forms as well as expressions for
the mean and Gaussian curvatures are derived. The Cartan moving frame picture is also
formulated to put everything in a broader perspective. A connection with the nonlinear
sigmamodel is presented, which has important applications in physics. Some relationships
are established between integrable systems and geometry by way of conclusion.

Keywords: metric, tensor, manifold, Weierstrass representation, curvature, evolution
equation
Mathematics Subject Classification: 35Q51,53A10

1. Introduction

The theory of immersions and deformations of surfaces has been an important area of study as

far as classical differential geometry is concerned. An inducing mechanism for describing

minimal surfaces imbedded in three-dimensional Euclidean space was first put forward by

Enneper and Weierstrass in the nineteenth century [1]. Their basic ideas have been extended

and generalized by Konopelchenko and colleagues [2–4]. The connection between certain

classes of constant mean curvature surfaces and the trajectories of an infinite-dimensional

Hamiltonian system was put forward first by Konopelchenko and Taimanov [2], and has
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proved to be very useful in investigating types of questions related to this and other types of

spaces and in higher dimensions [5, 6].

Surfaces and their dynamics play a very crucial and important role in a great number of

phenomena which arise in the physical sciences in general. A longer introduction and more

examples can be found in [7, 8]. They appear in the study of surface waves, shock waves,

deformations of membranes, as well as in many problems in hydrodynamics connected with

the motion of boundaries between regions of differing densities and viscosities. At the present

time, they are appearing in string theory models [9–11] and in the study of integrable systems

in general [12, 13]. A special case is that of surfaces which have zero mean curvature. These

surfaces are usually referred to as minimal surfaces. The work of Weierstrass and Enneper

originally concerned itself with the construction of minimal surfaces in three-dimensional

Euclidean space [14, 15].

It is the intention here to present an introduction to the work of Konopelchenko and referred to

presently as the generalized Weierstrass representation. The work presents both mathematical

and physical developments in the area which should be relevant to both physicists and

mathematicians. The development starts by studying a coupled system of two-dimensional

Dirac equations in terms of two complex functions that involves a mass term that depends on

two coordinates of the space. This equation can then be decomposed into a system of two

simpler equations and their respective complex conjugates. By looking at such things as

conservation laws, inducing formulas which specify the coordinates of a surface in Euclidean

three space can be deduced, as well as the first and second fundamental forms pertaining to

the surface. A remarkable result of this development is that the mass which appears in the

Dirac system becomes related to the mean curvature of the surface. One might say this

indicates that mass is a consequence of geometry in this type of model. To fit these develop-

ments in the larger picture of modern differential geometry, the Cartan moving frame for the

system is formulated out of which emerges another remarkable result. Namely, the two-

dimensional Dirac equation is a way of writing an affine connection on the surface. Finally, by

investigating the Gauss map, it is shown that there is a mathematical way of proceeding from

the Dirac system and the nonlinear sigma model in two dimensions [16, 17]. The whole

construction leads to a very deep link between nonlinear evolution equations and geometry

as a whole [18, 19]. The paper finishes with some interesting examples and outlook for further

work.

2. Two-dimensional Dirac equation and construction of surfaces

The process of inducing surfaces in three-dimensional space can be generalized by establishing

a system of Dirac equations in terms of a mass parameter and two complex valued functions

called ψ1 and ψ2. In Euclidean space in two dimensions, the Dirac equation can be written in

terms of the set of Pauli matrices σμ
� �

as follows:

Ψ ¼ i σ1∂x þ σ2∂y
� �

ΨþmΨ ¼ 0: (1)

Manifolds II ‐ Theory and Applications2



In (1), the mass term m has been generalized to be a real function of x and y, which are the

Cartesian coordinates of the space. Let us introduce two complex operators defined to be

∂ ¼
1

2
∂x � i∂y
� �

, ∂ ¼
1

2
∂x þ i∂y
� �

: (2)

In terms of a complex variable z ¼ xþ iy, we also define ∂ ¼ ∂=∂z and ∂ ¼ ∂=∂z: A, and spinor

wavefunction Ψ is specified in terms of two components ψ1 and ψ2 as

Ψ ¼
ψ1

ψ2

� �

: (3)

Using (2), the Dirac equation can be developed in terms of the two components of Ψ and their

complex conjugates to give the following coupled first-order system of equations:

∂ψ1 ¼
i

2
mψ2, ∂ψ1 ¼ �

i

2
mψ2,

∂ψ2 ¼
i

2
mψ1, ∂ψ2 ¼ �

i

2
mψ1:

(4)

The Dirac equation in the form (4) leads to a variety of differential constraints. The first of

which is given by

ψ1∂ψ1 þ ψ1∂ψ2 ¼ ψ1 �
i

2
mψ2

� �

þ ψ2

i

2
mψ1

� �

¼ 0,

as well as its complex conjugate equation. There is also the expression for a new real variable p

ψ1∂ψ2 � ψ2∂ψ1 ¼
i

2
m ψ1

�

�

�

�

2
þ ψ2

�

�

�

�

2
	 


¼
i

2
mp,

and its complex conjugate. This also serves to define the real function P

p ¼ ψ1

�

�

�

�

2
þ ψ2

�

�

�

�

2
: (5)

A system of conservation laws can also be formulated

ψ1∂ψ1 � ψ2∂ ψ2 ¼ 0, ψ1∂ψ2 þ ψ1∂ ψ2 ¼ 0, (6)

as well as their complex conjugate equations. The complex quantity S is defined as follows:

ψ2∂ψ1 � ψ1∂ψ2 ¼
i

2
pS, ψ1∂ψ2 � ψ2∂ψ1 ¼

i

2
pS: (7)

Let Φ be the two-by-two matrix spinor given by

Φ ¼
ψ1 �ψ2

ψ2 ψ1

 !

, (8)
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defining the real variable u so that p in (5) is given by p ¼ eu, and it follows that

p ¼ eu ¼ det Φ ¼ ψ1

�

�

�

�

2
þ ψ2

�

�

�

�

2
: (9)

Clearly, we have Φ Φ† ¼ pI and there follows another differential constraint:

p∂u ¼ ψ1∂ψ1 þ ψ2∂ψ2: (10)

Differentiating (8) exteriorly, we obtain that

dΦ ¼
∂ψ1 �∂ψ2

∂ψ2 ∂ψ1

 !

dzþ
∂ψ1 �∂ψ2

∂ψ2 ∂ψ1

 !

dz: (11)

Consequently, we find that

dΦ � Φ�1 ¼
1

p

∂ψ1 �∂ψ2

∂ψ2 ∂ψ1

0

@

1

A

ψ1 ψ2

�ψ2 ψ1

0

@

1

Adzþ
1

p

∂ψ1 �∂ψ2

∂ψ2 ∂ψ1

0

@

1

A

ψ1 ψ2

�ψ2 ψ1

0

@

1

Adz

¼
1

2

2∂u iS

im 0

 !

dzþ
0 im

iS 2∂u

 !

dz

" #

:

(12)

Taking the derivative ∂ of pS in (7) and substituting system (4), we obtain that

∂ pSð Þ ¼ �mψ1∂ψ1 þ ψ2∂ mψ2

� �

�mψ2∂ψ2 þ ψ1∂ mψ1

� �

¼ �mψ1∂ψ1 �mψ2∂ψ2 þ p∂m:

It follows that

p�1
∂ pSð Þ ¼ �mp�1

∂pþ ∂m ¼ p∂ p�1m
� �

:

Let us summarize this as

p�1
∂ pSð Þ ¼ p∂ p�1m

� �

: (13)

Proceeding in a similar fashion, we calculate the following two derivatives:

∂ p�1ψ1

� �

¼
1

p2
� ψ1

�

�

�

�

2
∂ψ1 � ψ1ψ2∂ψ2 þ ψ1

�

�

�

�

2
þ ψ2

�

�

�

�

2
	 


∂ψ1

	 


¼
ψ2

p2
�ψ1∂ψ2 þ ψ2∂ψ1

� �

¼
i

2
S p�1ψ2

� �

,

(14)
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and as well, we have

∂ p�1ψ2

� �

¼ 1

p2
�ψ1ψ2∂ψ1 � ψ2

�

�

�

�

2
∂ψ2 þ ψ1

�

�

�

�

2
∂ψ2 þ ψ2

�

�

�

�

2
∂ψ2

	 


;

¼ ψ1

p
�ψ2∂ψ1 þ ψ1∂ψ2

� �

¼ i

2
S p�1ψ1

� �

:

(15)

It should be pointed out that the systems (14) and (15) are summarized here

∂ p�1ψ1

� �

¼ i

2
S p�1ψ2

� �

, ∂ p�1ψ2

� �

¼ i

2
S p�1ψ1

� �

: (16)

By comparing with (4), it look very much like a Dirac system in their own right if S is thought

of as a mass variable. Another quantity, a current, was found in [20] and has the form

J ¼ pS:

It is possible to construct a vector representation of Φ as well. A matrix such as Φ represents

a rotation matrix multiplied by a scaling in R3 as follows V ¼ viσi ! V 0 ¼ ΦVΦ†. So the matrix

Φ can be represented by means of a multiple of an orthogona1 3� 3 real matrix. The

matrix elements can be found by using the inner product in V, namely V1;V2h i ¼ 1=2ð Þ Tr

V1V2½ �, then

ς
j
i ¼

1

2
Tr σiΦσjΦ

†
� �

: (17)

ς
j
i defines a 3� 3 matrix which can be written down by using the usual representation of the

Pauli matrices. In particular, the matrix formed out of the following combinations will be very

useful:

ςþ ¼ 1
ffiffiffi

2
p ς1 � iς2ð Þ ¼ 1

ffiffiffi

2
p ψ2

1 � ψ
2

2; � i ψ2
1 þ ψ

2

2

	 


; 2ψ1ψ2

	 


,

ς� ¼ 1
ffiffiffi

2
p ς1 þ iς2ð Þ ¼ 1

ffiffiffi

2
p ψ

2

1 � ψ2
2; i ψ

2

1 þ ψ2
2

	 


; 2ψ1ψ2

	 


,

ς3 ¼ �ψ1ψ2 � ψ1ψ2; i ψ1ψ2 � ψ1ψ2

� �

; ψ1

�

�

�

�

2 � ψ2

�

�

�

�

2
	 


:

(18)

In terms of matrices, ς and ς† are represented as:

ς ¼

1
ffiffiffi

2
p ψ2

1 � ψ
2

2

	 


� i
ffiffiffi

2
p ψ2

1 þ ψ
2

2

	 


2ψ1ψ2

1
ffiffiffi

2
p ψ

2

1 � ψ2
2

	 
 i
ffiffiffi

2
p ψ

2

1 þ ψ2
2

	 


2ψ1ψ2

�ψ1ψ2 � ψ1ψ2 i ψ1ψ2 � ψ1ψ2

� �

ψ1

�

�

�

�

2 � ψ2

�

�

�

�

2

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

, (19)
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ς† ¼

1
ffiffiffi

2
p ψ

2

1 � ψ
2

2

	 
 1

2
ψ2
1 þ ψ

2

2

	 


� ψ1ψ2 þ ψ1ψ2

� �

i
ffiffiffi

2
p ψ

2

1 � ψ2
2

	 


� i
ffiffiffi

2
p ψ2

1 þ ψ
2

2

	 


i ψ1ψ2 � ψ1ψ2

� �

ffiffiffi

2
p

ψ1ψ2

ffiffiffi

2
p

ψ1ψ2 ψ1

�

�

�

�

2 � ψ2

�

�

�

�

2

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

Given this explicit representation, it is now possible to evaluate

p�2dς � ς† ¼ p�2
∂ς � ς†dzþ ∂ς � ς†dz
� �

: (20)

To obtain an expression for (20), both matrices (19) can be expressed in Maple. Apply the

operator map ∂ð Þ to ς, right multiply by ς† then substitute system (4) of known derivatives to

obtain the matrix

2 ψ2∂ψ2 þ ψ1∂ψ1

� �

p 0
ffiffiffi

2
p

ψ1∂ψ2 � ψ2∂ψ1

� �

p

0 0 � i
ffiffiffi

2
p mp2

� i
ffiffiffi

2
p mp2

ffiffiffi

2
p

ψ2∂ψ1 � ψ1∂ψ2

� �

p ψ2∂ψ2 þ ψ1∂ψ1

� �

p

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

(21)

Similarly, applying map ∂
� �

to ς then right multiplying by ς† yields

0 0 � i
ffiffiffi

2
p mp2

0 2 ψ1∂ψ1 þ ψ2∂ψ2

� �

p �
ffiffiffi

2
p

ψ2∂ ψ1 � ψ1∂ψ2

� �

p

i
ffiffiffi

2
p p2S

i
ffiffiffi

2
p mp2 ψ1∂ ψ1 þ ψ2∂ψ2

� �

p

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(22)

By (20) and the differential constraints, the vector representation of the Maurer-Cartan form

can be expressed as:

p�2dςς† ¼

2∂u 0 � i
ffiffiffi

2
p S

0 0
i

2
m

� i
ffiffiffi

2
p m

i
ffiffiffi

2
p S ∂u

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

dzþ

0 0 � i
ffiffiffi

2
p m

0 2∂u
i
ffiffiffi

2
p S

� i
ffiffiffi

2
p S

i
ffiffiffi

2
p m ∂u

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

dz: (23)
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According to the properties of the inner product, we can write Ei ¼ ς
j
iσj ¼ Φ

†σiΦ and calculate

that

dςiςj ¼ dEi;Ej

� �

¼ 1

2
Tr d Φ

†σiΦ
� �

Φ
†σjΦ

� �

¼ 1

2
Tr dΦ†σiσjΦ

� �

þ dΦ†σiσjΦ
� �†

h i

: (24)

If a conserved current can be constructed whose components are divergence free, then a differ-

ential one-form exists with values in R
3 that will induce a surface upon quadrature. Such a

current will be given from the global symmetries of the Lagrangian by means of Noether’s

theorem. Making the transformations ψ1 !�ψ2 and ψ2 ! ψ1 in system (4), it is seen to remain

invariant. This can be thought of as a charge conjugation. The same solutions are obtained if we

put Φ instead of Ψ in the Dirac equation (2). So Φ multiplied on the right by any constant

nonsingular matrix is a solution of the equation if Φ is. This implies the full symmetry group is

GL 2Cð Þ. The transformation above is a member of this group, so can be thought of as a continu-

ous transformation. In terms of matrix Φ, the Lagrangian of the Dirac equation can be written as

L ¼ 1

2
Tr Φ

†
Φ

� �

¼ iψ1∂ψ2 � iψ2∂ψ1 þ iψ2∂ψ1 � iψ1∂ ψ2 þm ψ1

�

�

�

�

2 þ ψ2

�

�

�

�

2
	 


: (25)

The currents that correspond to the generators of SU 2ð Þ are found to be proportional to the

components of ςþ and ς�; hence, the required conservation law is

∂ς� þ ∂ςþ ¼ 0: (26)

Alternatively, the Dirac equation and its Hermitian conjugate which are given by

Φ
† iσ1∂x þ iσ2∂y þm
� �

Φ ¼ 0 Φ
† i∂
 

xσ1 þ i∂
 
yσ2 �m

	 


Φ ¼ 0, (27)

may be added to obtain

∂x Φ
†σ1Φ

� �

þ ∂y Φ
†σ2Φ

� �

¼ 0: (28)

Now to describe the surface, define the R3-valued differential form

dr ¼ i
ffiffiffi

2
p ςþ dzþ i

ffiffiffi

2
p ς�dz (29)

which is real since ς� ¼ ςþ. The differential form (29) is closed under substitution of conserva-

tion law (26) since

d2r ¼ i
ffiffiffi

2
p ∂ςþ dz ∧ dz� i

ffiffiffi

2
p ∂ς�dz ∧ dz ¼

i
ffiffiffi

2
p ∂ςþ þ ∂ς�

� �

dz ∧ dz ¼ 0: (30)

By Poincare’s lemma, the form is exact since every loop in C can be collapsed to a point.

Therefore, the desired expression for a surface will result when the form is integrated along a

path Γ
1 in the z; zð Þ plane from a fixed point z0. The components are

The Generalized Weierstrass System in Three-Dimensional Euclidean Space 7



dx1 ¼
i

2
ψ2
1 � ψ

2

2

	 


dz�
i

2
ψ
2

1 � ψ2
2

	 


dz,

dx2 ¼
1

2
ψ2
1 þ ψ

2

2

	 


dzþ
1

2
ψ
2

1 þ ψ2
2

	 


dz,

dx3 ¼ i ψ1ψ2dz� ψ1ψ2dz
� �

:

(31)

Combining the first two equations in (31) and integrating from z0, the coordinates of a surface

in R3 are obtained by integrating over any path Γ
1 in the z; zð Þ plane

x1 þ ix2 ¼ i

ð

Γ

ψ2
1dz

0 þ ψ2
2dz

0
� �

x1 � ix2 ¼ �i

ð

Γ

ψ
2

2dz
0 þ ψ

2

1dz
0

	 


,

x3 ¼ i

ð

Γ

ψ1ψ2dz
0 � ψ1ψ2dz

0
� �

:

(32)

In the end, we have set z0 to be zero, and it may be repeated; the integrals are independent of Γ

due to the conservation laws. In (31) and (32), r is the point of the surface with coordinates

x1; x2; x3ð Þ∈R3 and ς3 is normal to the surface.

3. Fundamental forms and Cartan moving frame

The necessary information to write down the traditional data for a surface has been obtained.

Since ς2� ¼ 0 and ςþ � ς� ¼ 0, the first fundamental form is given by

I ¼ dr � dr ¼ p2dz⊗ dz (33)

or in a matrix representation,

I ¼
p2

2

0 1

1 0

� �

:

The inverse of (33) is given by

I�1 ¼
2

p2
0 1

1 0

� �

(34)

It is therefore a conformal immersions with isothermal coordinates ζ1, ζ2. The second funda-

mental form of the surface can also be calculated and using ς3 � dr ¼ 0,

II ¼ �d p�1ς3
� �

� dr ¼ �p�1dς3 � dr ¼ �
p

2
Sdz⊗ dzþ 2mdz⊗ dzþ Sdz⊗ dz
� �

(35)

Manifolds II ‐ Theory and Applications8



and in matrix form,

II ¼ �
p

2

S m

m S

� �

:

Collecting (34) and (35), we have

II � I�1 ¼ �
p

2

S m

m S

� � 0
2

p2

2

p2
0

0

B

B

@

1

C

C

A

¼ �
1

p

S m

m S

� �

0 1

1 0

� �

¼ �
1

p

m S

S m

� �

:

The usual definitions give the mean curvature H and the Gaussian curvature as well

H ¼
1

2
Tr II � I�1
� �

¼ �
m

p
, (36)

K ¼ det II � I�1
� �

¼
1

p2
m2 � Sj j2

	 


¼ H2 �
Sj j2

p2
: (37)

Equation (36) relates the mean curvature H to the mass parameter in the Dirac equation.

Konopelchenko obtains the expression

K ¼ �4p�2∂∂u, (38)

which is known as the Gauss-Riemann curvature. It has been shown however that it is

equivalent to (37) in accord with Gauss’ Theorem Egregium.

It is interesting to note that since the difference between the principal curvatures is given as

Δκð Þ2 ¼ 4 H2 � K
� �

, (39)

it also holds that since H2 � K ¼ p�2 Sj j2,

∣Δκ∣ ¼
2

p
∣S∣:

Thus, the modulus of S is a measure of the local deformation from a spherical surface

as m is a measure of the local deformation from the case of a minimal surface, so

κ ¼ �p�1 m� jSjð Þ.

A fixed referential frame in R3 has been implicitly used up to now. By varying the frame with

some solution of Dirac system (4), a whole set of surfaces is obtained that may be deduced

from each other by means of a rigid motion. Cartan developed a powerful method referred to

as the moving frame method to avoid this awkward process.

The Generalized Weierstrass System in Three-Dimensional Euclidean Space 9



By introducing differential 1-forms also called Pfaffian forms, we define the system

dr ¼ ω
j
ej, dej ¼ ω

j
iej, i, j ¼ þ, � , 3: (40)

This is the first system of structure equations introduced by Cartan. The vectors ei satisfy

orthonormality conditions

e
2
þ
¼ 0, eþ � e� ¼ p2, e� � e3 ¼ 0, e

2
3 ¼ p2: (41)

Differentiating relations (41) and using structure equations (40), the following relations among

the differential forms are obtained

de2
þ
¼ 0, 2eþ � deþ ¼ 0, 2eþ ω

j
þej

	 


¼ 0,

2eþ � ω�
þ
e� ¼ 0 ω

�
þ
¼ 0: □

de2
�
¼ 0, 2e� � de� ¼ 0, 2e� � ωj

�
ej

� �

¼ 0,

2e� ω
þ
�
eþ

� �

¼ 0, ω
þ
�
¼ 0: □

deþ � e� þ eþ � de� ¼ 2pdp,

ω
þ
þ
eþ � e� þ ω�

�
eþ � e� ¼ 2pdp,

ω
�
�
þ ωþ

þ
¼ 2∂u, □

deþ � e3 þ eþ � de3 ¼ 0,

ω
3
j þ ω

�
3 ¼ 0: □

de� � e3 þ e�ω
j
3ej ¼ 0,

ω
3
�
þ ω

þ

3 ¼ 0: □

3e3 � de3 ¼ p2du ω
3
3 ¼ du: □

This collection of results is summarized all together below

ω
þ
�
¼ ω

�
þ
¼ 0,

ω
�
3 þ ω3

þ
¼ ω

þ

3 þ ω3
�
¼ 0,

ω
�
�
þ ωþ

þ
¼ 2du, ω

3
3 ¼ du:

(42)

As eþ ¼ e� and e3 ¼ e3, it is found that

ω
3
þ
¼ ω

3
�
, ω

þ

þ
¼ ω

�

�
: (43)

Assuming structure equations (40) are integrable, differentiating and substituting dei where

ever possible, compatibility equations are obtained which are referred to as the second system

of structure equations, that is first we have

dωj
ej � ω

j
∧ dej ¼ 0,

hence

dωs
¼ ω

j
∧ω

s
j ,

Manifolds II ‐ Theory and Applications10



and next

dω
j
iej � ω

j
i ∧ dej ¼ 0,

hence

dω
j
i ¼ ω

j
i ∧ω

s
j :

Let us summarize these as the pair

dωs ¼ ω
j
∧ω

s
j , dωs

i ¼ ω
j
i ∧ω

s
j : (44)

The second equality is always true as long as the frames are given, and the first is the

equivalent, expressed in the formalism of a moving frame, of the requirement that the form dr

be exact. Writing dr as

dr ¼ i
ffiffiffi

2
p eþdz�

i
ffiffiffi

2
p e�dz ¼ ω

j
ej: (45)

Let us identify the forms

ω
þ ¼ i

ffiffiffi

2
p dz, ω

� ¼ � i
ffiffiffi

2
p dz, ω

3 ¼ 0, ωþ ¼ ω
�

: (46)

The equations for the remaining one-forms can be represented by writing the structure equa-

tion in the form

de ¼ Ωe: (47)

In (47), Ω is represented by the 3� 3 matrix of forms

Ω ¼
ω

þ
þ ω

�
þ ω

3
þ

ω
þ
� ω

�
� ω

3
�

ω
þ
3 ω

�
3 ω

3
3

0

B

@

1

C

A
(48)

Since e � e† ¼ p2I, (47) can be right multiplied by e
† to obtain

Ω ¼ p�2 de � e†: (49)

This implies that Ω can be identified with the Maurer-Cartan form given in (22). Introduce the

vector of differential forms Θ as

Θ ¼ ω
þ

; ω
�

; 0ð Þ, dΘ ¼ 0: (50)

In terms of Θ the compatibility equations take the form

dΘ ¼ ⊖ ∧Ω, dΩ ¼ Ω ∧Ω: (51)

The Generalized Weierstrass System in Three-Dimensional Euclidean Space 11



It is clear from the Maurer-Cartan form that it can be decomposed in the following manner

Ω ¼ M1dzþM2dz, (52)

where M1 and M2 are defined to be the matrices

M1

2∂u 0 � i
ffiffiffi

2
p S

0 0
i
ffiffiffi

2
p m

� i
ffiffiffi

2
p m

i
ffiffiffi

2
p S ∂u

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

, M2 ¼

0 0 � i
ffiffiffi

2
p m

0 2∂u
i
ffiffiffi

2
p S

� S
ffiffiffi

2
p i

m
ffiffiffi

2
p ∂u

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

: (53)

The first structure equation in (33) is then

∂e ¼ M1e, ∂e ¼ M2e: (54)

This corresponds to the Gauss-Weingarten equation and the second compatibility equation

∂M1 � ∂M2 þ M1;M2½ � ¼ 0, (55)

is also known as the Gauss-Codazzi-Mainardi equations. All of these have been seen here

before in (37) and (45). It has been shown that many nonlinear partial differential equations

can be expressed within this formalism. In a spinor representation, the corresponding repre-

sentation in the form of matrices can be obtained out of the Maurer-Cartan form

Z1 ¼
1

2

2∂u iS

im 0

� �

, Z2 ¼
1

2

0 im

iS 2∂u

� �

: (56)

In terms of these matrices, the linear system is

∂Φ ¼ Z1Φ, ∂Φ ¼ Z2Φ,

∂Z1 � ∂Z2 þ Z1; Z2½ � ¼ 0: (57)

The differential form Ω is a connection and actually an affine connection on R3. It is flat on the

surface. This is the meaning of the second system of structure equations. This means that the

two-dimensional Dirac equation can be regarded as a way of expressing an affine connection.

Two make further progress, Ω can be used in the following way. As ω3 ¼ 0, from the compat-

ibility equation for dω3, we have

ω
þ
∧ω

3
þ þ ω

�
∧ω

3
� ¼ 0:

On account of Cartan’s lemma, both ω
3
þ and ω

3
� are equal to a linear combination of ωþ and ω

�

ω
3
þ ¼ hþþω

þ þ hþ�ω
�, ω

3
� ¼ h�þω

þ þ h��ω
�, (58)
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where h�þ ¼ hþ�, as can be seen by substituting ω
3
þ and ω

3
� into the constraint above. Since

Ω ¼

2∂u 0 � i
ffiffiffi

2
p S

0 0
i
ffiffiffi

2
p m

� i
ffiffiffi

2
p m

i
ffiffiffi

2
p S ∂u

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

dzþ

0 0 � i
ffiffiffi

2
p m

0 ∂u
i
ffiffiffi

2
p S

� i
ffiffiffi

2
p S

i
ffiffiffi

2
p m ∂u

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

dz: (59)

Using ω
þ, ω

� and ω
3 from (46), we have

ω
3
þ ¼ hþþ

i
ffiffiffi

2
p

� �

dzþ hþ� � i
ffiffiffi

2
p

� �

dz ¼ � i
ffiffiffi

2
p Sdz� i

ffiffiffi

2
p mdz: (60)

This relation implies that

hþþ ¼ �S, hþ� ¼ �m, (61)

and moreover, it follows that

ω
3
� ¼ h�þω

þ þ h��ω
� ¼ h�þ

i
ffiffiffi

2
p

� �

dzþ h�� � i
ffiffiffi

2
p

� �

dz ¼ i
ffiffiffi

2
p mdzþ i

ffiffiffi

2
p Sdz:

This implies that

h�þ ¼ m, h�� ¼ �S: (62)

It is important to note that these coefficients can be used together with the structure equations

to express the fundamental forms of the surface in terms of Pfaffian forms. The first funda-

mental form is given as

I ¼ 2p2ωþ
⊗ω

� ¼ 2p2
1

2

� �

dz⊗ dz, (63)

and the second fundamental form can be written as

II ¼ �p ω
þ ⊗ ω

3
þ þ ω

� ⊗ ω
3
�

� �

¼ �p hþþωþ ⊗ ω
þ þ hþ� þ h�þð Þωþ ⊗ ω

� þ h��ω� ⊗ ω
�ð Þ:

(64)

The element of surface is given by

dS ¼ ip2ωþ
∧ω

�, (65)

and the corresponding surface element on the Gauss map is

dσ ¼ iω3
� ∧ω

3
þ ¼ i hþ�h�þ � hþþh��ð Þωþ

∧ω
�

: (66)
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The total curvature would be the ratio of the former to the latter,

K ¼ p�2 hþ�h�þ � hþþh��ð Þ: (67)

Finally, the mean curvature is given as

H ¼ �
1

2p
hþ� þ h�þð Þ: (68)

4. The Gauss map and nonlinear Sigma model

Under the condition that a given moving frame is integrable, the surface is defined up to a

translation. Conversely, given the three vectors which constitute the frame, only one is deter-

mined uniquely by the surface, and that is the normal vector. For this reason, it is often referred

to as the Gauss or spherical map, as it maps the parameter plane to the sphere of radius one in

two dimensions. The map in this instance is given as

ϕ ¼
e3
p
, (69)

so the north pole corresponds to ψ2 ¼ 0, while the south pole to ψ1 ¼ 0. If the first column of

Φ
† is considered as well as the associated fundamental field

r ¼ �
ψ2

ψ1

, (70)

then dividing the numerator and denominator by ψ1

�

�

�

�

2
in (69), we obtain

ϕ ¼
1

1þ rj j2
r þ r; i r � rð Þ; 1� rj j2

	 


: (71)

This quantity is a function of only r. It may be thought that r plays the role of stereographic

projection of the Gauss map from the south pole. Moreover, for a minimal surface where

m ¼ 0, it is readily shown that r is an analytic function of z.

Using the differential constraints, the derivatives of r are found to be

∂r ¼ �ip
m

2ψ
2

1

, ∂r ¼ ip
S

2ψ2
1

: (72)

By using derivatives (72), the following three relations can be worked out

4
∂r∂r

1þ rj j2
	 
2

¼ m2, 4
∂r∂r

1þ rj j2
	 
2

¼ mS, 4
∂r∂r

1þ rj j2
	 
2

¼ Sj j2: (73)
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Thus, the quantities m and S can be written as a function of only r. It may be asked, can the

component of the Maurer-Cartan form ∂u be written in a similar way? Starting with the

differential constraint for ∂u,

∂u ¼
1

p
ψ1∂ψ1 þ ψ2∂ψ2

� �

¼ e�u=2
∂ ψ1;�ψ2

� �

e�u=2 ψ1

ψ2

 !

: (74)

Since the spinor product ψ1;�ψ2

� �

ψ1;�ψ2

� �†

¼ eu, we have

∂ e�u=2 ψ1;�ψ2

� �

h i

e�u=2 ψ1

�ψ2

 !

¼ �
1

2
∂u ψ1;�ψ2

� �

e�u ψ1

�ψ2

 !

þ e�u=2
∂ ψ1;�ψ2

� �

e�u=2 ψ1

�ψ2

 !

:

Combining these last two results, we obtain

1

2
∂u ¼ ∂ e�u=2 ψ1;�ψ2

� �

h i

e�u=2 ψ1

�ψ2

 !

: (75)

If we define the spinor α ¼ e�u=2 ψ1;�ψ2

� �

which satisfies α α† ¼ 1, (75) becomes

1

2
∂u ¼ ∂αα†: (76)

Let us show that α can be expressed as a function of r. Using the definition of r, a parameter-

ization for α exists as

α ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rj j2
q 1; rð Þ

ψ1

ψ2

 !1=2

: (77)

To obtain an expression for ψ1, use differential constraint (2) its conjugate and (70) to arrive at

ψ
2

1∂r ¼ �
i

2
pm: (78)

Dividing this by its complex conjugate gives α as a function of r as

α ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rj j2
q 1; rð Þ

∂r

∂r

� �1=4

ei 2nþ1ð Þπ=4, n∈Z: (79)

Inserting α into the expression for ∂u provides expressions for ∂u and ∂u

∂
∂r

∂r

� �

¼ 2 log
∂r

∂r

� �

�
∂r

∂r
: (80)
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Differentiating the components of α with respect to z, we find that

∂αα
† ¼ �

r∂r þ r∂rð Þ

2 1þ rj j2
	 
2

þ
1

4 1þ rj j2
	 
 ∂ log

∂r

∂r

� �

þ
�rr

2
∂r � r

2
r ∂r þ 2r 1þ rj j2

	 


∂r

2 1þ rj j2
	 
2

þ
rj j2

4 1þ rj j2
	 
 ∂ log

∂r

∂r

� �

¼
�r ∂r þ r∂r

2 1þ rj j2
	 
 þ

1

4
∂ log

∂r

∂r

� �

:

Returning to the expression for 1=2ð Þ∂u, we can now write

1

2
∂u ¼

1

4
∂ log

∂r

∂r

� �

þ
1

2

r∂r � r∂r

1þ rj j2
, (81)

1

2
∂u ¼ �

1

4
∂ log

∂r

∂r

� �

þ
1

2

r∂r � r∂r

1þ rj j2
(82)

There is no simple integral of the second term in general. It may be stated that 1=2ð Þ∂u has the

form of a potential with a fixed gauge, because r is given as a function of z and z, so the

directions of the axes eþ and e� have been fixed so that a gauge transformation is a rotation of

them.

Suppose it is asked under what condition a given complex function r z; zð Þ is the Gauss map of

some surface. A necessary condition can be obtained by working out the compatibility condi-

tion for the linear system (81) and (82), that is, first

∂∂u ¼ �
1

2
∂∂ log

∂r

∂r

� �

þ
∂ r ∂r þ r∂∂r � ∂r ∂ r � r∂ ∂r

1þ rj j2
�

r∂r � r∂ r

1þ rj j2
	 
2

r∂ r þ r∂rð Þ

¼ �
1

2
∂∂ log

∂r

∂ r

� �

þ
∂r∂r � ∂r∂r � ∂r∂rr

2 þ ∂r∂rr
2 � 1þ rj j2

	 


r∂∂r � r∂∂r
� �

1þ rj j2
	 
2

,

and the result for the other mixed derivative is

∂∂u ¼
1

2
∂∂ log

∂r

∂r

� �

þ
∂r∂r � ∂r∂r þ 1þ rj j2

	 


r∂∂r � r∂∂r
� �

þ r
2
∂r∂r � r

2
∂r∂r

1þ rj j2
	 
2

:

Equating these mixed partial derivatives, the necessary condition takes the form

∂∂ log
∂r

∂r

� �

þ 2
1þ rj j2

	 


r∂∂r � r∂∂r
� �

þ r
2
∂r∂r � r

2
∂r∂r

1þ rj j2
	 
2

: (83)
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If it is satisfied, it has the implication that

∂∂u ¼
∂r∂r � ∂r∂r

1þ rj j2
	 
2

: (84)

Using the previous expressions (73) for the derivatives of r, this can be put into the form of the

Gauss equation. Consequently, one of the integrability conditions is fulfilled. Since

∂r∂r � ∂r∂r

1þ rj j2
	 
2

¼ ∂
1

2

r∂r � r∂r

1þ rj j2

 !

þ ∂
1

2

r∂r � r∂r

1þ rj j2

 !

, (85)

it follows that

∂∂u ¼ ∂
1

2

r∂r � r∂r

1þ rj j2

 !

þ ∂
1

2

r∂r � r∂r

1þ rj j2

 !

¼
∂r∂r � ∂r∂r

1þ rj j2
	 
2

¼
1

4
p2K: (86)

Due to cancelations, some shorthand expressions might be quoted

∂∂u ¼ ∂
r∂r

1þ rj j2

 !

þ ∂ �
r∂r

1þ rj j2

 !

¼ ∂ �
r∂r

1þ rj j2

 !

þ ∂
r∂r

1þ rj j2

 !

¼
∂r∂r � ∂r∂r

1þ rj j2
	 
2

: (87)

The integrability condition can be expressed in the form of a zero curvature condition

∂
∂∂r

∂r
� 2

r∂r

1þ rj j2

 !

� ∂
∂∂r

∂r
� 2

r∂r

1þ rj j2

 !

¼ 0: (88)

It is clear that provided we have

B r; rð Þ ¼ ∂∂r �
2r

1þ rj j2
∂r∂r ¼ 0, (89)

the condition is satisfied automatically. This may be recognized as the equation describing the

nonlinear sigma model. As well it is the equation which is satisfied by the Gauss map of a

constant mean curvature surface which is harmonic.

It is well known that for a given Gauss map r such that ∂r ¼ 0, there is a one parameter family

of surfaces called the associated family which is obtained through the transformation

ψ1 ! q1=2ψ1, ψ2 ! q1=2ψ2: (90)

This keeps p and r invariant if q is a complex constant of modulus one. If m 6¼ 0, it is not

possible since m would not stay real. In the latter case, the only allowed values are q ¼ einπ. To

construct the surface, take α and replace the phase factor by q1=2, so p ¼ 1, and we obtain
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ψ1 ¼
q1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rj j2
q , ψ2 ¼ �

q1=2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rj j2
q : (91)

Substituting (91) into the inducing formulae (30), the Weierstrass representation for q ¼ 1 can

be observed.

Finally, using (36) and recalling that

∂H ¼ �p�2
∂ pSð Þ, ψ2

1∂r ¼
i

2
pS (92)

the second equation in (92) is differentiated with respect to ∂ to obtain,

imψ1ψ2∂r þ ψ2
1∂∂r ¼

i

2
∂ pSð Þ: (93)

Taking the conjugate of the first expression in (72) then solving for ψ2
1 and substituting into (93)

we have

� 2
ψ1ψ2

p
∂r þ

∂∂r

∂r

� �

¼ �m�1p�1
∂ pSð Þ: (94)

Using (70) and the relation ψ1

�

�

�

�

2
=p ¼ 1= 1þ rj j2

	 


, we obtain the desired result

�H�1
∂H ¼

∂∂r

∂r
� 2

r∂r

1þ rj j2
: (95)

Differentiating J ¼ pS with respect to ∂ then multiplying by pSð Þ�1, we obtain

pSð Þ�1
∂ pSð Þ ¼ m 2

ψ1ψ2

pS
∂r þ

1

S

∂∂r

∂∂r
∂r

� �

¼ m
∂r

∂r

� �

2
ψ1ψ2

pS
∂r þ

1

S

∂∂r

∂r

� �

¼
m

S

∂r

∂r

∂∂r

∂r
� 2

r∂r

1þ rj j2

 !

¼
∂∂r

∂r
� 2r

∂r

1þ rj j2
:

To obtain this, the first two derivatives in (73) have been used to write ∂r=∂r ¼ S=m. Summa-

rizing these calculations, the following relations have been proved:

�H�1
∂H ¼

∂∂r

∂r
� 2

r∂r

1þ rj j2
¼

B

∂r
, J�1

∂J ¼
∂∂r

∂r
� 2r

∂r

1þ rj j2
¼

B

∂r
: (96)

Thus, for the parameters that are proportional to a power of p, the logarithmic derivatives can

still be computed. For a constant mean curvature surface ∂H ¼ 0 and so B r; rð Þ ¼ 0 hence
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∂J ¼ ∂J ¼ 0, (97)

and the current is conserved, of J is a holomorphic function.

5. Summary and conclusions

It should be said that this work has deep implications for the study of manifolds and their

relationship with integrable systems in general [21–24]. It would be worth illustrating this

more clearly as a way to conclude. As a particular example, consider the case of a spherical

surface for which S ¼ 0 so that

K ¼ H2 ¼
m2

p
, (98)

where K is now a constant and the Gauss equation simplifies to

∂∂uþm2 ¼ 0: (99)

If we choose K ¼ 1, this implies that m ¼ p; hence m ¼ eu and (99) is then the nonlinear

Liouville equation

∂∂uþ e2u ¼ 0

is obtained in terms of the only remaining variable u. This procedure has resulted in a

nonlinear equation with a link to surfaces. Since p�1m ¼ 1, the Codazzi-Mainardi equation is

trivially satisfied.

Due to the spinor representation of the Maurer-Cartan form, from which Z1 and Z2 are

deduced, for any nonsingular matrix τ, there is a gauge transformation given by [19]

Φ! τΦ,

Z1 ! τZ1τ
�1 þ ∂τ � τ�1,

Z2 ! τZ2τ
�1 þ ∂τ � τ�1,

(100)

for which the nonlinear zero curvature equation still holds. For example, suppose we take

τ ¼
λ
1=2

0

0 λ
1=2

 !

eu=2 0

0 e�u=2

 !

e�u=2: (101)

In (101), λ can be thought of as a complex spectral parameter that satisfies λj j2 ¼ 1. Starting

with (8), we find that
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Φ
0
λ ¼ τΦ ¼

λ
1=2

ψ1 �λ
1=2

ψ2

λ1=2e�uψ2 λ1=2e�uψ1

 !

, det Φ0
λ ¼ 1: (102)

It is straightforward to calculate that

τZ1τ
�1 ¼

1

2

2∂u 0

iλ 0

� �

, ∂τ ¼
0 0

0 �λ1=2e�u
∂u

� �

, ∂τ � τ�1 ¼
0 0

0 �∂u

� �

,

Therefore, we get

τZ1τ
�1 þ ∂ττ�1 ¼

1

2

2∂u 0

iλ �2∂u

� �

,

and proceeding in a similar fashion, one finds

τZ2τ
�1 þ ∂ττ�1 ¼

1

2

0 iλe2u

0 0

 !

:

The linear system for the case in which S ¼ 0 and m ¼ p is given by

∂Φ
0
λ ¼

1

2

2∂u 0

iλ �2∂u

� �

Φ
0
λ, ∂Φ

0
λ ¼

1

2

0 iλe2u

0 0

 !

Φ
0
λ, (103)

where Φ0
λ is given by (102). Other choices for the gauge function τ will lead to other systems:

for example, taking

τ ¼
1
ffiffiffi

2
p

1 �1

1 0

� �

λ
1=2

0

0 λ1=2e�u

 !

¼
1
ffiffiffi

2
p λ

1=2
�λ1=2e�u

λ
1=2

λ1=2e�u

 !

(104)

an AKNS type system is obtained

∂~Φ ¼
1

4

�iλ 4∂u� iλ

4∂uþ iλ iλ

� �

~Φλ, ∂~Φ ¼ i
λ

4

�e2u e2u

�e2u e2u

� �

~Φλ: (105)

Therefore, hierarchies may be generated and this linear system which is derived from the Dirac

equation and used to create surfaces provides the link between nonlinear evolution equations

and geometry [25].
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