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Chapter

New Energy Management
Concepts for Hybrid and Electric
Powertrains: Considering the
Impact of Lithium Battery and
Ultracapacitor Aging
Francis Assadian, Kevin Mallon and Brian Walker

Abstract

During the lifetime of an energy storage system, its health deteriorates from use
due to irreversible internal changes to the system. This degradation results in
decreased capacity and efficiency of the battery or capacitor. This chapter reviews
empirical aging models for lithium-ion battery and ultracapacitor energy storage
systems. It will explore how operating conditions like large currents, high tempera-
ture, or deep discharge cycles impact the health of the energy storage system. After
reviewing aging models, this chapter will then show how these models can be used
in vehicle energy management control systems to reduce energy storage system
aging. This includes both aging-aware control and control of hybrid energy storage
systems (systems that include both a battery and an ultracapacitor).

Keywords: electric vehicle, hybrid vehicle, energy management, lithium ion,
ultracapacitor, battery aging

1. Introduction

The internal combustion engine is a major contributor to greenhouse gas emis-
sions and hydrocarbon pollution across the globe. Motor vehicles account for a
major portion of pollutants such as carbon monoxide, nitrogen oxide, and volatile
organic compounds [1]. Alternative powertrain vehicles (APVs), such as electric
vehicles (EVs) and hybrid-electric vehicles (HEVs), are potential technological
solutions to reduce transportation-sector emissions and fuel consumption. How-
ever, APVs require large amounts of battery-stored energy, which can be cost and
weight prohibitive [2]. Degradation of the battery further adds to the lifetime cost
of an APV, and battery degradation rate has been shown to be inversely correlated
with fuel economy [3, 4]. Technologies that improve battery lifespan and fuel
economy will reduce this lifetime cost and hasten the adoption of sustainable
transportation.

Lithium-based batteries serve as the current main battery of choice for vehicle
transportation because of their high energy density and ability for high cycle life.
Improving cycle life of lithium batteries means limiting large currents in and out of
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the battery as much as possible to lower degradation and heat affects.
Ultracapacitors (UC) can be added to vehicles to improve battery life by taking
excess power away from the battery and storing it in temporary energy storage [5].
Capacitors can quickly unload power back into the system for high load situations
such as a hard acceleration, taking away the need for a high-power drain from the
battery.

This chapter will begin with a brief review of existing literature on empirical
modeling of lithium-ion battery and ultracapacitor degradation. Then, a few select
aging models will be reoriented for use in an APV energy management system
(EMS). Finally, an example showing how to utilize these control-oriented models
will be shown.

2. Energy storage aging review

2.1 Lithium ion battery aging

Aging of batteries is primarily caused by the formation of substrates in the
chemical reaction pathways and the formation of cracks in the electrode materials
from repeated stress cycles [6]. These aging mechanisms are accelerated by high
charge and discharge rates, extreme battery temperatures, and deep depths of
discharge [7]. Aging of the battery causes capacity fade (a decrease in the charge
storage capacity) and power fade (a decrease in the battery efficiency). However,
models of the cell chemistry that include the thermal and stress/strain relationships
used to describe aging are computationally intensive and are ill-suited for use in
APV EMSs [6, 8].

Research of battery aging in APVs instead tends to utilize empirical models
[4, 9–14]. Using empirical aging models for vehicle battery degradation analysis
provides a good trade-off between precision and complexity. These empirical
models do not consider the physical or chemical processes of the battery degrada-
tion but instead approximate the battery’s health by fitting experimental data to
aging factors like charge throughput, calendar life, and number of charge/discharge
cycles.

For instance, Refs. [9, 10, 15, 16] develop aging models that relate charge
throughput to degradation, with temperature and current magnitude as additional
stress factors. Refs. [17, 18] include depth of discharge as an additional stress factor,
while [18] also distinguishes the impact of charging and discharging currents on
battery degradation. The aging models for hybrid vehicle applications in [13, 14]
consider a number of charge/discharge cycles and calendar life and use tempera-
ture, depth of discharge, and average state of charge as aging stress factors. Other
models in the literature such as [8, 19, 20] use simple cycle counting to measure the
state of health.

Current research works to integrate battery aging dynamics into these EMSs to
form controllers that actively regulate battery degradation. In Ref. [4], the authors
developed an SDP-based EMS for a parallel-HEV passenger vehicle that accounted
for battery wear by mapping operating conditions to substrate growth, and associ-
ating substrate growth with battery state of health. The authors also analyzed how
reducing battery aging increased the fuel consumption. In Refs. [4, 21], the authors
developed a deterministic EMS for a parallel-HEV passenger vehicle that regulates
battery degradation using a “severity factor” map: the control policy penalizes
battery usage by an amount related to the severity of the operating conditions (in
terms of temperature and current magnitude). The authors of [4] also showed an
inverse correlation between the battery aging and fuel consumption.
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2.2 Ultracapacitor aging

Lithium batteries have a high energy density but low power density, meaning
that although they store large amounts of energy, that energy cannot be accessed
quickly. Additionally, high currents to and from the battery are a stress factor for
battery degradation. A potential solution to these problems is to integrate UCs into
the energy storage system. UCs store energy in the electric field of an electrochem-
ical double layer and have a high power density but low energy, allowing them to
serve as complements to battery energy storage [5]. By integrating UCs into the
powertrain, it becomes possible to meet the vehicle power requirements with a
smaller battery and reduce battery degradation by restricting the magnitude of the
current going to or from the battery [5, 22]. Aging of UCs is primarily dependent on
time, temperature, and cell voltage [23–25].

Current research is interested in optimal control and sizing of the UC to reduce
battery aging [26], and in particular how battery aging and fuel economy are jointly
impacted. Some related work includes Ref. [27], in which the authors develop an
optimal control policy to govern UC behavior and demonstrate clear aging
improvements over a passive (uncontrolled) system. Refs. [28, 29] carried out a
parametric study on battery degradation versus UC size in EVs, using a rule-based
control system to govern power allocation. Ref. [30] developed a control strategy
integrating UCs with lead-acid batteries in a HEV for battery life extension, and
found that a 50% increase in battery cycle life would be needed for the UC to be
cost-effective. Ref. [31] experimentally demonstrated a decrease in battery power
fade and temperature rise in lithium-ion batteries due to UCs on an EV load profile.

3. Control-oriented aging

Meeting this goal of mitigating energy storage system degradation in APVs
through control requires forming simplified models of the battery aging dynamics
that can be included in or be used to generate an EMS. This chapter will summarize
several approaches in the literature for using energy storage aging models for
control applications.

3.1 Power-law model

Ref. [15] developed a lithium-ion battery empirical aging model for normalized
battery capacity loss Q loss, based on an Arrhenius equation. The model uses exper-
imental data to relate battery degradation to on charge throughput Ah (in ampere-
hours), current Ib (in C), and temperature T (in K).

Q  loss ¼ A Ibð Þ exp
�Ea þ B Ibj j

RT

� �

Ahz (1)

Ea, B, and z are fitted parameters, while A(Ib) is a fitted function of current. R is
the ideal gas constant. Here, Q loss = 0 indicates a new battery, while Q loss = 0.2, for
example, indicates a 20% decrease in the storage capacity. This model treats current
and temperature as static values. So, Eq. (1) can be differentiated to form a dynamic
aging model as follows:

dQ  loss

dt
¼ A Ibð Þ exp

�Ea þ B Ibj j

RT

� �

� z Ahð Þz�1 dAh

dt
(2)

This model of aging has been used for aging control in, for example, [3, 4, 12].
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3.2 Cycle life model

The Palmgren-Miner (PM) rule is a common method for analyzing fatigue life in
mechanical systems and has been shown to effectively approximate the battery
health over nonuniform charge and discharge cycles [8, 32, 33]. As per the PM rule,
each charge and discharge cycle is considered to damage the battery by an amount
related to the cycle life at that cycle’s depth of discharge, charge and discharge
current, and temperature. Ref. [18], for instance, models the cycle life of a battery
as a function of depth of discharge DoD, charging current Ic, discharging current Id,
and temperature T.

CL ¼ f DoD; Ic; Id;Tð Þ (3)

Assume there is a charge-discharge cycle k with operating conditions DoDk, Ic,k,
Id,k, and Tk, and so the cycle life for these operating conditions is CLk. Then, under
the PM rule, the damage Dk from cycle k is assumed to be

Dk ¼ 1=CLk (4)

For multiple charge and discharge cycles, the damage from each cycle can be
added to find the total damage Dtot. For the total damage up to cycle k,

Dtot kð Þ ¼ ∑
k

i¼1
Di (5)

Cumulative damage of zero denotes that the battery is unaged while cumulative
damage of one means the battery has reached the end of its life. Typically, 20%
capacity fade indicates a battery’s end of life. So,

Q  loss kð Þ ¼ 0:2 �Dtot kð Þ (6)

However, the above method does not readily lend itself to use in control; full
charge and discharge cycles can take a long time to develop, and the EMS must act
at a faster rate. One possibility is that the energy management system could con-
sider how its decision would cause the damage of the current cycle to grow or
lessen. For instance, consider a battery to be at operating conditions DoDj, Ic, j, Id, j,

and Tj. The EMS then makes some decision such that the operating conditions
becomeDoDk, Ic,k, Id,k, and Tk. Using Eqs. (3) and (4), the change in damage due to
the EMS’s decision can be calculated as

ΔD ¼ Dk �Dj ¼
1

f DoDk; Ic,k; Id,k;Tkð Þ
�

1

f DoDj; Ic, j; Id, j;Tj

� � (7)

Then, Eq. (7) could be used in formulating an energy management strategy,
such that the EMS would seek to minimize the additional damage caused by each
decision it makes.

3.3 Ultracapacitor aging

Ref. [23] provides the following model for ultracapacitor aging, where SoA is the
state of aging where 0 indicates start of life and 1 indicates end of life.

dSoA

dt
¼

1

T
ref
life

� exp ln 2ð Þ
θc � θrefc

θ0

 !

� exp ln 2ð Þ
V � Vref

V0

 !

þ K

 !

(8)
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where θc is the UC temperature, V is the UC voltage, and the remaining vari-

ables (T
ref
life, θ

ref
c , θ0, V

ref , V0, and K) are experimentally fitted parameters. This

model is ready to be used for control as is. Ref. [23] defines the UC end-of-life
condition as similar to batteries: when the capacitance of the UC has faded by 20%.

4. Case study: electric vehicle with hybrid energy storage

This section develops a model for a hybrid energy storage system electric vehicle
(HESS-EV)—specifically, an electric bus that uses a lithium-ion battery pack for
energy storage and an ultracapacitor pack for handling large power requests. This
example study will be used to show how active control of aging factors can improve
the lifespan of the energy storage system without compromising energy consump-
tion. This system is depicted in Figures 1 and 2.

4.1 Vehicle dynamics

For this study, a backward-facing quasi-static vehicle model [34] is used to
represent the vehicle dynamics. In this model, it is assumed that the driver accu-
rately follows the velocity of a given drive cycle, eliminating the need for a driver
model and allowing the time-history of the electrical load placed on the powertrain
to be calculated in advance.

This vehicle model, illustrated in Figure 3, considers inertial forces, aerody-
namic drag, and rolling resistance (note that road incline is neglected for this
chapter). The drag force is given by

Fdrag ¼
1

2
ρAfCDv

2
v (9)

Figure 1.
HESS-EV model.

Figure 2.
HESS-EV block diagram.
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where ρ is the air density,Af is the frontal area,CD is the drag coefficient, and vv
is the vehicle velocity. Rolling resistance is given by

Froll ¼ MvgCR (10)

whereMv is the vehicle’s total mass, g is the acceleration due to gravity, and CR is
the rolling resistance coefficient. In a backward-facing model, the inertial force is
determined from the vehicle acceleration and the vehicle mass as

Finertial ¼ Meq
dvv
dt

: (11)

Meq is the mass of the bus plus the equivalent mass due to the rotational inertia
of the motor and wheels.

Meq ¼ Mv þ 4Jw
1

Rw

� �2

þ Jm
NfdNgb

Rw

� �2

, (12)

where Jw is the rotational inertia of one wheel, Jm is the rotational inertia of the
motor, Rw is the wheel radius, Nfd is the final drive ratio, and Ngb is the gearbox

ratio. The acceleration term in Eq. (11) is approximated from a given velocity
profile according to

dvv
dt

tð Þ ≈
vv tþ Δtð Þ � vv t�Δtð Þ

2Δt
: (13)

The inertial, drag, and rolling resistance forces sum together to give the traction
force on the bus.

Ftraction ¼ Finertial þ Fdrag þ Froll (14)

Parameter values for the vehicle model can be found in Table 1. The bus is
assumed to be fully loaded and at its maximum allowable weight. Vehicle parame-
ters are estimated from existing literature on bus simulation [35–37].

Figure 3.
Vehicle diagram.
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4.2 Powertrain model

This subsection describes the modeling of the HESS-EV powertrain, including
the transmission, motor, battery, and ultracapacitor subsystems, as indicated in
Figure 1. The goal of the vehicle model is to capture the primary forces on the
vehicle while maintaining model simplicity. Both these make simulation of the
system easier and make optimal control methods, such as dynamic programming or
model-predictive control, less computationally complex. Otherwise, the energy
management system might suffer from the “curse of dimensionality”.

4.2.1 Transmission

Next, the vehicle speed and traction force are transformed into motor torque
and motor speed. Assuming transmission efficiency of ηtrans, represented as torque
losses, the motor torque is given by

τm ¼

Rw

NfdNgb
Ftraction

 !

=ηtrans Ftraction ≥ 0

Rw

NfdNgb
Ftraction

 !

� ηtrans Ftraction,0

8

>

>

>

>

>

<

>

>

>

>

>

:

(15)

and the motor speed is given by

ωm ¼
NfdNgb

Rw
vv (16)

Then, the mechanical power needed to drive the vehicle Pmech can be expressed
in terms of the motor torque and angular velocity.

Pmech ¼ τm � ωm (17)

Here, positive Pmech indicates acceleration. Parameter values for the transmission
can be found in Table 1.

Parameter Variable Value

Vehicle mass Mv 18,181 kg

Frontal area Af 8.02 m2

Drag coefficient CD 0.55

Roll resistance coefficient CR 0.008

Wheel inertia Jw 20.52 kg-m2

Motor inertia Jm 0.277 kg-m2

Wheel radius Rw 0.48 m

Final drive ratio Nfd 5.1:1

Gearbox ratio Ngb 5:1

Table 1.
Vehicle physical parameters.
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4.2.2 Motor and power electronics

The electrical power demand of the motor, Pdem, is calculated from Pmech and an
efficiency parameter ηmotor,0, ηmotor, 1. ηmotor is a function of τm and ωm and is
determined from a static efficiency map.

Pdem ¼
Pmech=ηtrans τm ≥ 0

Pmech � ηtrans τm,0

�

(18)

The efficiency map is obtained from the National Renewable Energy
Laboratory’s Advanced Vehicle Simulator (ADVISOR) data library [38] and scaled
to the appropriate size using the scaling method in [5]. It includes both the motor
efficiency and the efficiency of the power electronics. The modeled vehicle utilizes a
250 kW AC induction motor.

The power demand for the electric motor is provided by battery power Pbatt and
ultracapacitor power Puc. As part of the quasi-static simulation, it is assumed that
the power demand is always met.

Pdem ¼ Pbatt þ Puc (19)

Because Pdem is set by the drive cycle and Puc is a controlled variable, Pbatt is fixed
and dependent on both Pdem and Puc. Therefore, Eq. (19) can be rewritten as

Pbatt ¼ Pdem–Puc (20)

4.3 Energy storage systems

The previous subsections detailed how the driver’s electrical power request
would be determined. As depicted in Figure 4, the EMS decides how that power is
split between the lithium-ion battery and the ultracapacitor. This subsection will
first detail the modeling of the battery, followed by modeling of the ultracapacitor.

4.3.1 Battery

This HESS-EV uses lithium-ion batteries represented by the simple battery
model shown in Figure 5, where Vcell is the open-circuit voltage (OCV) of a single
battery cell, while Rcell represents the combined effects of ohmic resistances, diffu-
sion resistances, and charge-transfer resistances [5]. This quasistatic model requires
only a single state variable, state of charge (SOC). The OCV as well as the resistance
are considered to vary with SOC per experimental data for a lithium-iron-
phosphate battery [39].

The equivalent resistance of the complete battery pack is given by

Req ¼ Rcell
Nser

Npar
(21)

Figure 4.
Battery and UC block diagram.
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whereNser is the number of cells in series, Npar is the number in parallel, and Rcell

is the resistance of a single cell. The open circuit voltage of the vehicle battery pack
is likewise given by

Vocv ¼ Nser � Vcell (22)

Using the equivalent circuit in Figure 4, the battery terminal voltage can be
found from the OCV and battery power Pbatt as follows:

Ibatt ¼ Pbatt=VT (23)

VT ¼ Vocv � Ibatt � Req (24)

Then, substituting Eq. (23) into Eq. (24) and solving yields

V2
T ¼ Vocv � VT � PbattReq (25)

VT ¼
1

2
Vocv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
ocv � 4PbattReq

q

� �

(26)

VT can then be substituted back into Eq. (23) to obtain the battery current,
which can be integrated to obtain the state of charge.

SOC kþ 1ð Þ ¼ SOC kð Þ þ Δt �
Ibatt
Q  batt

, (27)

where Qbatt is the capacity of the battery pack in coulombs and ∆t is the
timestep.

The parameters for the battery model can be found in Table 2. The number of
cells in series was chosen so that the OCV would be in line with the

Figure 5.
Battery cell and battery pack equivalent circuit.

Parameter Variable Value

Battery cells in parallel Npar 400 cells

Parallel sets in series Nser 100 sets

Total charge capacity Qbatt 340 Ah

Battery temperature T 35∘C.

Table 2.
Battery parameters.
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recommendations in [40]. The number of cells in parallel was chosen so that the bus
can be driven for 4 hours continuously to meet the power requirements of [40, 41].

For this example, the cycle counting method described in Eqs. (3)–(7) is used,
with the aging model in Ref. [18] used to determine cycle life. This is illustrated in
Figure 6. The battery is assumed to operate at a constant 35∘C.

4.3.2 Ultracapacitor

The ultracapacitor model is similar in nature to the battery model, so the
dynamics here will be presented more briefly. For this study, a second-order equiv-
alent circuit based on the 100F ultracapacitor model in [42] is used to model the
individual ultracapacitors. Parameters for this model are given in Table 3. Like with
the battery, the ultracapacitor pack consists of ultracapacitors arranged in series and
parallel as shown in Figure 7.

As shown in Figure 1, the UC is connected to the DC bus through a converter, so
that the voltage of the UC pack is independent of the voltage at the DC bus. The
ultracapacitor pack takes on total power Puc and has Npc cells in parallel per set and
Nsc sets of cells in series. Then, the power going to each individual cell is

Puc, cell ¼
Puc

NpcNsc
(28)

Let q1 be the charge that corresponds to the C1 capacitor, and let q2 be the charge
that corresponds to the C2 capacitor. For a given power Puc, cell, the current and
terminal voltage can be found in a similar manner to Eqs. (23)–(26).

Iuc ¼ Puc, cell=VT,uc (29)

VT,uc ¼ q2=C2 � IucR2 (30)

Figure 6.
Battery aging and dynamics block diagram.

Parameter Variable Value

UC parallel cells Npc 100

UC series sets Nsc 100

Resistor 1 R1 29.6 mΩ

Capacitor 1 C1 31.7 F

Resistor 2 R2 14.7 mΩ

Capacitor 2 C2 74.1781 F

Temperature θ 45∘C

Table 3.
Ultracapacitor parameters.
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Then, substituting Eq. (23) into Eq. (24) and solving yields

V2
T,uc ¼ q2=C2 � VT,uc � PbattReq (31)

VT,uc ¼
1

2
q2=C2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q22=C
2
2 � 4Puc, cellR2

q

� �

(32)

VT can then be substituted back into Eq. (23) to obtain the battery current.
Then, the state equations for the two capacitors are

_q1 ¼ 1=R1 q1=C1 � q2=C2

� �

(33)

_q2 ¼ Iuc � 1=R1 q1=C1 � q2=C2

� �

(34)

The total charge in the capacitor quc is given by

quc ¼ q1 þ q2 (35)

For this example, the cycle counting model in [23] and Section 3.3 is used. This is
illustrated in Figure 8. The ultracapacitor is assumed to operate at a constant 45∘C.

4.4 Energy management system

A deterministic dynamic programming (DDP) controller is used for the EMS.
DDP is a form of optimal control—in this example, the DDP controller solves the
following optimization problem over a known velocity profile that is N steps long.
For this system, the minimum, target, and maximum charge are qmin ¼ 50 C,
qtgt ¼ 150 C, and qmax ¼ 250 C, and the minimum and maximum UC power are

Puc,min ¼ �62:5W and Puc,max ¼ 62:5W so as not to exceed manufacturer specified
operating conditions [42]. Note that these are constraints on each cell, not the entire
pack. The battery power constraints will be discussed shortly.

Figure 7.
Ultracapacitor pack equivalent circuit.

Figure 8.
Ultracapacitor aging & dynamics block diagram.

11

New Energy Management Concepts for Hybrid and Electric Powertrains: Considering…
DOI: http://dx.doi.org/10.5772/intechopen.83770



minimize ∑
N

i¼0
quc ið Þ � quc, tgt

� 	2
þ Q 1 � ΔD ið Þð Þ2

subject to qmin, quc, qmax

Puc,min,Puc,Puc,max

Pbatt,min,Pbatt,Pbatt,max

(36)

In plain terms, the DDP controller finds how to split power between the battery
and ultracapacitor in such a way as to

1. Keep the UC charge near a target value

2.Minimize the aging of the battery

3. Ensure that the UC charge, UC power, and battery power stays within given
bounds

The method to solve DDP problems can be found in Ref. [5].
In order to demonstrate the benefit of actively controlling aging, two versions of

the controller will be tested:

1. Load-leveling DDP: Q 1 is set to zero. A battery power constraint of
Pbatt,min ¼ �3:2W and Pbatt,max ¼ 3:2W per cell prevents large power (and
therefore large current) going to the battery, and the cost function will bring
the UC charge back to the target afterwards.

2. Active Aging Control: Battery power is unconstrained, but battery damage is
directly penalized. A range of values are used for Q 1.

4.5 Simulation

The HESS-EV is simulated on the Manhattan Bus Cycle [43]—an urban bus
velocity profile—for 4 hours at a time. After each simulation, the aging for the
battery and ultracapacitor is measured. The battery capacity and ultracapacitor
capacitances are then updated, and the next simulation begins. This process is
repeated until the battery reaches its end of life.

4.6 Results

The lifespan of the battery in years is estimated by measuring the total kilome-
ters driven before the battery reached the end of its life, and then using the Federal
Highway Administration’s average annual kilometers driven by transit busses [44]
to convert the kilometers driven into an approximate number of years. Addition-
ally, the ultracapacitor degradation and average kWh/km for the HESS-EV over the
lifespan of the battery are measured.

Figure 9 shows a comparison between battery lifespan and fuel economy for
both controller types. Clearly, the aging-aware control outperforms the load-
leveling type controller: In all cases, the battery with actively-controlled aging has a
longer lifespan.

Additionally, this figure shows a trade-off between efficiency and battery
lifespan: As the battery lifespan increases with greater penalties on battery damage,
the energy efficiency of the vehicle drops. This is because greater penalties on aging
cause more current to pass through UC in order to reduce the load on the battery. In
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turn, there are more power losses due to the internal resistances of the capacitor
pack. This is illustrated in Figure 10, which shows the charge in the UC for two
different values of Q1. One can see how a small penalty on Q1 means the controller
will focus mostly on keeping the UC charge near the target value; this in turn means
less current through the UC, so less power losses from the UCs.

Figure 9.
Lifespan vs. fuel economy for HESS-EV, where Q1 is the penalty on battery damage.

Figure 10.
Ultracapacitor charge for two different values of Q1:
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Figure 11 shows the relationship between battery degradation and ultracapacitor
degradation. Two things are apparent: one, there is an inverse relationship between
the two—increasing battery lifespan comes at the cost of reducing ultracapacitor
lifespan. A cause of this can be observed in Figure 10. Second, ultracapacitor
degradation happens much more slowly than battery degradation. Despite the bat-
tery reaching the end of its lifespan, the ultracapacitor ages no more than 6–11%.

5. Conclusions

Deterioration of energy storage systems is inevitable, but by understanding the
process it becomes possible to control and slow the capacity and efficiency fade.
This chapter covered empirical aging models for lithium-ion and ultracapacitor
systems and their use in vehicle energy management. First, existing work on dif-
ferent lithium ion and ultracapacitor aging models was reviewed, as well as those
models’ application in energy management control strategies. After reviewing aging
models and discussing how to adapt empirical aging models for control, a case study
was carried out on an ultracapacitor-augmented electric vehicle to show how
actively controlling aging can improve an EMS. This case study included the steps
necessary to model the vehicle and powertrain dynamics as well as simple or
quasistatic models of the battery and ultracapacitor. DDP was generally used in two
types of controllers: a load-leveling type controller that was unaware of aging
dynamics, and a “smart” controller that incorporated battery aging dynamics into
its design. When simulated, the aging-aware controller outperformed the simple
controller, offering longer battery lifespan without any cost in fuel economy or
vehicle performance. This demonstrates how advanced control—making EMSs
aware of energy storage aging dynamics—can improve the efficiency and viability
of alternative powertrain vehicles.

Figure 11.
Battery lifespan vs. UC aging. Q1 is the penalty on battery damage.
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