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Chapter

A Numerical Investigation on
the Structure of the Zeros of the
Q-Tangent Polynomials
Jung Yoog Kang and Cheon Seoung Ryoo

Abstract

We introduce q-tangent polynomials and their basic properties including
q-derivative and q-integral. By using Mathematica, we find approximate roots of
q-tangent polynomials. We also investigate relations of zeros between q-tangent
polynomials and classical tangent polynomials.

Keywords: q-tangent polynomials, q-derivative, q-integral, Newton dynamical
system, fixed point

2000 Mathematics Subject Classification: 11B68, 11B75, 12D10

1. Introduction

For a long time, studies on q-difference equations appeared in intensive works
especially by F. H. Jackson [1, 2], R. D. Carmichael [3], T. E. Mason [4], and other
authors [5–26]. An intensive and somewhat surprising interest in q-numbers
appeared in many areas of mathematics and applications including q-difference
equations, special functions, q-combinatorics, q-integrable systems, variational
q-calculus, q-series, and so on. In this paper, we introduce some basic definitions
and theorems (see [1–26]).

For any n∈C, the q-number is defined by

n½ �q ¼
1� qn

1� q
, ∣q∣ < 1: (1)

Definition 1.1. [1, 2, 9, 13] The q-derivative operator of any function f is defined by

Dq f xð Þ ¼
f xð Þ � f qxð Þ

1� qð Þx
, x 6¼ 0, (2)

and Dq f 0ð Þ ¼ f 0 0ð Þ. We can prove that f is differentiable at 0, and it is clear that

Dqx
n ¼ n½ �qx

n�1.

Definition 1.2. [1, 2, 9, 13, 17] We define the q-integral as

ðb

0
f xð Þdqx ¼ 1� qð Þb ∑

∞

j¼0
q jf q jb
� �

: (3)
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If this function, f(x), is differentiable on the point x, the q-derivative in Defini-
tion 1.1 goes to the ordinary derivative in the classical analysis when q ! 1.

Definition 1.3. [5, 17, 18, 21] The Gaussian binomial coefficients are defined by

m

r

� �

q

¼
m

r

� �

q

¼

0 if r >m

1� qmð Þ 1� qm�1ð Þ⋯ 1� qm�rþ1ð Þ

1� qð Þ 1� q2ð Þ⋯ 1� qrð Þ
if r≤m

,

8

><

>:

(4)

where m and r are non-negative integers. For r ¼ 0 the value is 1 since the
numerator and the denominator are both empty products. Like the classical binomial
coefficients, the Gaussian binomial coefficients are center-symmetric. There are
analogues of the binomial formula, and this definition has a number of properties.

Theorem 1.4. Let n, k be non-negative integers. Then we get.

i. Y
n�1

k¼0

1þ qkt
� �

¼ ∑
n

k¼0

q
k

2

� �

n

k

� �

q

tk, (5)

ii.
Qn�1

k¼0

1
1�qktð Þ

¼ ∑
∞

k¼0

nþ k� 1

k

� �

q

tk:

Definition 1.5. [5, 26] Let z be any complex number with ∣z∣ < 1. Two forms of
q-exponential functions are defined by

eq zð Þ ¼ ∑
∞

n¼0

zn

n½ �q!
, eq�1 zð Þ ¼ ∑

∞

n¼0

zn

n½ �q�1 !
¼ ∑

∞

n¼0
q

n

2

� �

zn

n½ �q!
: (6)

Bernoulli, Euler, and Genocchi polynomials have been studied extensively by
many mathematicians(see [22–25]). In 2013, C. S. Ryoo introduced tangent
polynomials and he developed several properties of these polynomials (see
[22, 23]). The tangent numbers are closely related to Euler numbers.

Definition 1.6. [22–25] Tangent numbers Tn and tangent polynomials Tn xð Þ are
defined by means of the generating functions

∑
∞

n¼0
Tn

tn

n!
¼

2

e2t þ 1
¼ 2 ∑

∞

m¼0
�1ð Þme2mt,

∑
∞

n¼0
Tn

tn

n!
¼

2

e2t þ 1
etx ¼ 2 ∑

∞

m¼0
�1ð Þme 2mþxð Þt

:

(7)

Theorem 1.7. For any positive integer n, we have

Tn xð Þ ¼ �1ð ÞnTn 2� xð Þ: (8)

Theorem 1.8. For any positive integer m ¼ oddð Þ, we have

Tn xð Þ ¼ mn ∑
m�1

i¼0
�1ð ÞiTn

2iþ x

m

� �

, n∈Zþ: (9)

Theorem 1.9. For n∈Zþ, we have

Tn xþ yð Þ ¼ ∑
n

k¼0

n

k

� �

Tk xð Þyn�k
: (10)

2

Polynomials - Theory and Application



The main aim of this paper is to extend tangent numbers and polynomials, and
study some of their properties. Our paper is organized as follows: In Section 2, we
define q-tangent polynomials and find some properties of these polynomials. We
consider q-tangent polynomials in two parameters and establish some relations
between q-tangent polynomials and q-Euler or Bernoulli polynomials. In Section 3,
we observe approximate roots distributions of q-tangent polynomials and demon-
strate interesting phenomenon.

2. Some properties of the q-tangent polynomials

In this section we define the q-tangent numbers and polynomials and establish
some of their basic properties. we shall also study the q-tangent polynomials
involving two parameters. We shall find some important relations between these
polynomials and q-other polynomials.

Definition 2.1. For x, q∈C, we define q-tangent polynomials as

∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
eq txð Þ, ∣t∣ <

π

2
: (11)

From Definition 2.1, it follows that

∑
∞

n¼0
T n,q 0ð Þ

tn

n½ �q!
¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
, (12)

where T n,q is q-tangent number. If q ! 1, then it reduces to the classical tangent
polynomial(see [22–25]).

Theorem 2.2. Let x, q∈C. Then, the following hold.

i:  T n,q þ ∑
n

k¼0

n

k

� �

q

2n�k
T k,q ¼

2½ �q if n ¼ 0

0 if n 6¼ 0
,

(

(13)

ii:  T n,q xð Þ þ ∑
n

k¼0

n

k

� �

q

2n�k
T k,q xð Þ ¼ 2½ �qx

n
:

Proof. From the Definition 2.1, we have

2½ �q ¼ 1þ eq 2tð Þ
� �

∑
∞

n¼0
T n,q

tn

n!

¼ ∑
∞

n¼0
T n,q þ ∑

n

k¼0

n

k

" #

q

2n�k
T k,q

0

@

1

A
tn

n!
:

(14)

Now comparing the coefficients of tn we find (i). For (ii) we use the relation

2½ �qeq txð Þ ¼ 1þ eq 2tð Þ
� �

∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!

¼ ∑
∞

n¼0
T n,q xð Þ þ ∑

n

k¼0

n

k

" #

q

2n�k
T k,q xð Þ

0

@

1

A
tn

n!
,

(15)

and again compare the coefficients of tn. ☐
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Theorem 2.3. Let n be a non-negative integer. Then, the following holds

T n,q xð Þ ¼ ∑
n

k¼0

n

k

� �

q

T n�k,qx
k
: (16)

Proof. From the definition of the q-exponential function, we have

∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
eq txð Þ ¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

" #

q

T n�k,q xð Þxk

0

@

1

A
tn

n½ �q!
:

(17)

The required relation now follows on comparing the coefficients of tn on both
sides. ☐

Theorem 2.4. Let n be a non-negative integer. Then, the following holds

T n,q ¼ ∑
n

k¼0

n

k

� �

q

�1ð Þn�kq
n� k

2

� �

T k,q xð Þxn�k
: (18)

Proof. From the property of q-exponential function, it follows that

∑
∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q

eq 2 tð Þ þ 1
eq txð Þeq1 �txð Þ

¼ ∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!
∑
∞

n¼0
q

n

2

 !

�1ð Þnxn
tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

" #

q

�1ð Þn�kq

n� k

2

 !

T k,q xð Þxn�k

0

@

1

A
tn

n½ �q!
:

(19)

The required relation now follows immediately. ☐

In what follows, we consider q-derivative of eq txð Þ. Using the Mathematical
Induction, we find.

i:  k ¼ 1 : D 1ð Þ
q eq txð Þ ¼ ∑

∞

n¼1
xn�1 tn

n� 1½ �q!
: (20)

ii:  k ¼ i : D ið Þ
q eq txð Þ ¼ ∑

∞

n¼i
xn�i tn

n� i½ �q!
:

If (ii) is true, then it follows that.

iii:  k ¼ iþ 1 : D iþ1ð Þ
q eq txð Þ ¼ D 1ð Þ

q;x ∑
∞

n¼i
xn�i tn

n� i½ �q!

 !

¼ ∑
∞

n¼iþ1
xn� iþ1ð Þ tn

n� iþ 1ð Þ½ �q!

¼ tiþ1eq txð Þ:

(21)

We are now in the position to prove the following theorem.

4
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Theorem 2.5. For k∈N, the following holds

D kð Þ
q T n,q xð Þ ¼

n½ �q!

n� k½ �q!
T n�k,q xð Þ: (22)

Proof. Considering q-derivative of eq txð Þ, we find

D iþ1ð Þ
q ∑

∞

n¼0
T n,q xð Þ

tn

n½ �q!
¼ ∑

∞

n¼0
D iþ1ð Þ

q T n,q xð Þ
tn

n½ �q!

¼
2½ �q

eq 2tð Þ þ 1
D iþ1ð Þ

q eq txð Þ

¼ tiþ1
2½ �q

eq 2tð Þ þ 1
eq txð Þ

¼ ∑
∞

n¼0
nþ iþ 1ð Þ½ �q⋯ nþ 2½ �q nþ 1½ �q

� T n,q xð Þ
t nþiþ1

nþ iþ 1ð Þ½ �q!

¼ ∑
∞

n¼0

n½ �q

nþ iþ 1ð Þ½ �q!
T n� iþ1ð Þ,q xð Þ

tn

n½ �q!
,

(23)

which immediately gives the required result. ☐

Theorem 2.6. Let a, b be any real numbers. Then, we have

ðb

a
T n,q xð Þdqx ¼ ∑

nþ1

k¼0

1

nþ 1½ �q
T nþ1,q bð Þ � T nþ1,q að Þ
� �

: (24)

Proof. From Theorem 2.3, we find

ðb

a
T n,q xð Þdqx ¼

ðb

a
∑
n

k¼0

n

k

2

4

3

5

q

T k,qx
n�kdqx

¼ ∑
n

k¼0

n

k

2

4

3

5

q

T k,q
1

n� kþ 1½ �q
xn�kþ1

�
�
�
�
�
�
�

b

a

¼ ∑
nþ1

k¼0

T nþ1,q bð Þ � T nþ1,q að Þ

nþ 1½ �q
:

(25)

☐

Definition 2.7. For x, y∈C, we define q-tangent polynomial with two
parameters as

∑
∞

n¼0
T n,q x; yð Þ

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
eq txð Þeq tyð Þ, ∣t∣ <

π

2
: (26)

From the Definition 2.7, it is clear that
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∑
∞

n¼0
T n,q x;0ð Þ

tn

n½ �q!
¼ ∑

∞

n¼0
T n,q xð Þ

tn

n½ �q!
¼

2½ �q
eq 2 tð Þ þ 1

eq txð Þ,

∑
∞

n¼0
T n,q 0;0ð Þ

tn

n½ �q!
¼ ∑

∞

n¼0
T n,q

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
,

(27)

where T n,q is q-tangent number. We also note that the original tangent number,
T n,

lim
q!1

∑
∞

n¼0
T n,q

tn

n½ �q!
¼ ∑

∞

n¼0
Tn

tn

n!
¼

2

e2t þ 1
, (28)

where q ! 1.
Theorem 2.8. Let x, y be any complex numbers. Then, the following hold.

i:  T n,q x; yð Þ ¼ ∑
n

k¼0

n

k

� �

q

T n�k,q xð Þyk, (29)

ii:  T n,q x; yð Þ ¼ ∑
n

l¼0

n

k

� �

q

T n�l,q ∑
l

k¼0

l

k

� �

q

xl�kyk:

Proof. From the Definition 2.7, we have

∑
∞

n¼0
T n,q x; yð Þ

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
eq txð Þeq tyð Þ

¼ ∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!
∑
∞

n¼0
yn

tn

n½ �q!
:

(30)

Using Cauchy’s product and the method of coefficient comparison in the above
relation, we find (i). Next, we transform q-tangent polynomials in two parameters as

∑
∞

n¼0
T n,q x; yð Þ

tn

n½ �q!
¼

2½ �q

eq 2tð Þ þ 1
eq txð Þeq tyð Þ

¼ ∑
∞

n¼0
T n,q

tn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!
∑
∞

n¼0
yn

tn

n½ �q!
:

(31)

Now following same procedure as in (i), we obtain (ii). ☐

Theorem 2.9. Setting y ¼ 2 in q-tangent polynomials with two parameters, the
following relation holds

2½ �qx
n ¼ T n,q x; 2ð Þ þ T n,q xð Þ: (32)

Proof. Using q-tangent polynomials and its polynomials with two parameters, we
have

∑
∞

n¼0
T n,q x; 2ð Þ

tn

n½ �q!
þ ∑

∞

n¼0
T n,q xð Þ

tn

n½ �q!
¼

2½ �qeq 2tð Þ

eq 2tð Þ þ 1
eq txð Þ þ

2½ �q

eq 2tð Þ þ 1
eq txð Þ

¼ 2½ �qeq txð Þ

(33)

Now from the definition of q-exponential function, the required relation
follows. ☐

6
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Theorem 2.9 is interesting as it leads to the relation

xn ¼
T n,q x; 2ð Þ þ T n,q xð Þ

2½ �q
: (34)

Theorem 2.10. Let qj j < 1. Then, the following holds

T n,q xð Þ ¼ ∑
n

k¼0

n

k

� �

q

�1ð ÞkT k, 1q
2ð Þxn�k

: (35)

Proof. To prove the relation, we note that

e1
q
�2tð Þ ¼ Eq �2tð Þ, (36)

where Eq tð Þ ¼ eq�1 tð Þ. Using the above equation we can represent the q-tangent

polynomials as

∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!
¼

2½ �q
eq 2tð Þ þ 1

eq txð Þ

¼
2½ �q

1þ Eq �2tð Þ
Eq �2tð Þeq txð Þ

¼
2½ �q

e1
q
�2tð Þ þ 1

e1
q
�2tð Þeq txð Þ

¼ ∑
∞

n¼0
T n, 1q

2ð Þ
�tð Þn

n½ �q!
∑
∞

n¼0
xn

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

k¼0

n

k

2

4

3

5

q

�1ð ÞkTk, 1q
2ð Þxn�k

8

><

>:

9

>=

>;

tn

n½ �q!
,

(37)

which leads to the required relation immediately. ☐

Now we shall find relations between q-tangent polynomials and others
polynomials. For this, first we introduce well known polynomials by using
q-numbers.

Definition 2.11. We define q-Euler polynomials, En,q xð Þ, and q-Bernoulli
polynomials, Bn,q xð Þ, as

∑
∞

n¼0
En,q xð Þ

tn

n½ �q!
¼

2½ �q
eq tð Þ þ 1

eq txð Þ, ∣t∣ < π,

∑
∞

n¼0
Bn,q xð Þ

tn

n½ �q!
¼

t

eq tð Þ � 1
eq txð Þ, ∣t∣ < 2π:

(38)

Theorem 2.12. For x, y∈C, the following relation holds

T n,q x; yð Þ ¼
1

2½ �q
∑
n

l¼0

n

k

� �

q

T n�l,q xð Þ

ml
þ ∑

n�l

k¼0

n� l

k

� �

q

T k,q xð Þ

mn�k

 !

El,q myð Þ: (39)

Proof. Transforming q-tangent polynomials containing two parameters, we find

7
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2½ �q
eq 2 tð Þ þ 1

eq txð Þeq tyð Þ ¼
2½ �q

eq
t
m

� �
þ 1

eq tyð Þ

 !

eq t
m

� �
þ 1

2½ �q

 !

2½ �q
eq 2tð Þ þ 1

eq txð Þ

 !

: (40)

Thus, for the relation between q-tangent polynomials of two parameters and
q-Euler polynomials, we have

∑
∞

n¼0
T n,q x; yð Þ

tn

n½ �q!

¼ ∑
∞

n¼0
En,q myð Þ

tn

mn n½ �q!
∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!
∑
∞

n¼0

1

2½ �q

tn

mn n½ �q!
þ

1

2½ �q

 !

¼
1

2½ �q
∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

El,q myð Þ∑
n�l

k¼0

n� l

k

" #

q

T k,q xð Þ

mn�k

tn

n½ �q!

þ
1

2½ �q
∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

El,q myð Þ
T n�l,q xð Þ

ml

tn

n½ �q!
,

(41)

which on comparing the coefficients immediately gives the required relation. ☐

Corollary 2.13. From Theorem 2.12, the following hold.

i:  T n,q x; yð Þ ¼
1

2½ �q
∑
n

l¼0

n

l

� �

q

T n�l,q xð Þ

ml
þ ∑

n�l

k¼0

n� l

k

� �

q

T k,q xð Þ

mn�k

 !

El,q myð Þ: (42)

ii:  T n x; yð Þ ¼
1

2
∑
n

l¼0

n

l

� �
T n�l xð Þ

ml
þ ∑

n�l

k¼0

n� l

k

� �
T k xð Þ

mn�k

� �

El myð Þ:

Theorem 2.14. For x, y∈C, the following relation holds

T n�1,q x; yð Þ ¼
1

n½ �q
∑
n

l¼0

n

k

� �

q

∑
n�l

k¼0

n� l

k

� �

q

T k,q xð Þ

mn�k
�
T n�l,q xð Þ

ml

 !

Bl,q myð Þ: (43)

Proof. We note that

2½ �q

eq 2tð Þ þ 1
eq txð Þeq tyð Þ ¼

t

eq
t
m

� �
� 1

eq tyð Þ

 !

eq
t
m

� �
� 1

t

� �
2½ �q

eq 2tð Þ þ 1
eq txð Þ

 !

: (44)

Thus as in Theorem 2.12, we have

∑
∞

n¼0
T n,q x; yð Þ

tn

n½ �q!

¼ ∑
∞

n¼0

tn�1

mn n½ �q!
�
1

t

 !

∑
∞

n¼0
Bn,q myð Þ

tn

mn n½ �q!
∑
∞

n¼0
T n,q xð Þ

tn

n½ �q!

¼ ∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

∑
n�l

k¼0

n� l

k

" #

q

T k,q xð Þ

mn�k
Bl,q myð Þ

0

@

1

A
tn�1

n½ �q!

�∑
∞

n¼0
∑
n

l¼0

n

l

" #

q

T n�l,q xð Þ

ml
Bl,q myð Þ

0

@

1

A
tn�1

n½ �q!
:

(45)
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The required relation now follows on comparing the coefficients. ☐

Corollary 2.15. From the Theorem 2.14, the following relations hold.

i:  T n�1,q x; yð Þ ¼
1

n½ �q
∑
n

l¼0

n

l

� �

q

∑
n�l

k¼0

n� l

k

� �

q

T k,q xð Þ

mn�k
�
T n�l,q xð Þ

ml

 !

Bl,q myð Þ: (46)

ii:  T n�1 x; yð Þ ¼
1

n
∑
n

l¼0

n

l

� �

∑
n�l

k¼0

n� l

k

� �
T k xð Þ

mn�k
�
T n�l xð Þ

ml

� �

Bl myð Þ:

3. The observation of scattering zeros of the q-tangent polynomials

In this section, we will find the approximate structure and shape of the roots
according to the changes in n and q. We will extend this to identify the fixed points
and try to understand the structure of the composite function using the Newton
method.

The first five q-tangent polynomials are:

T 0,q xð Þ ¼
1þ q

2
,

T 1,q xð Þ ¼
1

2
1þ qð Þ �1þ xð Þ,

T 2,q xð Þ ¼
1

2
1þ qð Þ 1þ q �1þ xð Þ þ x� x2

� �
,

T 3,q xð Þ ¼
1

2
1þ qð Þ �1þ q 2� �2þ qð Þqð Þ � xþ q3x� 1þ qþ q2

� �
x2 þ x3

� �
,

T 4,q xð Þ ¼
1

2
1þ qð Þð �1þ qð Þ 1þ qð Þ 1þ �4þ qð Þqð Þ 1þ qþ q2

� �

� 1þ qð Þ2 1þ �3þ qð Þqð Þ 1þ q2ð Þx

þ �1þ qð Þ 1þ q2ð Þ 1þ qþ q2ð Þx2 � 1þ qð Þ 1þ q2ð Þx3 þ x4Þ:

(47)

Using Mathematica, we will examine the approximate movement of the roots. In
Figure 1, the x-axis means the numbers of real zeros and the y-axis means the
numbers of complex zeros in the q-tangent polynomials. When it moves from left to
right, it changes to n = 30, 40, 50, and when it is fixed at q = 0.1, the approximate
shape of the root appears to be almost circular. The center is identified as the origin,
and it has 2.0 as an approximate root, which is unusual.

Figure 2 shows the shape of the approximate roots when n is changed to the
above conditions and fixed at q = 0.5.

Figure 1.
Zeros of T n,0:1 xð Þ for n = 30, 40, 50.
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In Figure 2, the shape of the root changes to an ellipse, unlike the q = 0.1
condition, and the widening phenomenon appears when the real number is 0.5. In
addition, like the previous Figure 1, we can see that it has a common approximate
root at 2.0. In the following Figure 3, n of the far-left figure is 30, and it increases by
10 while moving to the right, and the far-right figure shows the shape of the root
when n = 50 and is fixed at q = 0.9.

In Figure 3, the roots have a general tangent polynomial shape with similar
properties (see [22–25]). If each approximate root obtained in the previous step is
piled up according to the value of n, it will appear as shown in Figure 4. The left
Figure 4 is q = 0.1 with n from 1 to 50. The middle Figure 4 is q = 0.5 with n from 1
to 50. The right Figure 4 is q = 0.9 with n from 1 to 50.

Let f : D ! D be a complex function, with D as a subset of C. We define the
iterated maps of the complex function as the following:

f r : z0 ↦ f ðf ð⋯ðf
|fflfflfflfflffl{zfflfflfflfflffl}

r

z0ð Þ⋯ÞÞÞ (48)

Figure 2.
Zeros of T n;0:5 xð Þ for n = 30, 40, 50.

Figure 3.
Zeros of T n;0:9 xð Þ for n = 30, 40, 50.

Figure 4.
Zeros of T n,q xð Þ for q = 0.1, 0.5, 0.9, 1 ≤ n ≤ 50.
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The iterates of f are the functions f , f ∘ f , f ∘ f ∘ f ,…, which are denoted

f 1, f 2, f 3,… If z∈C, and then the orbit of z0 under f is the sequence
< z0, f z0ð Þ, f f z0ð Þð Þ,⋯ > .

We consider the Newton’s dynamical system as follows [12, 15, 20]:

C∞ : R xð Þ ¼ x�
T xð Þ

T
0 xð Þ


 �

: (49)

R is called the Newton iteration function of T . It can be considered that the fixed
points of R are the zeros of T and all the fixed points of R are attracting. R may also
have one or more attracting cycles.

For x∈C, we consider T 4,q xð Þ, and then this polynomial has four distinct com-
plex numbers, ai i ¼ 1; 2; 3;4ð Þ such that T 4,q aið Þ ¼ 0. Using a computer, we obtain
the approximate zeros (Table 1) as follows:

In Newton’s method, the generalized expectation is that a typical orbit {R(x)}
will converge to one of the roots of T 4,q xð Þ for x0 ∈C. If we choose x0, which is
sufficiently close to ai, then this proves that

lim
r!∞

R x0ð Þ ¼ ai, for i ¼ 1; 2; 3;4: (50)

When it is given a point x0 in the complex plane, we want to determine whether
the orbit of x0 under the action of R(x) converges to one of the roots of the
equation. The orbit of x0 under the action of R also appears by calculating until 30
iterations or the absolute difference value of the last two iterations is within 10�6.

The output in Figure 5 is the last calculated orbit value. We construct a function,
which assigns one of four colors for each point according to the outcome of R in the
plane. If an orbit of x0 for q = 0.1 converges to�0.672809, �0.0821877 � 0.710388i,
�0.0821877 + 0.710388i and 1.94818, then we denote the red, blue, yellow, and
sky-blue, respectively(the left figure). For example, the yellow region for the left
figure represents the part of the basin of attraction of a3 = �0.0821877 + 0.710388i.

i q = 0.1 q = 0.5 q = 0.9

1 �0.672809 �0.581881 � 0.412941i �1.10249

2 �0.0821877 � 0.710388i �0.581881 + 0.412941i �0.158841

3 �0.0821877 + 0.710388i 0.907024 1.84004

4 1.94818 2.13174 2.86029

Table 1.
Approximate zeros of T 4,q xð Þ.

Figure 5.
Orbit of x0 under the action of R for T 4,q xð Þ for q = 0.1, 0.5, 0.9.
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If we use T 3;0:1 xð Þ to draw a figure using the Newton method, we can obtain
Figure 6. The picture on the left shows three roots, and the colors are blue, red, and
ivory in the counterclockwise direction. When we examine the area closely, we can
see that it converges to an approximate value in each color area. The convergence
value in the blue area is �0:379202þ 0:523651i, that in the red area is
�0:379202� 0:523651i, and that in the ivory area is 1.8684. We can also see that it
shows self-similarity at the boundary point as divided into three areas. The figure

on the right is obtained by 2-times iterated q-tangent polynomials, T 2
3;0:1 xð Þ, and the

area is divided into nine colors “gray (x ¼ 2:31831), scarlet
(x ¼ 1:76736þ 0:216319i), light brown (x ¼ 0:137247 þ 0:59473i), sky blue
(x ¼ �0:604153þ 1:19884i), blue (x ¼ �0:794606þ 0:378411i), red
(x ¼ �0:794606� 0:378411i), ivory (x ¼ �0:604153� 1:19884i), green
(x ¼ 0:137247 � 0:59473i), and navy blue (x ¼ 1:76736� 0:216319i) in the
counterclockwise direction. This also shows self-similarity at the boundary.

In Figure 7, we express the coloring for T 2
3;0:1 xð Þ.

Conjecture 3.1. The q-tangent polynomials always have self-similarity at the
boundary.

We know that the fixed point is divided as follows. Suppose that the complex
function f is analytic in a region D of C, and f has a fixed point at z0 ∈D. Then z0 is
said to be (see [6, 16, 20]):

an attracting fixed point if ∣ f 0 z0ð Þ∣ < 1;

a repelling fixed point if ∣ f 0 z0ð Þ∣ > 1;

a neutral fixed point if ∣ f 0 z0ð Þ∣ ¼ 1.

For example, T 3;0:1 xð Þ has three points satisfying T 3;0:1 xð Þ ¼ x.
That is, x0 ¼ �0:967484, � 0:33466; 2:41214. Since

d

dt
T 3;0:1 �0:967484ð Þ

�
�
�
�

�
�
�
�
¼ 0< 1,

d

dt
T 3;0:1 �0:33466ð Þ

�
�
�
�

�
�
�
�
¼ 0< 1 (51)

Figure 6.

Orbit of x0 under the action of R for T 3,0:1 xð Þ, T
2
3;0:1 xð Þ.

Figure 7.
Palette for escaping points.
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Theorem 3.2. T 3;0:1 xð Þ for q = 0.1 has two attracting fixed points.
Using Mathematica, we can separate the numerical results for fixed points of

T n;0:1 xð Þ. From Table 2, we know that T n;0:1 xð Þ have no neutral fixed point for
1≤ n≤4. We can also reach Conjecture 3.3.

Degree n Attractor Repellor Neutral

1 0 1 0

2 1 1 0

3 2 1 0

4 1 3 0

5 1 4 0

Table 2.
Numbers of fixed points of T n;0:1 xð Þ.

r RT
r
3;0:1 xð Þ RFT

r
3;0:1 xð Þ

1 3 2

2 3 2

3 3 2

4 23 2

5 2 2

6 1 1

Table 3.
The numbers of RT

r
3;0:1 xð Þ and RFT

r
3;0:1 xð Þ for 1≤ r≤ 6.

Figure 8.
Stacks of fixed point of T r

3,0:1 xð Þ for 1 ≤ r ≤ 6.

13

A Numerical Investigation on the Structure of the Zeros of the Q-Tangent Polynomials
DOI: http://dx.doi.org/10.5772/intechopen.83497



Conjecture 3.3. The q-tangent polynomials for n≥2 have at least one attracting
fixed point except for infinity.

In Table 3, we denote RT
r
n,q xð Þ as the numbers of real zeros for rth iteration and

RFT
r
n,q xð Þ as the numbers of attracting fixed point on real number. From this table,

we can know that number of real fixed points of T r
3,q xð Þ are less than two. Here, we

can suggest Conjecture 3.4.
Conjecture 3.4. The q-tangent polynomials that are iterated, T r

3;0:1 xð Þ, have real

fixed point, α ¼ �0:33466.
In the top-left of Figure 8, we can see the forms of 3D structure related to stacks

of fixed points of T r
3;0:1 xð Þ for 1≤ r≤ 6. When we look at the top-left of Figure 8 in

the below position, we can draw the top-right figure. The bottom-left of Figure 8
shows that image and n-axes exist but not real axis in three dimensions. In three
dimensions, the bottom-right of Figure 8 is the right orthographic viewpoint for
the top-left figure,-that is, there exist real and n-axes but there is no image axis
(Figure 8).

4. Conclusion

We can see that when q comes closer to 0, the approximate shape of the roots
become increasingly more circular. Also in this situation, we can observe scattering
of zeros in q-tangent polynomials around 2 in three-dimension. When q comes
closer to 1, it has properties that are more symmetrical. We can also assume that the
property that appears when iterating T n,q xð Þ has self-similarity. By iterating, we
can conjecture some properties about fixed points. This property warrants further
study so that we can create a new property.
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