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Abstract

Stem cell therapy is garnering attention as several clinical trials have taken place 
in the recent years by using human pluripotent stem cells (hPSCs). Hundreds of 
biotechnological companies are investing to find a permanent cure for difficult-to-
treat diseases like age-related macular degeneration, Parkinson’s disease, diabetes, 
etc. by using hPSCs. Therefore, clinical-grade cell manufacturing has become an 
important issue to make cell therapy products safe and effective. Current manu-
facturing practices are adopted from conventional antibody or protein production 
in the pharmaceutical industry where cells are used as a vector for producing the 
desired products. In cell therapy applications, cells are the products that are sensi-
tive to physicochemical parameters and storage conditions anywhere between 
isolation to patient administration. Moreover, cell-based product manufacturing 
consists of multi-step processing, including isolation from patients, genetic modi-
fication, derivation, expansion, differentiation, purification, characterization, 
cryopreservation, etc. This can require long processing times and pose high risk of 
product contamination as well as high production cost. Herein, we discuss the cur-
rent methods of biologics manufacturing and its limitations. We also review current 
practices for integrating and automating cell manufacturing facilities. Finally, we 
propose how to integrate multi-step cell processing in a single bioreactor to make 
the cell manufacturing practices more direct.

Keywords: biologics, stem cell therapy, genetic modification, integrated 
manufacturing, bioreactor

1. Introduction

Based on their self-renewal and differentiation capabilities, human pluripotent 
stem cells (hPSCs) including embryonic stem cells (ESCs) [1] and induced pluripo-
tent stem cells (iPSCs) [2] are attractive tools in the field of regenerative medicine. 
After the discovery of hiPSCs in 2007, this field expanded vigorously and hundreds 
of biotechnological companies were established to use these cells for treating degen-
erative diseases. The most common degenerative diseases treated by the hESCs are 
age-related macular degeneration (AMD), type I diabetes mellitus, heart failure, 
Parkinson’s disease, and spinal cord injury [3]. Although hiPSCs are a better source 
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for autologous cell therapy applications, they are less preferable for clinical trials 
because of less genetic stability compared to the hESCs. However, a few clinical 
trials have already been started using the patient-derived hiPSCs. The Takahashi 
group from the Riken Center for Developmental Biology has recently conducted a 
clinical trial for treating wet AMD [4]. Similarly, a Takahashi from Kyoto University 
is conducting a clinical trial for treating Parkinson’s disease by using hiPSCs [5]. 
A few clinical trials are also ongoing in the USA for treating different diseases like 
β-thalassemia, liver diseases, diabetes, etc. using hiPSCs and their use is expanding 
worldwide day by day [6].

As stem cell therapy is garnering increasing attention, a lot of clinical trials are 
ongoing using both hESCs and hiPSCs cells. About 6849 clinical trials and 1415 
stem cell-based therapies were found based upon searches we recently performed 
on clinicaltrials.gov (October, 2018) [7]. However, the percentage of success is not 
high enough as speculated from the previous clinical trials. Among the 315 clini-
cal trials conducted (26.0% Phase 1, 40.6% Phase 1/2, 22.5% Phase 2, 3.8% Phase 
2/3, and 6.7% Phase 3), only 0.3% went to Phase 4 [3]. The low percentage of 
completion of clinical trials depends on various factors. One of the major factors is 
manufacturing practices that can provide high safety and efficacy of cell therapy 
products. Moreover, production cost of multiple doses also hinders the success rate 
of clinical trials. As cell therapy revenue exceeded multi-million dollars and has 
been a profitable business in recent years, but much attention is needed to produce 
high quality cells for treating incurable diseases [8, 9].

The production of stem cell biologics is adapted from the conventional phar-
maceutical protein and vaccine production. Conventional biologics production 
involves the following basic steps: isolation and identification of raw materials, 
formulation, filling, packaging, and storage, where the total processing stops at the 
storage of final products.

Figure 1. 
Schematic illustration of current multi-step cell manufacturing strategies in planar culture for stem cell therapy 
applications. Skin cells are isolated from the patient and reprogrammed to hiPSCs using viral vectors. After 
reprogramming, hiPSCs are stored in a master cell bank or differentiated directly in autologous cell therapy 
applications. In some cases like allogeneic cell therapy applications, cells are expanded in a large amount and 
then differentiated. After performing characterization, quality assurance, and screening for safety and efficacy, 
cells are delivered to hospital or stored in a cell bank for future use.
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There is a big difference between the production of conventional biologics and 
cell-based therapy products. For vaccines or pharmaceutical protein production, 
cells are used as a platform for obtaining desired proteins. After that, cells are 
discarded. However, in cell-based therapies, cells, which are sensitive to the physical 
or chemical attributes of the residing environment, are the final products. Therefore, 
much consideration is needed before translating cell-based products from bench to 
clinic. This extends to the acquisition of tissue samples and isolation of cells, initial 
cell purification, selection, activation and transduction, cell expansion in plate or 
bioreactor culture, differentiation, washing, harvesting and formulation, filling and 
cryopreservation, and finally, storage and delivery to the clinics (Figure 1) [10].

Cumbersome multi-step manufacturing systems can cause batch to batch 
variability, inefficacy, and low quality of cells for transplantation and need to be 
simplified and made more direct. In this context, we will discuss current limitations 
of cell manufacturing strategies and propose how to overcome these by integrating 
the total process in a single bioreactor to make cell manufacturing straight forward 
enough to deliver high quality cell therapy products to the clinic. In this review, 
we will also discuss how to integrate genetic modification—transfection or trans-
duction, reprogramming, differentiation, purification, and formulation of final 
products in a single bioreactor.

2. Current manufacturing strategies for stem cell therapy

Current manufacturing strategies for cell therapy products are replicated from 
biologics manufacturing in the pharmaceutical industry. However, the processing 
of cells is far different from pharmaceutical proteins or vaccines. For pharmaceuti-
cal peptide production from microorganisms, the raw materials are extracted from 
bacteria or fungus [11, 12]. They are then separated, purified, and examined for 
quality assurance to meet the requirements of regulatory agencies, e.g., Food and 
Drug Administration (FDA), British Pharmacopeia, etc. The final products are 
stored or marketed in a dose-dependent manner.

Cell processing is more intensified when the pharmaceutical proteins are pro-
duced by using human, animal, or plant cells as a by-product. In this case, high quality 
products depend on the maintenance of high quality cells, and maintaining a sterile 
condition is very important. Therefore, good bioprocessing is required to optimize the 
production of desired proteins. After inoculating from a master cell bank, the cells are 
cultured for a specific period of time [13, 14]. The supernatant is then collected and 
the desired proteins are separated, purified, and concentrated. The isolated products 
then go through quality assurance to meet the criteria of the regulatory agency. 
Finally, the products are stored and marketed in a dose-dependent manner.

The manufacturing of stem-cell based products is not as straight forward as the 
production of pharmaceutical proteins or vaccines. This is because cells are the final 
product in stem cell therapy and are vulnerable to physical or chemical operations 
from isolation to delivery to patients. Cell manufacturing strategies also vary from 
source to source and depend on autologous or allogeneic transplantation (Figure 1). 
The major general steps are the acquisition of tissue samples and isolation of cells, 
initial cell purification, selection, activation and transduction, cell expansion, dif-
ferentiation, washing, harvesting and formulation, filling and cryopreservation, and 
finally, storage and delivery to the clinics [10].

For stem-cell based products, cells are isolated from specific tissues of patients, 
e.g., blood, skin, etc. for autologous transplantation or can be used from cell 
banks for allogeneic transplantation. Heterogeneity of final products may arise 
from the cell isolation step because patients’ tissues contain various undesired 
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subpopulations. For example, in chimeric antigen receptor T-cell (CAR-T) therapy, 
cells are isolated from patients’ blood tissue, which contains abnormal levels of 
inhibitory factors and regulatory cells [15, 16] because patients are treated with 
chemo- and radiotherapies. As a result, heterogeneity occurs in the final products, 
which need much attention during the cell isolation step. Cells isolated from 
patients need to be purified by centrifugation, magnetic-activated cell sorting 
(MACS), or fluorescent-activated cell sorting (FACS). Then, initial cell culture is 
done for selection, activation, or transduction of specific interest.

After purification, cells are expanded in plate culture or bioreactor. Based on 
demand, large-scale expansion is required in a sterile condition, which also requires 
intensive consideration because it is the rate-limiting step for commercialization of 
cell therapy products. The most important considerations for large-scale expansions 
are: operational, economic, quality and safety.

Operational design for culture systems (2D or 3D) with manual or automatic 
(desirable) operation is important before large-scale expansion [17]. Bioreactors 
are superior to plate culture for obtaining a large number of cells. Online monitor-
ing and control of process parameters (pH, DO, pCO2, etc.) and considering the 
shortest possible culture time are also important parameters for operational consid-
eration. A prediction model for medium consumption (glucose and glutamine) and 
toxic material production (lactic acid and ammonium) is very useful for determin-
ing medium feeding regimen. A dedicated single-use vessel is also a big operational 
consideration before large-scale expansion of cell-based products.

As cell-based products are costlier, economic considerations for medium, 
efficient cell lines and other indirect utilities are important. However, the most 
important consideration in large-scale expansion is product quality and safety. For 
this purpose, dedicated cell manufacturing facilities are required to maintain cur-
rent manufacturing practices (cGMP) for high product purity and safety.

After large-scale expansion, cells are harvested by detaching them from the 
culture substrate using enzymatic treatment. Non-enzymatic detachment is also 
available by changing temperature or pH [18–20]. Aggregate culture in bioreactors 
may not necessarily need a detachment step for harvesting [21–25]. Next steps are 
washing and volume reduction, which can be done by centrifugation or tangential 
flow filtration on a large scale by using automated commercial devices (kSep 
systems and Terumo BCT).

Purified cells are formulated in a dose-dependent manner and checked for 
quality assurance. Quality assurance is done in three different stages: microbial 
contamination, chemical contamination, and quality or potency assurance. 
Microbial contamination is checked for bacterial, fungal, or viral contamination 
by sterility tests with various methods [26, 27]. The most commonly used sterility 
test is a 14-day incubation of cell products for bacterial and fungal contamina-
tion [28, 29]. Chemical testing includes checking for molecules accompanying the 
culture medium or other factors used during isolation, expansion, and storage. One 
commonly used chemical test is the LAL test for bacterial endotoxin. There is now 
an automated 15 min test for determining endotoxin in cell therapy products, which 
was developed following FDA regulations [30]. Other chemical testing concerns 
are checking for residual proteins of different origins, serum, and other harmful 
particles originated from cell processing.

In cell therapy products, quality is the major concern, especially because cell 
growth is a requirement. For that reason, a cell viability assay is done to determine 
live or dead cells in the product using a variety of staining methods. Colony forming 
unit (CFU) is also useful for determining biological activity of cell therapy prod-
ucts [31, 32]. Product potency is an important criterion to meet before releasing the 
product. For example, if a cell therapy product is applied for the chimeric antigen 
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receptor T (CART)-related cancer therapy, it needs to be examined for the secretion 
of cytotoxic cytokines (IFN-γ) and killing of target cells [33]. However, for hPSCs, 
the final products are differentiated cells, wherein potency should be checked via 
transplantation into disease models.

For hPSC-derived products, strict quality control is imperative before 
transplantation to the patients because there is high risk of oncogene transfer to 
patients. A clinical trial was halted in 2015 in Japan while treating AMD by autolo-
gous hiPSC-derived retinal pigmented epithelial cells because of genetic abnor-
mality [34]. Since genetic abnormalities occur in hiPSC-derived products from 
reprogramming to finally differentiated cells [35], cells should be strictly screened 
for epigenetic signatures, karyotyping, telomerase activity, mitochondrial remod-
eling, etc. [36–38]. Rohani et al. summarized possible molecular cytogenetics for 
quality control that should be checked before releasing the final products [39]. 
Some of the proposed quality testings are whole-genome sequencing, single-cell 
genome sequencing, epigenomic analysis, and mitochondrial DNA integrity test-
ing for maximizing the patient safety.

After passing the product quality assurance, cells need to be delivered to clinics 
immediately or stored for future use. Cells are shipped generally to the clinics on 
dry ice (−78°C) or in liquid nitrogen dry shippers (−160°C) if the cells are vitrified. 
The mostly used technique for cell storage is cryopreservation in liquid nitrogen 
at −196°C which is adapted from the conventional stem cell banking [40, 41]. For 
cryopreservation, dimethyl sulfoxide (DMSO), glycerol, sugars, or other polymers 
are used. Among them, clinical grade DMSO is widely used although it is detri-
mental and can cause harmful effects to cells [42, 43]. Therefore, removing it from 
cryopreservation protocols or lowering the concentration is important. However, 
developing appropriate protocols for freezing and thawing is also important for high 
recovery of cells. Generally, slow-freezing and quick thawing is highly applicable for 
better recovery of cryopreserved cells [44, 45]. Since intracellular ice crystal forma-
tion is a big obstacle in cryopreservation, using ice recrystallization inhibitors is also 
an effective process for cryopreservation of clinical cell therapy products [46, 47].

Product delivery is also an important step to consider before administration to 
the patients. Since the products are carried in an environment where temperature is 
extreme, the container should be made with such materials that can withstand extreme 
low temperature and do not cause any leakage compromising the product quality [48]. 
For autologous cell therapy applications especially for CAR-T cell therapy, a dedicated 
vessel, which can withstand extreme low temperature, is needed [49].

3. Integrated biologics manufacturing in bioreactors

The conventional production of pharmaceutical proteins or other biologics 
consists of multiple steps from raw materials to finished products. As biologics 
need to maintain stringent quality control, multiple steps in production facili-
ties compromise the product quality significantly. They also reduce productivity 
and become prone to human errors, which decrease product efficacy and safety. 
Moreover, multiple steps in cell processing consume a lot of time, which indirectly 
increases production cost. To overcome these drawbacks, integrated pharmaceuti-
cal production has been attempted by various pharmaceutical companies. One of 
the significant attempts was made by the Novartis-MIT Center for Continuous 
Manufacturing of pharmaceutical products to fully integrate the cell processing sys-
tem [50, 51]. Another attempt was taken by Genzyme™ for continuous production 
of pharmaceutical recombinant protein in bioreactors, where cell culture to product 
isolation and purification was integrated in a single flow [52]. By using this system, 
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they respectively reported successful production of monoclonal antibody as well as 
highly complex, less stable pharmaceutical protein with consistent product qual-
ity, high product output, and low cost. Process integrity is necessary for reducing 
cumbersome production steps and cutting cost significantly. One such integrated 
system developed by Johnson & Johnson has recently got FDA approval for large-
scale HIV drug production [53] that reduces time and cost by one third compared to 
the conventional batch processing.

Since biologics production for cell therapies require multiple steps, integration 
of all of the steps will give high product quality and safety, as well as help overcome 
stringent regulatory requirements. In this context, we will discuss how to integrate 
some important basic steps of cell manufacturing especially genetic modification, 
cellular reprogramming, expansion, and differentiation in bioreactors to promote a 
single-step approach for cell-based therapies (Figure 2).

3.1 Genetic modifications in bioreactor

Genetic modification is one of the biggest steps in producing cell therapy prod-
ucts. In biologics manufacturing, it has been practiced for many years for producing 
antibodies, proteins, or other biotechnological drugs. It has also been used extensively 
in the cell therapy industry as various cell-based products have been applied for treat-
ing multiple incurable genetic diseases in recent years. Some genetic modifications 
affect patients directly and some indirectly. For example, in adrenoleukodystrophy 
(ALD), a neurological disorder occurs due to malfunction of oligodendrocytes and 
microglia where genetic modification can affect a patient directly. To recover from it, 
a corrected gene is inserted into the patient-derived hPSCs and transplanted into the 

Figure 2. 
Schematic illustrations of integrated single-step cell manufacturing strategies in bioreactor culture for stem cell 
therapy applications. Skin cells are isolated from the patient and reprogrammed to hiPSCs on microcarriers 
using a nonviral approach. After expansion as aggregates, hiPSCs are stored in a master cell bank or 
differentiated directly in bioreactor. After performing characterization, quality assurance, and screening for 
safety and efficacy, cells are delivered to hospital or stored in a cell bank for future use.



7

Integrated Biologics Manufacturing in Stirred-Suspension Bioreactor: A Stem Cell Perspective
DOI: http://dx.doi.org/10.5772/intechopen.83813

patient’s brain, which is differentiated into microglia to promote production of myelin 
in the patient’s brain that recovered the ALD [54].

In some gene therapy applications, patients are exposed indirectly to genetic 
modification. For example, in thalassemia, patient blood cells are extracted from the 
body and the cells are modified and enriched in ex vivo to target the specific antigens 
of patients’ body [55]. Other indirect genetic modifications used for treating CAR or 
T-cell receptor (TCR) genes to T-cells [56], expression of CD40 ligand in dendritic 
cells [57], adenosine-deaminase severe-combined immunodeficiency [58], and beta-
thalassemia [59], as well as deletion or insertion of desired genes in a specific genomic 
location. Among them, CAR-T cell therapy has got much attention for treating 
cancer-related diseases. These genetically modified T-cells can specifically target the 
antigens and kill the cancer cells efficiently [60]. CARs and TCRs are the mostly used 
receptors which are engineered to activate the T-cells [61]. Nowadays, a lot of CAR-T 
cell-based therapies are being established for treating advanced-stage lymphoma [62] 
and B-cell lymphoma [63] as well as other autoimmune diseases [64].

Viral vectors are commonly used to deliver genetic cargo to cells (Figure 1). 
This involves a two-step process: preparation for viral vectors and transduction for 
modifying the cells to express desired property. Lentiviral and gamma-retroviral 
are widely-used for their superior transduction efficiency but their transgenes 
are integrated with the host genome [65]. Another choice for viral transduction is 
adenovirus where viral transgenes are not integrated into the host genome but less 
efficient than lenti- and retro-virus. The major drawbacks in viral vector mediated 
transduction are concerns for safety of the products [66]. Viral vectors are widely 
used for reprogramming hiPSCs from skin fibroblasts cells [2].

Other methods for cellular transduction use nonviral approaches, including 
nucleofection or electroporation, or liposome-mediated delivery of DNA or RNA 
into cells. Although DNA vectors are easy to scale-up, carry large-size DNA with 
less immunotoxicity, this process is less efficient than the viral transduction. 
There are some other methods for skipping the use of viral vectors which are also 
efficient in doing the transgene expression [67–69]. Hsu et al. reported success-
ful transfection by using commercially available nonviral cationic reagents, for 
example, TransIT-3D, TransIT-2020, XtremeGENE 9, XtremeGENE HP, JetPrime, 
Lipofectamine 3000, and Effectene and compared their transfection efficiency 
[70]. Warren et al. reported efficient reprogramming of hiPSCs from various cell 
sources by using mRNA and differentiated the cells into three germ layers [71]. 
hiPSCs were also reprogrammed by using recombinant protein that also maintained 
all the three germ layers [72].

Since transgene possesses high risk of cancer-causing agents; therefore, removal 
after transduction is highly desired. There are a few methods developed for the 
removal of these vectors. One of the methods is the piggyBac transposon system, 
which has been used to remove tandem Yamanaka reprograming genes Oct4, Sox2, 
Klf4, and c-Myc from iPSCs following reprogramming [73]. Removal of trans-
genes after incorporating CAR into T-cells used another transposon system called 
Sleeping Beauty, which successfully removed any genetic scar from the transduced 
cells [74, 75]. Likewise, transgene-free iPSCs have also been produced by Cre exci-
sion of reprogramming genes via loxP sites [76]. Integration-deficient viral vectors 
are also good candidates for producing transgene-free cell therapy products by 
mutating viral integrase [77]. Another approach is to use site-directed integration 
using targeting nucleases [78–80].

Various genome engineering technologies have been explored for gene addi-
tion, deletion, or correction in the cell therapy industry and are increasing day 
by day [81]. The most widely used targeting nucleases are zinc-finger nucleases 
(ZFNs), clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas 
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endonucleases, or transcription-activator like effector nucleases (TALENs) [82]. 
Although the CRISPR/Cas system has recently received much attention due to broad 
use in genome engineering of patient cells [83], ZFNs are also popular for treating 
graft-versus-host disease in T-cell therapy [84].

Recently, a nuclease dead variant of Cas9 bearing a transcriptional trans-activator 
has recently been used in cellular reprogramming by activating the transcription 
factors Oct4 and Sox2, which maintained pluripotency and expressed the markers for 
the three germ layers [85].

Although genetic modification is a rate-limiting step in the cell manufacturing 
industry, the conventional methods make it more complicated because it is a multi-
step process. Conventional genetic modification in planar culture is also costly, 
labor-intensive, and time-consuming. The bioreactor is a better platform for pro-
ducing large-scale genetically modified cells for commercial purposes because cell 
expansion is possible in the same vessel which makes the process straightforward 
(Figure 2). For genetic modification in bioreactor, Hsu et al. recently reported how 
to transfect reprogramming factors in bioreactor where they tried eliminating viral 
vectors for gene delivery by using cationic reagents [78]. Generally, transfection 
of reprogramming factors for generating induced pluripotent stem cells (iPSCs) is 
done in adherent culture and then cells are expanded in 2D or 3D which is a two-
step process. By integrating the genetic modification step in bioreactor, it is possible 
to establish a single-step process which enables cell manufacturing in automated 
and closed bioreactor system.

Genetic modification is also a challenging step in CAR-T cell therapy-based 
products. In CAR-T cell therapy, generally cells are isolated from patients’ blood 
sample and then the cells are expanded after selection and activation. Finally, the 
cells need to be transduced with the CAR or any other antigens depending on target 
diseases. Conventional methods for genetic transduction are based on planar cul-
ture where every step is performed in open culture system. Recently, a few steps are 
integrated in bag culture system where selection, activation, and expansion can be 
done in a single step using DynaMag™ CTS™ [86], whereas the Xuri cell expansion 
System developed by GE Healthcare can expand cells in large numbers [87–89].

Although washing and concentrating the final product are integrated by the 
COBE® 2991 system developed by Terumo BCT [90], the transduction step is still 
not integrated in any of the above systems. Integrating the transduction step with 
the expansion and formulation will make the CAR-T cell therapy straightforward 
and performing these steps in bioreactor is a good platform since the physiological 
parameters as well as automated operation is possible in bioreactor culture. Miltenyi 
Biotec developed a device named CliniMACS Prodigy™ which is based on bag culture 
for CAR-T cell therapy. This device integrated major steps especially cell preparation, 
selection, activation, expansion, transduction, washing, and formulation in an auto-
mated system [91–93]. Such integration in the bioreactor will pave a straightforward 
method for producing cell-based products in a closed and automatic method.

3.2 Integrated system for large-scale expansion and differentiation in bioreactor

Current manufacturing practices for stem cell-based products are multi-step: 
derivation, expansion, and differentiation. In this process, patient-derived skin 
fibroblast cells are transduced with reprogramming factors in the planar culture. 
After deriving hiPSCs, cells are expanded in planar or bioreactor culture to obtain 
a large number of cells. Then cells are differentiated to target cells of interest. The 
differentiated cells are characterized and transplanted to the patient in a dose-
dependent manner. As this process is complicated with multiple steps, it poses high 
risk of contamination to the final products. Moreover, maintaining cGMP culture 
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platform is also mandatory for cell-therapy products [94–96], which makes the cell 
manufacturing process more complicated. Therefore, developing an integrated sys-
tem that can combine all these steps from derivation to final products is required. 
Here, the bioreactor may be a good platform for doing this (Figure 2).

The bioreactor platform is widely used for the large-scale expansion of 
hPSC-based cell therapy production because bioreactor is easy to operate in an 
automated mode where various physicochemical parameters can be regulated in a 
closed-system. Two groups have demonstrated that the bioreactor is conducive to 
cellular reprogramming [97, 98]. Shafa et al. reported a significantly higher repro-
gramming efficiency in the bioreactor compared to the planar culture [97]. Since 
mesenchymal-epithelial transition (MET) is an important early step in cellular 
reprogramming [99], transformed fibroblasts that are moved into the bioreactor 
will form aggregates that are efficiently expanded in the bioreactor. Indeed because 
fibroblasts are substrate-dependent, bioreactor culture may be promoting aggregate 
formation and therefore cellular reprogramming.

Unfortunately, bioreactor reprogramming methods require genetic modification 
(retroviral, piggyBAC) prior to bioreactor expansion. It is theoretically possible to 
pursue cellular reprograming fully and completely in the bioreactor. Recently, for 
example, Hsu et al. has demonstrated that it is possible to transfect human fibro-
blasts directly on microcarriers [70]. Reprogrammed cells in theory will leave the 
microcarrier to form aggregates in the bioreactor via MET.

Following bioreactor derivation of hPSCs, the next big steps are expansion and 
differentiation. Generally, a large number of cells are required for an effective cell 
therapy application, which is ranging from 108 to 1010 cells per 70 kg patient [100]. 
In the conventional process, cell expansion is performed in planar culture. However, 
it has many drawbacks and limits the cell expansion in various ways. Planar culture 
is unable to provide enough growth surfaces for the unlimited expansion.

Another major drawback is surface coating. Extracellular matrix (ECM) is 
needed for surface coating which is initially derived from animal sources, which 
poses high risk in clinical-grade manufacturing. Currently, recombinant ECM has 
been discovered, which can be used efficiently for clinical applications [101]. The 
advancement in cell coating also stimulated the advancement of integration and 
automation of cell expansion in adherent culture.

Automated planar culture systems have been established for the expansion of 
hPSCs for clinical-grade cell manufacturing. One of the notable automated systems 
for cell manufacturing is CompacT SelecT™ developed by the TAP Biosystems. 
This system is based on T-flask where 90 T175 flasks can be accommodated for 
large-scale expansion of cells. All the cell culture steps, cell counting, seeding, 
medium change, passaging, and plating as well as transient transfection can be done 
automatically by using this robotic system. However, such systems are not used for 
differentiation since differentiation is a complicated process, which needs several 
components to add in the culture medium. As a result, the expansion and differen-
tiation process in planar culture is mostly disintegrated.

Cell expansion in bioreactors need not require surface coating except for 
microcarrier culture. Bioreactor also provides enough growth surface availability. 
Generally, a single bioreactor (100 mL working volume) is enough for providing 
clinically relevant number of cells for autologous cell therapy applications. Several 
types of bioreactors are employed for the expansion of hPSCs [102]. For anchorage-
dependent expansion of hPSCs, microcarriers need to be coated with ECM for cell 
attachment in the bioreactor [100, 103–105].

After large-scale expansion, cells are harvested by detaching them from the 
microcarrier using enzymatic treatment. Nonenzymatic detachment is also avail-
able by changing temperature or pH [18–20]. Bioreactor expansion of hPSCs on 
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microcarrier is troublesome for clinical application because it needs an extra step 
for microcarrier separation from the final cell harvest. On the other hand, aggregate 
culture in bioreactors may not necessarily need a detachment step for harvesting 
[21–25] and clinically relevant numbers of cells can be produced in a single bioreac-
tor as aggregate [21, 106–108].

A major drawback in aggregate culture is the size limitation. With the increase in 
aggregate size, the growth potential decreases in the large size aggregate due to dif-
fusion limitation of oxygen and nutrients [109]. Therefore, maintaining aggregate 
size is an important issue to maintain high growth rate as well as high quality for cell 
therapy applications [21].

After expansion, cells can be differentiated in the same vessel which makes 
bioreactor culture a unique choice for integrated biologics manufacturing. 
Bioreactors were used for differentiation of hPSCs into various cell types, especially 
for cardiac [110–112], hepatic [113, 114], and neural [115] lineages. To provide 
straightforward methods for clinical applications, integration of expansion and 
differentiation is important and there are several reports published recently where 
expansion and differentiation were integrated [108, 116–118]. However, the integra-
tion of derivation with expansion and differentiation is still facing complications 
and there are a very few reports available.

Steiner et al. reported integration of derivation, propagation and differentia-
tion of hESCs in suspension culture where hESCs were isolated from the inner 
cell mass in suspension culture that did not involve feeder cells or microcarriers 
[119]. However, the integration of derivation, expansion, and differentiation is not 
still realized for personalized medicine especially for autologous or allogenic cell 
therapy applications. Such integration is needed for overcoming the multi-step cell 
processing, which will reduce the risk of contamination and save cell processing 
time as well as reduce manufacturing costs for cell therapy manufacturing.

4. Concluding remarks and future directions

Cell therapy applications utilizing stem cells are increasing day by day and sev-
eral clinical trials are ongoing to treat incurable diseases. With the growing need for 
cell-based products, the manufacturing facilities should be compatible for fulfilling 
the market demand by supplying safe and effective cell-based products. Since the 
current manufacturing systems are stuck with several drawbacks, especially multi-
step processing which poses high risk of contamination as well as long processing 
time which contributes to increase culture cost, a more straightforward system is 
required. Bioreactor-based cell manufacturing system can provide a single-step and 
straightforward processing of cell-based products. Integration of different steps, 
especially genetic modifications, derivation, and expansion as well as differentia-
tion in bioreactor will pave the future of manufacturing cell-based products. The 
integrated biologics manufacturing in stirred suspension culture will significantly 
reduce the risk of contamination of final products, increase product efficacy, and 
reduce cell processing time and provide a cost-effective platform for cell manufac-
turing for cell therapy applications.
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