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Chapter

Design and Implementation of
Particle Systems for Meshfree
Methods with High Performance
Giuseppe Bilotta, Vito Zago and Alexis Hérault

Abstract

Particle systems, commonly associated with computer graphics, animation, and
video games, are an essential component in the implementation of numerical
methods ranging from the meshfree methods for computational fluid dynamics and
related applications (e.g., smoothed particle hydrodynamics, SPH) to minimization
methods for arbitrary problems (e.g., particle swarm optimization, PSO). These
methods are frequently embarrassingly parallel in nature, making them a natural fit
for implementation on massively parallel computational hardware such as modern
graphics processing units (GPUs). However, naive implementations fail to fully
exploit the capabilities of this hardware. We present practical solutions to the
challenges faced in the efficient parallel implementation of these particle systems,
with a focus on performance, robustness, and flexibility. The techniques are illus-
trated through GPUSPH, the first implementation of SPH to run completely on
GPU, and currently supporting multi-GPU clusters, uniform precision independent
of domain size, and multiple SPH formulations.

Keywords: software design, particle systems, SPH, GPGPU, high-performance
computing, numerical stability, best practices

1. Introduction

Particle systems were first formally introduced in computer science by Reeves
[1], as the technique used by Lucasfilm Ltd. for the realization of some of the special
effects present in the film Star Trek II: The Wrath of Khan [2]. Since then, particle
systems have been used in computer graphics for the simulation of visually realistic
fire, moving water, clouds, dust, lava, and snow. A particle system consists of a
collection of distinct elements (particles) that are generated according to specific
rules, evolve and move in the simulation space, and die out at the end of their life
cycle. The position and characteristics of the particles in the system over simulated
time are then used to render larger bodies (flames, rivers, etc.) with appropriate
techniques [3].

While originally developed purely for visual effects, and associated with evolu-
tion laws focused on the final appearance rather than the physical correctness of the
behavior, particle systems also form the digital infrastructure for the implementa-
tion of a class of numerical methods (known as meshless, meshfree, or particle
methods) that have started emerging since the late 1970s as alternatives to the
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traditional grid-based numerical methods (finite differences, finite volumes, finite
elements). These methods—smoothed particle hydrodynamics (SPH) [4],
reproducing kernel particle method (RKPM) [5], finite pointset method (FPM) [6],
discrete element method (DEM) [7], etc.—provide rigorous methods to discretize
the physical laws governing the continuum and thus provide physics-based evolu-
tion law for the properties of the particles that act both as interpolation nodes in the
mathematical sense and as virtual volumes of infinitesimal size carrying the prop-
erties of the macroscopic mass they represent.

More recently, the same computer techniques have been used to solve more
abstract problems. For example, particle swarm optimization (PSO) [8] is a meth-
odology to find approximate minima for functions whose derivatives cannot be
computed (at all or in reasonable times), in spaces of arbitrary dimensions. Outside
of the particle systems in the proper sense, simulation methods such as molecular
dynamics (MD) [9] and many large-scale agent-based models present significant
similarities with particle systems [10, 11] and share much of the infrastructural
work with it.

Particle systems are computationally intensive. Realistic visual effects, accurate
physical simulations, fast minimization, and large-scale agent-based models all
require thousands if not millions (or more) of particles. On the upside, the behavior
of most particle systems can be described in an embarrassingly parallel way, where
each particle evolves either independently from the rest of the system or with at
most local knowledge of the state of the system. This property makes particle
systems a perfect fit for implementation on massively parallel computational hard-
ware following the stream processing programming model, and in particular mod-
ern graphics processing units (GPUs), that have grown in the last decade from fast,
programmable 3D rendering hardware to more general-purpose computing
accelerators [12].

While the parallel computational power of GPUs is a natural fit for the parallel
nature of particle systems, naive implementations will miss many opportunities to
fully exploit GPUs, even when achieving performance orders of magnitude higher
than an unoptimized, serial CPU implementation. Our objective is to discuss the
optimal implementation of particle systems on GPU, so that anyone setting forth to
implement a particle system can draw from our experience to avoid common
pitfalls and be aware of the implications of many design choices. Optimality will be
viewed in terms of performance (achieving the highest number of iterations per
second in the evolution of the system), robustness (numerical stability), and flexi-
bility (allowing the implementation of a wide range of variants for the particle
system, e.g., to allow the simulation of different phenomena).

We will show that while these objectives are sometimes in conflict—so that the
developer will have to choose to, e.g., sacrifice performance for better numerical
stability—there are also cases where they complement each other, e.g., with some
numerically more robust approaches also being more computationally efficient or
with certain design choices for the host code structure being also more favorable to
future extensions to multi-GPU support.

We will make extensive reference to our experience from the implementation of
GPUSPH [13–17], the first implementation of SPH to run completely on GPU using
CUDA and currently supporting multi-GPU and multi-node distribution of the
computation. However, all the themes that we discuss and solutions we present are
of interest to all particle systems and related methods, regardless of the specific
theoretical background underlying them. To show this, simpler examples to illus-
trate the benefits of individual topics discussed will also be presented through a
reduced implementation of PSO. Some of the most advanced techniques described
can be seen in action in GPUSPH itself, which is freely available under the GNU
General Public License, version 3 or higher [18].
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While our focus will be on GPU implementation, many of the approaches we
discuss can bring significant benefits even on CPU implementations, allowing bet-
ter exploitation of the vector hardware and multiple cores of current hardware. The
intention is thus to provide material that is of practical use regardless of the specific
application and hardware.

2. Terminology and notation

Throughout the paper, we will rely on the terminology used by the cross-
platform OpenCL standard [19]. All the concepts we discuss will be equally valid in
different programming contexts, such as the proprietary CUDA developed by
NVIDIA specifically for their GPU and HPC solutions [20]. This choice stems from
the authors’ opinion that the OpenCL terminology is more neutral and less suscep-
tible to the kind of confusion that some vendors have leveraged as a marketing
tactic in promoting their solutions.

In our examples, we will also frequently refer to “small vector” data types. These
are types in the form typeNwhere type is a primitive type (such as char, int, float,
double) and N is one of 1, 2, 3, 4, 8, and 16. For example, a float4 would be a
structure that in C or C++ could be defined as struct float4 {float x, y, z, w;}.
Following OpenCL, the components of the small vector types will be named x, y, z, w
for types with up to 4 components, and s0, … s9, sa, … sf for types with up to 16
components. In some examples we also make use of the OpenCL “swizzle notation,”
such that, for example, given float2 v=(0.0f, 1.0f);, then v.xxyy is a float4 with
components (0.0f, 0.0f, 1.0f, 1.0f).

We will assume that each small vector type is “naturally aligned,” when N is a
power of two: a typeN will begin at a memory address which is a multiple of
N*sizeof(type); for N=3, we will assume that type3 begins at a memory address
which is a multiple of sizeof(type). This is in contrast to OpenCL, whose cl_type3
types are assumed to be aligned like the corresponding cl_type4 types, and special
vload3 instructions are needed to load packed 3-vectors. We will also show
momentarily that such 3-component types should in general be avoided as they lead
to lower performance, since most if not all modern hardware are designed around
power-of-two types (which is the reason why the OpenCL type is aligned to four
components).

Finally, we will assume that the standard operations (component-by-component
addition, subtraction, and multiplication, multiplication by a scalar, dot product) on
the small vector types have been defined, in the usual manner. (OpenCL C defines
these as part of the language, for CUDA appropriate overloads for the common
operators must be defined by the user.)

3. The GPU programming model

3.1 Stream processing

Modern GPUs are designed around the stream processing paradigm, a simplified
model for shared-memory parallel programming that sacrifices inter-unit commu-
nication in favor of higher efficiency and scalability.

At an abstract level, stream processing is defined by a sequence of instructions
(a computational kernel) to be executed on each element of an input data stream to
produce an output data stream, under the assumption that each input element can
be processed independently from the others (and thus in parallel). A computational
kernel is similar to a standard function in classic imperative programming
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languages; at runtime, as many instances of the function will be executed as neces-
sary to cover the whole input data stream. Such instances (work-items) may be
dispatched in concurrent batches, running in parallel as far as the hardware allows,
and the programmer is generally given very little control, if any, on the dispatch
itself, other than being able to specify how many instances are needed in total. This
choice allows the same kernel to be executed on the same data stream, adapting
naturally to the characteristics of the underlying hardware, and is one of the main
characteristics of stream processing.

For example, if the hardware can run 1000 concurrent work-items, but the
input stream consists of 2000,000 total elements, the hardware may batch 1000
work-items for execution at once and then dispatch another 1000 when the first
batch completes execution. This continues until the entire input stream has been
processed, executing 2000 total batches. For the same workloads, more powerful
hardware able to run 100,000 concurrent work-items may be able to complete
sooner by issuing 20 total batches, in a manner completely transparent to the
programmer.

This programming model fits very well the simpler workload needed in many
steps of the rendering process for which GPUs are designed: in such a case, the
input and output streams may consist of the data and attributes for the vertices in
the geometries describing the scene, for example, or for the fragments produced by
the rasterization of such geometries. However, the more sophisticated requirements
of general-purpose programming have led to the extension of the stream processing
paradigm to provide programmers with finer control on the work-item dispatch as
well as the possibility for efficient data sharing between work-items under appro-
priate conditions.

A modern stream processing device (typically a GPU, but may also be a multicore
CPU with vector units, a dedicated accelerator like Intel’s Xeon Phi, or a special-
design FPGA) is composed of one or more compute units (each being a CPU core, a
GPU multiprocessor, etc.) equipped with one or more processing elements (a SIMD
lane on CPU, a single stream processor on GPU, etc.), which are the hardware
components that process the individual work-items during a kernel execution. The
programming model of these devices, as presented, e.g., by standards such as
OpenCL [19] and by proprietary solutions such as NVIDIA CUDA [20], exposes the
underlying hardware structure by allowing the programmer to specify the granu-
larity at which work-items should be dispatched: each workgroup is a collection of
work-items that are guaranteed to run on a single compute unit; work-items within
the same workgroup can share data efficiently through dedicated (often on-chip)
memory and can synchronize with each other, ensuring correct instruction order-
ing. Tuning workgroup size and the way work-items in the same workgroup access
data can have a significant impact on performance.

The GPU multiprocessors are further characterized by an additional level of
work-item grouping at the hardware level, as the work-items running on a single
multiprocessor are not independent from each other: instead, a single instruction
pointer is shared by a fixed-width group of work-items, known as the warp on
NVIDIA GPUs, or wavefront on AMD GPUs, corresponding in a very general sense
to the vector width of SIMD instructions on modern CPUs. We will use the
hardware-independent term subgroup (as introduced, e.g., in OpenCL 2.0) to
denote this hardware grouping. The subgroup structure of kernel execution influ-
ences performance in a number of ways. The most obvious way is that the size of a
workgroup should always be a multiple of the subgroup size: a partial subgroup
would be fully dispatched anyway, but masked, leading to lower hardware usage.
Additional aspects where the subgroup partitioning can influence performance are
branch divergence and coalesced memory access.
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Branch divergence occurs when work-items belonging to the same subgroup
need to take different execution paths at a given conditional. Since the subgroup
proceeds in lockstep for all intents and purposes, in such a situation the hardware
must mask the work-items not satisfying either branch, execute one side of the
branch, invert the mask, and execute the other side of the branch: the total runtime
cost is then the sum of the runtimes of each branch. If the work-items taking
different execution paths belong to separate subgroups, this cost is not incurred,
because separate subgroups can execute concurrently on different code paths, lead-
ing to an overall runtime cost equal to that of the longer branch.

Coalescence in memory access is achieved when the controller of a GPU can
provide data for the entire subgroup with a single memory transaction. Ensuring
that this happens is one of the primary aspects of efficient GPU implementations
and will be the basis for many of the performance hints discussed later on.

3.2 Stream processing and particle systems

Stream processing is a natural fit for the implementation of particle systems,
since the vast majority of algorithms that rely on particle systems are embarrass-
ingly parallel in nature, with the behavior of each particle determined indepen-
dently, thus providing a natural map between particles and work-items for most
kernels. This allows naive implementations of particle systems to be developed very
quickly, often with massive performance gains over trivial serial implementations
running on single-core CPUs.

Such implementations will however generally fail at leveraging the full compu-
tational power of GPUs, except in the simplest of cases. Any moderately sophisti-
cated algorithm will frequently require a violation of the natural mapping of
particles to stream elements (and thus work-items), either in terms of data struc-
ture and access or in terms of implementation logic, to be able to achieve the
optimal performance on any given hardware.

3.3 Limitations in the use of GPUs

Programmable GPUs have brought forth a revolution in computing, making
(certain forms of) large-scale parallel computing accessible to the masses. Many
applications have seen significant benefit from a transition to the GPU as
supporting hardware, and in response vendors have improved GPU architectures,
making it easier to achieve better performance with less implementation effort.

When choosing the GPU as preferential target platform, however, developers
must take into consideration the fact that not all users may have high-end profes-
sional GPUs, and while the stream computing paradigm is largely sufficient in
compensating for the difference in computational power, there are at least two
significant aspects that must be explicitly handled.

Memory amount is one of these issues: consumer GPUs typically only have a
fraction of the total amount of RAM offered in professional or compute-dedicated
devices: while the latter may feature up to 16GB of RAM, low-end devices may have
1/4th or even 1/8th of that. Moreover, even the amount of memory available on
high-end devices may be insufficient to handle larger problems. Software should
therefore be designed to allow distribution of computation across multiple devices.

The second issue is that, being designed for computer graphics, GPUs typically
focus on single-precision (32-bit) floating-point operations, and double precision
(64-bit) may be either not supported at all or supported at a much lower execution
rate (as low as 1:32) than single precision, which may remove the computational
advantage of using GPUs in the first place (this can be true even on high-end GPUs,
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as was infamously the case for the Maxwell-class Tesla GPUs from NVIDIA).
Designing the software around the use of single precision can therefore allow
supporting higher performance across a wider class of devices, but it may require
particular care in the handling of essential state variables in particle systems. This
will be discussed in Section 5.

4. Performance

While GPUs provide impressive computational power compared to CPUs, this is
offset by a much higher sensitivity to data layout and access patterns: even a very
computationally intensive kernel may result memory bound if the appropriate care
is not given to these aspects.

The main GPU memory (global memory) is characterized by having high band-
width, but also very high latency: access to global memory may consume hundreds
of cycles, and work-items waiting for data will not proceed until the data is available
to all of them, at least at the subgroup granularity.

Under appropriate conditions (called memory coalescing or fast-path), the GPU
can provide data for a whole subgroup with a single memory transaction. Optimal
access patterns in this regard are achieved when the work-items in a subgroup
request data which is consecutive in memory, properly aligned (i.e., with the
lowest-index element starting at an address which is a multiple of the data size
times the subgroup size), and with specific size constraints—typically power-of-
two sizes, up to 128 bits per work-item: essentially, the equivalent of a float,
float2, or float4, but not float3.

When fast-path requirements are not satisfied, the impact on kernel run times
can be dramatic, especially on older architectures: designing data structures and
algorithms around these requirements is therefore one of the main topics we will
address. But even when coalesced access is achieved, each subgroup will have to
wait for at least one memory transaction before proceeding to the instruction that
makes use of the data. To hide this latency, GPU multiprocessors are designed to
keep multiple workgroups alive concurrently and will automatically switch to
another active workgroup (or subgroup within the same workgroup), while one is
stalled waiting for data; to make efficient use of this capability, it is necessary to
overcommit the device, i.e., issue kernels with more workgroups than would theo-
retically be able to run concurrently on the given hardware.

For example, on a GPU with 16 multiprocessors, each equipped with 128
streaming processors, it will not be sufficient to issue kernels with 2048 work-items
to fully exploit the hardware: to fully hide operation latency, the developer should
aim for global work sizes which are at least an order of magnitude more than the
bare minimum.

A GPU that is fully under load is said to be saturated. On most modern architec-
tures, tens of thousands of work-items are generally necessary to saturate mid- and
high-end devices. This condition is usually satisfied for any moderate or large
particle system, in which case the data layout and access patterns become the
bottleneck for memory bandwidth utilization.

4.1 Array of structures versus structure of array

The first step in improving GPU bandwidth usage is to avoid high-level struc-
tured data layouts and store information about the particle system in a “transposed”
format.
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Let us consider, for example, a simple particle system in three dimensions,
where each particle is described by its position (3 floats) and velocity (3 floats). In a
CPU implementation, data would be stored in a format based on a Particle struc-
ture, and the particle system would be an array of Particles. Integrating the
particles’ position over a time-step dt would be achieved in a simple loop like the
one illustrated in Listing 1.

This approach is called array of structures (AoS), and assuming a stream
processing perspective, preserving the same layout would lead to a compute kernel
in the form presented on the left in Listing 2. However, since each particle is more
than 128 bit wide, the GPU would not be able to satisfy each subgroup access to the
particle_system (marked by the comments) in a single transaction, resulting in a
potential slowdown of an order of magnitude or more. A better solution on GPU
would be to split the particle structure in each primary component and thus have, in
this case, an array of positions and an array of velocities, as shown on the right in
Listing 2.

Part of the advantage of this approach (structure of arrays, SoA) is the natural
higher access granularity, which limits read and write access to what is strictly
necessary. With the AoS approach, it is also possible to limit writes to the specific
parts, e.g., particle_system[i].pos+= particle_system[i].vel*dt, but we will see
that this only partially recovers the performance gap against SoA. Moreover, the
access granularity of SoA also reflects in the function signatures, improving devel-
oper discipline. The downside is the growing number of buffers, and strategies to
manage this will be discussed in Section 6.2.1.

Listing 2.
Particle system with stream processing: array of structure (left) versus structure of array (right).

kernel void

integrate_pos(Particle *particle_system,

size_t N, float dt)

{

size_t i=get_global_id(0);

if (i>= N) return;

/* read the old particle state */

Particle p=particle_system[i];

p.pos+= p.vel*dt;

/* write the new particle state */

particle_system[i]=p;

}

kernel void

integrate_pos(float3 *posArray,

const float3 *velArray,

size_t N, float dt)

{

size_t i=get_global_id(0);

if (i>= N) return;

float3 pos=posArray[i];

const float3 vel=velArray[i];

pos+= vel*dt;

posArray[i]=pos;

}

Listing 1.
Simple host code to integrate the position of a particle system.

struct Particle {

float3 pos;

float3 vel;

};

void

integrate_pos(Particle *particle_system,

size_t N, float dt)

{

for (size_t i=0; i<num_particles; ++i) {

Particle& p=particle_system[i];

p.pos+= p.vel*dt;

}

}
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Further optimizations, particularly important on older architectures, can be
achieved with the sacrifice of some memory, to provide the position and velocity
with a fourth (unused) component, as illustrated in Listing 3 (left), resulting in
better bandwidth usage and thus faster execution; moreover, additional frequently
used data may be stored in the fourth component, if needed (e.g., in GPUSPH we
store the mass in pos.w and the density in vel.w).

The benefits of the discussed strategies are exemplified in Table 1 for a simple
three-dimensional implementation of PSO. The specific values will obviously gen-
erally depend on the specific compute kernel as well as on the specific hardware.

Some additional (usually minor) benefits can be achieved by explicitly telling
the compiler that the position and velocity array never intersect; this is achieved
using the restrict specification for the pointer (Listing 3, right) which, for more
complex kernels, may allow the compiler to produce faster code by assuming no
dependencies between writes on one array and reads on the other. On some hard-
ware, const * restrict arrays are also made accessible through a dedicated cache,
further improving performance.

4.2 Wide arrays

The SoA approach can provide a significant boost in performance on GPU, as
long as the individual parts of the structure (position, velocity, etc.) fit within the
size requirements for coalesced memory access. When even individual structure
members are wider than the optimal 128-bit width, however, alternative
approaches are necessary. An example of this occurrence is the storage of a list of

Listing 3.
Using efficient data types on GPU (left) and leveraging the power of restricted pointers (right).

kernel void

integrate_pos(float4 *posArray,

const float4 *velArray,

size_t N, float dt)

{

size_t i=get_global_id(0);

if (i>= N) return;

float4 pos=posArray[i];

const float4 vel=velArray[i];

pos.xyz+= vel.xyz*dt; /* OpenCL swizzle */

posArray[i]=pos;

}

kernel void

integrate_pos(float4 * restrict posArray,

const float4 * restrict velArray,

size_t N, float dt)

{

size_t i=get_global_id(0);

if (i>= N) return;

float4 pos=posArray[i];

const float4 vel=velArray[i];

pos.xyz+= vel.xyz*dt; /* OpenCL swizzle */

posArray[i]=pos;

}

AoS Selective AoS SoA Padded SoA

Runtime (ms) 98 73 25 13

Speedup (prev) — 1.3 2.9 1.9

Speedup (total) — 1.3 3.9 7.5

2^24 particles running on an NVIDIA GeForce GT 750M.

Table 1.
Runtime comparison for a simple three-dimensional particle swarm optimization implementation, using the
discussed paradigms: array of structures, array of structures with selective writing, structure of arrays, structure
of arrays with padded members (i.e., using four instead of three components).

8

High Performance Parallel Computing



neighbors; frequently, the number of neighbors for a particle will range in the tens
or hundreds, sometimes even more, requiring storage of as many integers per
particle. Another example is given by particle systems with high dimensionality
(higher than 4), which could arise, for example, for a particle swarm optimization
approach to the minimization of the cost function of a deep neural network. The
position (and velocities) of particles in such a system might require hundreds,
thousands, or even more, components.

The optimal storage solution for the array holding the data in such cases is
transposed compared to the natural order: whereas for most CPU code it is natural
to first store the data belonging to the first particle, then the data belonging to the
second particle, etc., the optimal GPU storage for these wide arrays is to first store
the first component for each particle, followed by the second component for each
particle, etc. Using the standard C array notation, the i-th component of the p-th
particle in the classic format would be found at location data[p*num_components+i],
whereas the optimal GPU location would use the addressing data

[i*num_particles+p]. Similarly, neighbors would be stored interleaved: the first
neighbor of each particle, followed by the second neighbor for each particle, etc.
This ensures that when particles iterate over their neighbors, they fetch the neigh-
bor index in coalescence. The concept is illustrated in Figure 1 (top and middle
graphs).

The data transposition can rely on different chunk sizes; the single components
approach discussed so far has the benefit of being simpler and the natural choice
when each component needs to be treated independently (e.g., neighbors list tra-
versal); if possible, however, wider chunks (e.g., using arrays of float2 or float4
elements instead of float) should be used (Figure 1, bottom), to achieve better
utilization of the memory bandwidth.

In general, the balance between transposition and chunk width should be cali-
brated based on the hardware capability: current GPUs achieve optimal perfor-
mance with float4s, while on a CPU or a Xeon Phi, the wide vector width offered
by AVX and AVX-512 could be better exploited using float8 or float16 chunks, as
illustrated in Table 2.

4.3 Particle sorting and neighbor search

In many particle systems, the behavior of the individual particles depends on the
state of the particles in a neighborhood of the particle itself. The neighborhood may

Figure 1.
Possible memory layouts for wide arrays. Top, standard (particle-major) layout; middle, transposed
(component-major) layout; bottom, transpose-chunked layout. Memory locations are colored by data
component access: locations with the same color are accessed concurrently in parallel by all work-items. In the
chunked case, more than one location may be accessed concurrently, depending on the chunk size and hardware
capability.
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be defined in terms of some fixed influence radius or may be determined dynami-
cally, either based on a changing influence radius or based on a pure neighbors
count (e.g., “the 10 closest neighbors”). Performance of particle systems on GPU
can be improved by reordering particle data in memory so that the data for particles
that are close to each other in the domain metric (e.g., distance) are also close in
device memory, providing more opportunities for coalesced memory access and
(when available) better cache utilization [21].

Sorting is generally achieved using key/value pairs, with the particle hash
key computed from the particle position in space: the key array is then sorted,
and all data arrays are reordered based on the new key array positions. Common
ways to compute the particle sort key are based on either n-trees [22] or regular
grids [23]. The main advantage of using an n-tree (and thus in particular
quadtrees in 2D and octrees in 3D) is the adaptive nature of the structure, which
is denser where particles are concentrated and sparser in the domain regions
where particles are more spread out. By contrast, regular grids result in cells
which are uniformly spaced and thus in unbalanced particle distributions among
the cells.

The adaptive nature of n-trees can result in performance gains in a number of
use cases, such as nearest-neighbor searches, collision detection, clump finding, and
rendering. At the same time, traversing the tree structure itself efficiently on a
stream processing architecture is nontrivial and often results in sub-optimal mem-
ory bandwidth utilization [24]. Regular grids, on the other hand, have a much
simpler and computationally less expensive implementation, they lead to efficient
neighbor search with fixed radius (as we will discuss momentarily), and the
resulting data structures can also be used to support domain decomposition in the
multi-GPU case, as we will discuss in Section 4.5.3, and also to improve the numer-
ical robustness of the particle system, as we will discuss in Section 5.4.

4.3.1 Regular grids for neighbor search

Given a neighbor search radius r, we can subdivide the domain with a regular
grid where the stepping in each direction is no less than r. This guarantees that the
neighbors for any particle in any given cell can only be found at most in the adjacent
cells in each of the cardinal and diagonal directions (Moore neighborhood of radius 1),
as depicted in Figure 2.

We can then sort particles (i.e., their data) by, e.g., the linear index or the
Morton code [25] of the cell they belong to (computed from the particle global
position), so that data for all particles belonging to one cell ends up in a consecutive
memory region. Furthermore, we can store in a separate array the offset (common

Hardware Naïve Transposed Chunk 2 Chunk 4 Chunk 8 Chunk 16

NVIDIA 476 41 39 38 48 71

Intel GPU 237 75 63 58 59 91

Intel CPU 120 568 294 422 53 41

The NVIDIA GPU is a GeForce GT 750M; the Intel GPU is an Intel HD Graphics Haswell GT2 Mobile, using the
Beignet OpenCL implementation from Intel; the Intel CPU is an Intel Core i7-4712HQ , using the Intel OpenCL SDK
6.4.0.25. Bold italic values show the best performance. The CPU exhibits worse performance for the transposed layout
than the naive due to the auto-vectorization introduced by the OpenCL implementation.

Table 2.
Median runtimes (in ms) of the position update kernel for a 128-dimensional particle swarm optimization
using the described memory layouts, on different hardware.
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to all data arrays) to the beginning of the data for the particles in each cell
(Figure 3).

A single particle can then search for neighbors by only looking at the
corresponding subsets of the particle system, starting from the cell start index for
each adjacent cell. Since all particles belonging in the same cell will need to traverse
the same subset of the particle list, further improvements can be obtained by
loading the data about the potential neighbors into a shared-memory array.

4.3.2 Just-in-time neighbor search versus neighbor list storage

The results of the neighbor search may be used immediately (e.g., by computing
the particle-particle interaction as each neighbor is found) or deferred: in the latter
case, the neighbor search itself constitutes its own step in the system evolution,
and the results of the search are stored in a list which is then used in subsequent
kernels when particle-particle interactions must be computed.

The “just-in-time” approach (which can be equivalently seen as searching for
neighbors whenever needed) has the advantage of lower memory requirements
(since the list of neighbors needs not be stored), but the disadvantage that the cost
of the search itself must be paid whenever interactions must be computed. There-
fore, it is the preferred approach when the results of each search are only needed
once. Conversely, when the results of the neighbor search are to be used multiple
times, it is better, performance-wise, to store the results, and then reuse them in the

Figure 2.
Support grid for neighbor search: if the cell side is no less than the influence radius, the neighbors for any particle
in any given cell (dark blue square in the picture) can be found in at most the Moore neighborhood of the cell
itself (light blue squares in the picture).

Figure 3.
Memory layout for the support grid. Data arrays are sorted so that the data belonging to particles in any given
cell is consecutive in memory, and a separate array holds the offset to the beginning of the data of the particles in
each cell. In the picture, each primary color denotes a cell, and the color gradient refers to different particle data
within each cell. The first cell has two particles, the second has four particles, and the third has three.
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following steps, in order to amortize the cost of the search. The downside in this
case is much higher memory requirements.

For example, in GPUSPH the cost of the particle sorting and neighbor list
construction can take as much as 30% of the runtime of a single step; most of this
(25% of the step runtime) is spent in the neighbor search phase of the neighbor list
construction; the list itself is then used for all subsequent kernels that require
particle-particle interaction (boundary conditions, density smoothing, forces com-
putation, surface detection, etc., most of which are executed twice due to the
predictor/corrector integration scheme used).

Working without a neighbor list, the runtime cost of the search would have to be
paid for each execution of a kernel with particle-particle interaction, increasing the
runtime of a single operation by over 50%. The neighbor list is therefore a better
choice for performance.

On the other hand, on a typical simulation in GPUSPH, the neighbor list is also
responsible for the highest memory allocation, even including the double buffering
required for most data arrays: indeed, all of the particle properties combined take
between 100 and 300 bytes per particle (depending on the formulation being used),
whereas for the neighbor list, we need to store, in the simplest cases, 128 neighbors,
leading to an occupation of 512 bytes per particle. Some formulations may require
two or three times as many neighbors per particle.

We remark that even when not all particles have the exact same number of
neighbors, the neighbor list should be statically allocated at the beginning of the
simulation, with the capacity to hold the maximum (expected) number of neigh-
bors for any particle and with the layout discussed in Section 4.2, to maximize the
performance of its traversal. This leads to some potential memory waste for the
benefit of performance. However, even a more conservative and less wasteful
neighbor list would still occupy significant memory (e.g., a median of 80
neighbors per particle still needs to be tracked on a typical GPUSPH simulation,
which only lowers the memory occupation for the neighbor list to 320 bytes per
particle). The net result is that the large allocations required by the neighbor list
will limit the maximum size of a particle system that can be simulated on a
single GPU.

Additionally, even with the stored neighbor list, nearly one-third of a simulation
step is still taken by its construction. A solution to this issue is to only update the list
every n iterations, with n large enough to reduce the performance impact and small
enough to not affect the results in a significant way.With the default choice of n ¼ 10
in GPUSPH, the cost of particle sorting and neighbor search drops to around 5% of
the total runtime in the worst cases. To improve the reliability of the simulations
when neighbor list updates are less frequent, a good strategy is to increase the search
radius: with this approach, given an influence radius r (maximum distance for inter-
action), the neighbors are actually added to the list of neighbors if their distance from
the central particle is less than αr, with α>1; neighbors whose distance from the
central particle is larger than r are then skipped in the kernels. The larger search
radius takes into account the fact that particles may move before the next neighbor
list update, thus bringing them closer. In this sense, the expansion factor for the
neighbor search should be computed based on nvMΔt, where vM is the maximum
expected (relative) particle velocity and Δt the maximum expected time step.

4.4 Heterogeneous particle systems

While simple particle systems are often homogeneous (in that all particles
behave the same way), many applications require heterogeneous particle systems,
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where particles behave differently depending on some intrinsic characteristic. For
example, SPH for fluid dynamics typically needs at least two different particle
types: fluid particles that track the fluid itself and boundary particles that define
solid walls, moving objects, etc.; the way particles interact with each other (or even
whether or not they interact at all) in this case depends on both the central and
neighboring particle type.

Heterogeneity in the behavior of the particles and their interactions can have a
significant impact on the performance of the system, particularly when it is stored
together, without any specific attention to the distribution of the particles and their
types. Indeed, the natural way to process a particle system is to issue, for most
kernels, a work-item per particle. However, when particles with different types or
behavior are processed by work-items in the same subgroup, this leads to diver-
gence, slowing down execution. Similarly, when particles iterate over neighbors,
they may have neighbors of different types at corresponding indices (e.g., the third
neighbor of the first particle may be a fluid neighbor, while the third neighbor of
the second particle might be a boundary neighbor); in this case, again, kernel
execution will incur divergences, even if the central particles are of the same type.
Moreover, since the distinction between particle types and interaction form must be
done at kernel runtime, the kernel code itself grows more complex, reducing opti-
mization opportunities for the compiler and leading to sub-optimal usage of private
variables, frequently resulting in register spills, where a reserved area of global
memory gets used for temporary storage of private work-item variables, with a
severe impact on performance.

When the heterogeneous behavior is due to some static property (e.g., a fixed
particle type property), the most obvious choice is to split the particle system itself
(e.g., have a particle system for fluid particles and a separate particle system for
boundary particles). This has several advantages: it is possible to run a kernel on
particles of a specific type more efficiently while still making it possible to run a
kernel on all particles; it is also possible to do selective allocations, for example, if a
given property (e.g., object number) is only needed for a specific type. The down-
side is that the management code becomes more complex, and kernels where
particles of one type need to interact with particles of the other type must be given
access to both sets of arrays, which can increase the complexity of the kernel
signatures.

A simpler approach that does not completely solve the divergence issue but can
greatly reduce the occurrences of divergence is to introduce additional sorting
criteria. For example, one can sort particles by cell, and within cell then sort
particles by type, so that for any cell one finds first all the fluid particles (in that
cell), followed by all the boundary particles (in the same cell). This “specialized
sorting” approach reduces the occurrences of subgroups spanning multiple types to
those crossing the boundary between types or between cells. In GPUSPH, the
introduction of the per-type sorting within cells has improved the performance of
the particle-particle interaction by around 2%. A significant advantage of this
approach compared to the split system mentioned before is that it can be used also
when the criteria for the behavioral difference are dynamic.

4.4.1 Split neighbor list

Divergence during the neighbor list traversals can be avoided by using a split
neighbor list that separately stores neighbors of each type. This comes naturally
when using separate particle systems and is efficient also with the specialized
sorting approach, since potential neighbors of the same type will be enumerated
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consecutively in each cell. The split neighbor list can be implemented in such
a way that it is possible to iterate efficiently on neighbors of only one given type
(or otherwise satisfying one given splitting criterion) while still preserving
the possibility to iterate over all neighbors when necessary and minimizing
allocation.

A naive split neighbor list can be implemented with separate allocations (e.g.,
a separate neighbor list per type), but this can quickly lead to an explosion of the
already significant memory usage due to the existence of the neighbor list itself:
without additional information on the neighbor distribution by type, for example, it
may be necessary to allocate a full-sized neighbor list for each type. A more compact
solution without loss of traversal efficiency can be achieved by storing the split
neighbor list in a single allocation but filling the per-type section of the list from
different ends.

As an example, consider the case of two particle types (fluid and boundary), and
assume that the neighbor list can hold M neighbors per particle (M is the maximum
number of neighbors any particle can have). For each particle, we store the fluid
neighbors starting from position 0 (using the 0-based indexing common in the C
language family), moving forward, and the boundary neighbors starting from posi-
tion M-1, backward, where the indices refer to the particle-specific section of the
full neighbor list, and taking interleaving into account as described in Section 4.2;
iterating over all fluid neighbors is then achieved in the usual way, whereas iterating
over all boundary neighbors would be achieved by traversing the array in reverse, as
illustrated in Listing 4.

To prevent one section of the neighbor list from bleeding into the other, it is now
necessary to put a marker (i.e., an index with a special value, such as �1, defined as
NEIBS_END in the example in Listing 4) at the end of each of the sides of the list,
which implies that the effective maximum number of neighbors is reduced by 1
(with the end-of-list marker shared between the two sides when the neighbors list is
otherwise full).

If there are more than two types of particle, the same strategy can still be
applied, by sectioning the neighbor list. For example, with four types A, B, C, and D,
we need to set a value M1 (the total number of neighbors of type A and B combined)
and M2 (the total number of neighbors of type C and D combined); the neighbor list
is allocated to hold M1+M2 neighbors per particle, where neighbors of type A are
stored from position 0 onward, neighbors of type B are stored from position M1–1

backward, neighbors of type C are stored from position M1 onward, and neighbors of
type D are stored from position M1+M2–1 backward. Type pairs should be chosen,
when possible, based on the uniformity of the cumulative number of neighbors (e.g.,
if it is more likely that the sum of A and C neighbors is constant, it is better to pair A
with C than with B).

Listing 4.
Traversing the split neighbors list: first type (fluid particles in this example) on the left, second type (boundary
particle in this example) on the right.

int p=get_global_id(0); /* particle index */

for (int i=0; i<M; ++i) {

/* index of the next fluid neighbor */

int neib_index=neibsList[i*N+p];

if (neib_index == NEIBS_END) break;

/* do stuff with neib_index */

}

int p=get_global_id(0); /* particle index */

for (int i=M-1; i>=0; –i) {

/* index of the next boundary neighbor */

int neib_index=neibsList[i*N+p];

if (neib_index == NEIBS_END) break;

/* do stuff with neib_index */

}
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4.4.2 Split kernels

Once traversal of individual particle types (for the system itself or even just for
the neighbors) has been made efficient, the more complex kernels that need to
provide significantly different behavior based should be split as well. For example,
in GPUSPH we have recently refactored the main computational kernel (dedicated
to the computation of the forces acting on each particle) into separate versions to
compute fluid/fluid, fluid/boundary, boundary/fluid, etc. interactions. While this
generally requires some additional memory access (because, e.g., the particle accel-
erations now need to be stored and retrieved between one incarnation of the kernel
and the next), there has been an overall performance benefit; for the most complex
formulations, on first-generation Kepler hardware, we have seen a 50% increase in
the number of iterations per second. On the more recent and capable Maxwell
architecture, the benefit has been less significant (30% more iterations per second),
due to the smaller number of register spills: the more modern hardware supports
more registers per work-item and is therefore less affected by the computational
issues associated with particle system heterogeneity.

4.5 Multi-GPU

Very large particle systems can benefit from distribution across multiple GPUs.
This may in fact be necessary simply due to the limited resources available on a single
GPU: high-end GPUs currently have at most 16GB of RAM, which may limit the
particle system size to a few tens of millions, depending on the complexity of the
system. Even for smaller systems, however, distribution over multiple GPUs can
provide a performance boost, provided each of the devices is saturated (otherwise,
the overhead involved in distributing the particle system will be higher than the
benefits offered by the higher computational capacity).

Distributing a particle system across multiple GPUs requires a significant change
of vision: GPU coding is facilitated by its shared-memory architecture, where all
compute units have read/write access to the entire device global memory. Multi-
GPU introduces a distributed parallel computing layer, shifting the focus to effi-
cient work distribution and data exchange between the devices.

For particle systems, the preferential way to distribute work across devices is
based on domain decomposition rather than task decomposition, since the former
allows both to minimize data exchange and to cover the associated latency more
easily. Domain decomposition is achieved by distributing separate sections of the
particle system to different devices (e.g., half of the particles and the associated data
go on a GPU; the second half goes on a second GPU). When the particles can be
processed independently (i.e., no neighborhood information is required), the parti-
tion is trivial, and the only objective is load balancing (i.e., ensuring that the
fraction of particle system assigned to each GPU is proportional to its computational
power). In these cases, the only data exchange needed between GPUs is the tracking
of some global quantities, such as the particle system optimal position in PSO.

The decomposition becomes more challenging when the particles’ behavior
depends on a local neighborhood. In this case, each device must track the state not
only of the particles that have been assigned to it but also their neighbors, some of
which may have been assigned to other devices. Each device therefore has a view of
the particle system as divided in four sections:

• (Strictly) inner particles: particles assigned to the device and that no other
device is interested in; no information exchange is involved in their processing.
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• Inner edge particles: particles assigned to the device that are neighbors of
particles assigned to different devices; information about the evolution of these
particles must be sent to other devices.

• Outer edge particles: particles assigned to other devices that are neighbors of
particles assigned to this device; information about the evolution of these
particles must be received from other devices.

• (Strictly) outer particles: particles assigned to other devices and that this device
does not care about; no information exchange is involved in their processing.

The inner/outer relation is symmetrical, in the sense that a (strictly) inner
particle for a device is (strictly) outer for all other devices and an inner edge particle
for a device is an outer edge particle for at least one other device (Figure 4). We
will say that two devices are adjacent if they share an inner/outer edge relation (i.e.,
if they need to exchange data about neighboring particles). Note that, depending on
how the particle system is distributed, information about an inner edge particle may
need to be sent to multiple adjacent devices.

4.5.1 Computing versus data exchange

The key to an efficient multi-GPU implementation is the ability to minimize the
impact of data exchange. The most obvious approach in this sense is to minimize
the data transfers themselves, for example, by ensuring that the domain is
partitioned in such a way that the number of edge particles is minimized.

As a general rule, during the simulation each device will hold all the data
relevant to both its inner (and inner edge) particles and the data relevant to its outer
edge particles, i.e., the inner edge particles of adjacent devices. However, it will only
run computational kernels on its own particles (using, read-only, the information
from the outer edge particles) and then receive updates about the outer edge
particles from the adjacent devices. On the other hand, there are cases when it may
be convenient for each device to compute the updates for the outer edge particles by

Figure 4.
Inner/outer/edge relationship between devices, with domain decomposition based on a reference grid:
inner/outer/edge particles are then defined based on the cell they belong to rather than on a purely geometrical
relationship to the particles assigned to other devices.
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itself. This can be done under the condition that the update does not require
information from the neighbors (since the device does not hold information about
all the neighbors of outer edge particles) and becomes convenient when the amount
of data to transfer before the update is less than the amount of data to transfer after
the update.

As an example, consider a simple particle system where the forces acting on each
particle are computed from the interaction with the neighbors (forces kernel), but
the new position and velocity are computed only from the previously computed
forces (euler kernel), without any (further) interaction with the neighbors.
Assume that there are two devices, D1 and D2, and that all the involved arrays
(forces, positions, and velocities) are the same size (e.g., a float4 per particle).
Then it is more convenient for D1 to get the information about the forces acting on
its outer edge particles from D2 (and conversely), and then run euler on the outer
edge particles, than it is for D1 to get the information about the positions and
velocities after euler has been run on both devices: this is because exchanging
forces results in a data transfer of a single float4 per (outer edge) particle, while
exchanging positions and velocities would require exchanging twice as much data.

4.5.2 Computing during data exchange

Assuming data transfers have been minimized as discussed in the previous
paragraph, the next step in an efficient multi-GPU implementation is to cover the
data transfer latency by running computational kernels concurrently with the data
transfer itself. This can be achieved as long as it is possible to efficiently launch
computational kernels on a subset of the particle system (specifically, on the inner
edge particles). It is then possible to first compute the new data on the inner edge
particles, and then launch the kernel on the remaining (strictly inner) particles,
while the inner edge data is sent to adjacent devices (and conversely the outer edge
data is received from adjacent devices). This strategy allows optimal latency hiding,
especially for the most computationally intensive kernels, provided all involved
device are saturated. In GPUSPH, this is how we achieve nearly linear speedups in
the number of devices [26], even when network transfers are involved in multi-
node simulations [23].

4.5.3 Reference grid for domain decomposition

In our experience, multi-GPU also benefits from the use of the auxiliary grid that
can be used for sorting (as described in Section 4.3) and for improved numerical
accuracy (as will be described in Section 5.4): indeed, to improve the efficiency of
data transfers, it is important that the sections of the arrays that need to be sent to
adjacent devices are as consecutive as possible, since multiple small bursts are
generally less efficient (both over the PCI Express bus and over the network) than
larger data transfers.

With the auxiliary reference grid, this can be obtained by always splitting the
domain at the cell level and computing the cell index by taking the inner/edge/outer
relation into consideration (Figure 4). In GPUSPH this is achieved by reserving the
two most significant bits of the cell index to indicate strictly inner cells (00), inner
edge cells (01), outer edge cells (10), and strictly outer cells (11)—with the latter
never actually used except in an optional global cell map. With this strategy, all
strictly inner particles will be sorted first, followed by all inner edge particles, and
finally by outer edge particles. Since outer edge particles will be sorted consecu-
tively in memory, receiving data about them will be more efficient; similarly,
sending inner edge data over will be made more efficient by the coalesced layout.
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Note that this cell sorting strategy does not completely eliminate the need for
multiple transfers; it does however help to reduce it significantly, especially when
combined with linear cell indexing and the appropriate choice of order of dimen-
sions for linearization. For this reason, GPUSPH offers a (compile-time) option to
allow customization of this choice that in our experience can have performance
benefits of up to 30%.

5. Numerical robustness

When the intent of GPGPU is to leverage the low-cost, high-performance ratio
offered by consumer GPUs, a significant bottleneck in scientific applications is
given by the limited (when not completely absent) support for double precision:
since consumer GPUs are designed for video games and similar applications, where
the highest rendering accuracy is not a requirement, the hardware is optimized for
single-precision computation. Applications that need higher accuracy can thus fol-
low one of the following strategies: use double-precision anyway, use soft extended
precision (double-float, etc.), and rely on alternative algorithms that ensure a better
utilization of the available precision.

Due to the high-performance cost (ratios as low as 1:32 compared to single
precision, nearly completely defeating the benefits of the high performance of
GPUs over CPUs), the use of double precision should be avoided whenever possi-
ble. If absolutely necessary, it should be restricted to parts of the code where it is
essential. In all other cases, faster alternatives should be sought out. A possible
solution is offered by double-float arithmetic, in which two single-precision values
are used to provide higher accuracy [27, 28]: most operations will require between
two and four hardware operation to complete, and the overall accuracy will gener-
ally be slightly lower than using actual double precision, but this can still be a good
compromise between performance and accuracy when 64-bit floating-point has low
or no support in hardware.

In many cases, it will be possible to avoid relying on extended precision by
taking some care in the choice of algorithm used. In fact, the methods and algo-
rithms that we will discuss momentarily can help improve the accuracy of an
implementation regardless of the precision used: we would recommend their use
even with double precision, since they always lead to more accurate results and in
some cases (such as Horner’s method) even higher performance.

5.1 Horner’s method

Polynomial evaluation should always be done using Horner’s method [29]. Any
polynomial anxn þ an�1x

n�1 þ :::þ a1xþ a0 can be written in the equivalent form

::: anxþ an�1ð Þxþ an�2ð Þxþ :::ð Þxþ a1ð Þxþ a0:

When this second form is evaluated from the innermost to the outermost
expression, better accuracy and performance can be achieved. Indeed, Horner’s
method is known to be optimal in that it requires the minimal number of additions
and multiplications for the evaluation of the polynomial [30, 31], and given the
widespread availability of fused multiply-add operations on modern hardware,
every term can be computed with a higher accuracy and in a single cycle, making
this evaluation method the fastest and most accurate for general polynomials.
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5.2 Compensated and balanced summation

In many particle systems, the behavior of a particle is dictated by the influence
of a local neighborhood: the total action on the central particle is then achieved by
adding up the contributions from each neighboring particle. The number of contri-
butions is frequently in the order of tens or hundreds and in some applications even
more. The naive approach, which could be described algorithmically as

total_action=0;;
for (i=0; i<num_neighbors; ++i);

total_action +=contribution_from_neighbor(i);

suffers from low accuracy: since each contribution adds a relative error in the
order of the machine epsilon ε, the total relative error is in the order of the total
number of contributions, O εnð Þ in the worst case (in practice, the error is typically

Oðε√nÞ with the default round-to-nearest rounding mode).
This can be significantly improved by using a compensated summation algo-

rithm, which can bring down the total relative error to order O 1ð Þ (constant). The
idea behind this class of algorithms is to keep track of the quantity that gets “lost”
during a summation due to the finite precision. This is achieved by keeping two
accumulators, the sum itself and a correction. The simplest form of compensated
summation was popularized by Kahan [32], where the contribution from each new
term is computed as shown in Listing 5.

The approach relies on the compiler not trying to do an algebraic simplification
of the expressions for the temporary sum t and the correction, which may require
disabling “fast-math” and the contraction of floating-point expressions.

The Kahan compensated summation algorithm works best when all terms in the
summation are of similar or decreasing orders of magnitude but fail to take into
account that the new term may be (significantly) larger in magnitude than the
current running sum. To this end, Neumaier presented a variant [33], usually
known as KBN (Kahan-Babuška-Neumaier), that takes into account the relative
magnitude of the new term and the running sum when computing the correction
(Listing 6). In contrast to Kahan’s algorithm, the final sum is obtained by adding
sum and correction. More details about balancing and compensated summation
algorithms can be found in [34].

The main downside of KBN is the branching condition to compute the
correction, which may reduce performance on GPU. The algorithm can be
rewritten to be vector-friendly, as illustrated on the right in Listing 6, which
makes use of the select(a, b, c) function and the component-by-component
extension to the ternary operator c ? b : a defined, e.g., in OpenCL C. This form
of KBN should only be chosen when profiling shows the branching to be a
performance bottleneck, since the extra operations otherwise introduce higher
latency in the summation.

Listing 5.
Kahan summation algorithm.

y=term - correction;

t=sum + y;

correction=(t - sum) - y;

sum=t;

/* take into account what got lost previously */

/* temporary sum: add the new term y */

/* estimate what got lost adding the new term */

/* actual new value of the summation */
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The downsides of compensated summation algorithms are higher storage
requirements (the additional accumulator) and higher computational cost (Kahan,
e.g., requires four times more operations compared to the standard summation).
Compared to the use of double precision, the storage requirements are unchanged;
the computational cost, however, is two (or more) times higher than the cost of
double-precision on hardware that supports it at full frequency; on most consumer
GPUs, however, the use of compensated summation can be up to eight times faster
than the use of double precision.

Compensated summation algorithms can be used both locally, at the single
kernel level, to improve the computation of the contributions for the next time step,
and globally, across kernel launches, providing better accuracy for long-running
simulations.

5.3 Vector norms and the hypot function

Computing the norm of a vector is a very frequent operation. In Euclidean
metric, the norm is computed as the square root of the sum of the square of the
components and thus requires d multiplications, d-1 additions, and a square root.
With the exception of very high dimensions, the final square root is frequently the
most expensive operation as well as the least accurate.

The first step to improve both performance and accuracy is therefore to avoid
taking the square root if possible. For example, when the vector is a distance and the
objective is to compare distances, it is much faster (and accurate) to compare the
squared distances (sum of the squares of the differences of the components) rather
than the distances themselves. When the distance has to be compared against a
reference length, it is cheaper to square the reference length than it is to take the
square root in the distance computations.

A typical circumstance where one cannot avoid taking the square root is nor-
malization of a vector, in which each component needs to be divided by the length
of the vector; in some applications this is such a frequent (and slow) operation that
fast, but less accurate implementations are used, such as the fast inverse square root
[35] popularized by its use in id Software Quake III: Arena video game [36].

While games can afford to sacrifice accuracy for performance, this is not the
case in scientific applications, for which a significant issue in vector normalization
(and similar operations) is numerical stability: when the vector has components
which are very close to zero, a naive computation of the norm may lead to
underflow, potentially resulting in a final division by zero during normalization;
conversely, very large components can lead to overflow of the inner summation
before the root extraction.

Listing 6.
KBN (Kahan-Babuška-Neumaier) summation algorithm. Standard form (left) and possible vectorization
(right).

t=sum + term;

if (abs(sum)>= abs(term)) {

correction +=(sum - t)+term;

} else {

correction +=(term - t)+sum;

}

sum=t;

t=sum + term;

cond=(abs(sum)>= abs(term));

sum_or_term=select(term, sum, cond);

term_or_sum=select(sum, term, cond);

correction +=(sum_or_term - t)+term_or_sum;

sum=t;
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The solution is to compute the norm using the hypot operator. The idea is to

rewrite
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0
þ a21 þ :::þ a2n

p
as a0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q21 þ :::þ q2n

q
where qi ¼ ai=a0. In exact

arithmetic the two expressions are equivalent, but with finite precision, the second
expression is more accurate, assuming the values are sorted by magnitude (largest
to smallest). The higher accuracy of hypot however comes at a significant compu-
tational cost, due to the additional division per component: even highly optimized
implementations of hypot (such as the two-argument function available in the
standard C library, in OpenCL C and in CUDA) can easily be as much as two orders
of magnitude slower than the naive approach.

5.4 Local versus global position

A major difference between numerical methods such as finite differences and
meshless methods such as smoothed particle hydrodynamics is that in the former
case, there is no need to track the global position of each computational node, as this
is defined algorithmically based on the (possibly adaptive) mesh size, and the
internode distance is fixed and known in advance. Meshless methods, on the other
hand, need to track the global position of each particle; due to the nonuniform
distribution of floating-point values, the inter-particle distance (computed as the
difference between the global position of the particles) will then have a higher
precision near the origin of the domain and a lower precision the further away from
the origin the particles are. When the ratio of the inter-particle distance to the
domain size gets close to machine epsilon, this nonuniform accuracy may lead to
artificial clustering of particles, an effect that is quite noticeable when using single
precision to simulate very large domains with a very fine resolution (Figure 5).

While extending the precision for the global position is a possible solution [37],
this only delays the problem and, as mentioned previously, may have a nontrivial
computational cost. An alternative approach is to use a support, fixed grid with
regular spacing and only track the position of each particle with respect to the
center of the grid cell it belongs to [38]; distances to the other particles are obtained
by correcting the distance between the grid cell centers and the local position
difference (Listing 7). Absolute (global) positions are only reconstructed when
necessary (e.g., when writing the results to disk).

Figure 5.
Simulation of an 8-pool fish pass with GPUSPH before the introduction of uniform position precision. At high
resolutions, spurious explosion due to insufficient precision near the domain edge can be observed.

21

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755



This approach doubles the storage requirement (e.g., in three dimensions, an
additional int3 is needed to describe the cell index, in addition to the local position
stored in a float3), matching the requirement of the higher-precision type (e.g.,
storing global positions but using a double3 per particle), with the additional benefit
of uniform accuracy throughout the domain, and the possibility to support much
larger domains, even larger than would be allowed with higher precision. If the overall
number of cells is relatively low, storage requirements can be reduced by encoding
the cell coordinates in less memory: for example, if the overall number of cells is less
than 232, it is possible to store a linearized cell index in a single unsigned int. The
support grid solution is particularly advantageous when the same grid (and linearized
cell index) can also be used for neighbor search, as described in Section 4.3, and to
improve the performance of multi-GPU simulations, as discussed in Section 4.5.

5.5 Relative and nondimensional quantities

A general rule to improve the numerical stability of most methods is to work in
nondimensional form, i.e., to scale all quantities (length, time, mass, etc.) by some
problem-specific scale factor related to the problem’s characteristic numbers (e.g.,
the Reynold number in case of viscous flows), and rewrite the underlying equations
in terms of the nondimensional quantities instead of using standard units.

Working with nondimensional quantities can lead to better accuracy by allowing
fuller utilization of the range of the floating-point values, but additional steps can
be taken to gain further accuracy. An example of this is the local coordinate system
proposed in the previous paragraph that alone is sufficient to improve the energy
conservation of GPUSPH by as much as four orders of magnitude [38], but the same
principle can be extended to most quantities. The benefits are particularly high
when the range of variation of the quantity itself is small.

For example, in the weakly compressible SPH formulation, the density ρ of the
particles in a fluid is assumed to differ from the reference (at-rest) value ρo by at
most a few percent. In nondimensional terms, the recommended approach would
be to work with the relative density RD ¼ ρ=ρ0, but the numerical accuracy can be
further improved by working with the centered relative density eρ ¼ ρ=ρo � 1, which
allows us to gain three or more digits of accuracy and to bring the absolute error in
the computation of the neighbor contribution to the pressure part of the momen-
tum equation from 10�7 down to 10�11 [38].

6. Flexibility

When setting forth to implement a new particle engine, important decisions
have to be made concerning the general design of the system, particularly in refer-
ence to the scope and objectives. This is particularly important for particle system,

Listing 7.
Computing particle distance with uniform precision using cell indices and local positions.

const float3 cell_size;

int3 our_cell, neib_cell;

float3 our_lpos, neib_lpos;

float3 dist_vec =

(neib_cell – our_cell)*cell_size +

(neib_lpos – our_lpos);

/* global constant: cell size */

/* (integer) coordinates of the cells */

/* particle position wrt their cell center */

/* particle distance, computed from the local

position difference and the cell center

distance */
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due to the possible temptation to produce a “universal particle system engine” that
could be extended to support any kind of particle system: a worthy objective, but in
direct contrast with the need to have something useful and functional “right now.”
As a general rule, our recommendation is to start with a well-focused objective (e.g.,
a very specific formulation of a numerical method) and only extend/expand the
objective for specific use cases.

The focus of the initial implementation of a particle system (as for any general
application) should always be correctness over performance. This is true also when
specifically targeting high-performance computing (e.g., when designing for a GPU
implementation). There are however some important design aspects that can be
kept in mind, with low implementation cost and high return of investment at later
development stages, both in terms of code cleanliness and extensibility. We will
present them in this section, showing how the complexity that comes with flexibil-
ity can be isolated to provide a cleaner interface and without sacrificing (runtime)
performance.

6.1 Separation of roles

Implementations of particle systems can be characterized by three main roles:
management (setup, teardown, data exchange, e.g., saving/visualization), evolution
(abstract sequence of steps that describe a single iteration of the lifetime of the
system), and execution (concrete functions and kernels for each individual step).
Keeping these roles distinct from the beginning can provide a solid base for the
growth of the implementation; for example, while at first the developer may focus
on single GPU, a subsequent extension to multi-GPU can be achieved more easily at
a later stage if the management and execution roles are delegated to separate classes,
running on separate threads: typically, management is handled by the main thread,
while the execution role will be delegated to a worker thread (which become
multiple worker threads in the multi-GPU case).

Two approaches are then possible: assign the evolution role (i.e., the decisions
about which steps to run next) to the manager thread or to the workers. The latter
choice (“smart workers”) has the advantage that the worker threads know what to
do for every step, and this can be leveraged to reduce synchronization points; the
downside is that unification tasks (such as global reductions and data exchange in
the multi-node case) must be taken over by a specific worker, which creates an
imbalance (since not all workers are created equal). Conversely, with “dumb
workers,” most commands become a synchronization point (which can become a
performance bottleneck), but the manager thread can more easily subsume the
unification tasks. Hybrid solutions are also possible, at the expense of a growing
complexity in logic. Factoring out the (abstract description of the) evolution into its
own class (in the object-oriented programming sense) can make it easier to transi-
tion from one implementation to the other.

6.1.1 Workers for hardware abstraction

Refactoring the execution role into a separate Worker class has several advan-
tages. The most important, as mentioned above, is that having a separate Worker
class provides a solid ground to expand the code to support multiple GPUs (with
each Worker taking control of a separate device).

Additionally, with the correct design, wider hardware support can be
implemented by making the Worker class itself an abstract class, implementing only
the common code, such as the evolution logic in the case of smart workers, or the
command dispatch table in the case of dumb workers. Derived classes would then
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implement the hardware-specific details such as the actual kernel execution or the
host/device memory transfers. For example, one could have a GPUWorker for exe-
cution on GPU and a CPUWorker for execution on CPU [26]; the GPUWorker class
itself could be further specialized in a CUDAWorker and an OpenCLWorker, when
support for both APIs is desired.

6.2 The cost of variation

The complexity of the implementation of each individual step of the evolution
loop in the particle system is directly related to the number of features offered; for
example, some sections of the code may only be relevant when the fluid needs to
interact with moving objects; or some particle types or particle data may only be
present if specific options (e.g., an SPH formulation) are enabled; or it may be
possible to choose between a faster but less accurate approach and a computation-
ally more expensive, more accurate solution.

There are two main costs that come with providing multiple features (or varia-
tions thereof): an implementation cost (larger, more complex code to write) and a
runtime cost. Both costs can be reduced with appropriate care in the design of the
software. An optimal implementation should be designed in such a way that the
runtime cost of a disabled feature matches the runtime cost had it not been
implemented in the first place. For example, if the user runs an SPH simulation
without any moving objects, then the runtime should be the same in an SPH
implementation that does not support moving objects, and in an implementation
that does support them, but that can detect (or can be told) that support for them is
not needed. Likewise, the implementation of any additional feature should be as
unobtrusive as possible, factored out into its own sets of functions. Luckily these
two goals are not in conflict.

6.2.1 Managing buffers

One of the key aspects in supporting multiple variants for particle systems is
correct buffer management. The objective is to support allocating all and only the
(copies of the) buffers that are needed, correctly sized, in a unified manner (i.e.,
with the same interface on host and device). Moreover, we want to be able to pass
around sets of buffers (e.g., the collection of all allocated buffers or a specific subset
of them) to other parts of the code, in a way that minimizes both the actual copying
of data and the detailed specification of which buffers belong to a set.

The approach we use in GPUSPH to solve this issue relies on two aspects:
bitmask-based buffer naming and a set of classes that abstract buffer management,
isolating the details of the individual buffer while still allowing the retrieval of all
the necessary information, such as the data type, the number of elements, the kind
of buffer (e.g., host or device), etc.

Bitmask-based buffer naming relies on using an appropriate set of values
(defined with either #defines or an enum) to refer to the buffers, on the condition
that each (symbolic) buffer name corresponds to an individual bit. These symbolic
buffer names are used to refer to buffers in most of the host code, with the excep-
tions of the classes and functions that require access to the actual corresponding
data pointers (i.e., the lowest level of implementation of the GPUWorker). An
example of this is shown in Listing 8, which needs to be paired with an appropriate
BufferList class such that, given BufferList buffers, we can get the array of
positions as buffers.getData<BUFFER_POS>().

With each symbolic name associated to a separate buffer, it is possible to com-
bine them into an expression to refer to multiple buffers at once. For example,
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BUFFER_POS | BUFFER_VEL would indicate a collection of buffers holding both the
positions and the velocity. This is particularly useful in conjunction with the “dumb
worker” approach, because it allows most commands given by the Manager thread
to the Workers to have a syntax such as

doCommand(COMMAND_NAME, BUFFER_R1 | BUFFER_R2 | ...,

BUFFER_W1 | BUFFER_W2 | …);

where the list of input and output buffers for the command are given as single
parameters by doing a binary OR of the symbolic buffer names.

In languages such as C++, the use of symbolic names (with or without the
bitmask property) also allows static knowledge about the buffer properties to be
encoded into “traits” structure that can be used to evince information about the
buffers at compile time, as exemplified in Listing 9. This allows developers to
programmatically determine the element type of a buffer as BufferTraits
<symbolic_name>::element_type, which can be used in our BufferList class to
make sure that when requesting a specific array, we get a pointer of the correct type
and BufferTraits<symbolic_name>::num_buffers to determine how many com-
ponents the buffer has (e.g., in this example we model a symmetric 3�3 tensor,
which has six components, as a collection of three float2 buffers).

The management of the actual data is handled with different layers of abstrac-
tion. We use an AbstractBuffer class to describe the interface shared by all buffers,
regardless of content or type; the interface presents (pure virtual) methods for
operations such as allocations and deallocation of data, as well as a way to return a
“generic” pointer to the data itself (as a void*, since no type information is available
in AbstractBuffer).

The next layer can be implemented as a GenericBuffer class template that
depends on the data type and number of components of the buffer, so that
GenericBuffer<float2, 3>would be able to handle storage and typed access to per-
particle symmetric tensor data (encoded in three float2 per particle).

Listing 8.
Buffer as member variables (left) versus buffer symbolic names (right).

float4 *bufferPos;

int *bufferNeibs;

float2 *bufferTau[3]; /* stress tensor */

#define BUFFER_POS (1U<<0)

#define BUFFER_NEIBS (1U<<1)

#define BUFFER_TAU (1U<<2)

Listing 9.
Example declaration of a BufferTraits structure and its specializations for some named buffers, declaring their
data type and multiplicity.

template<int Buffer> struct BufferTraits;

template<> struct BufferTraits<BUFFER_POS>

{

typedef float4 element_type;

enum {num_buffers=1};

};

template<> struct BufferTraits<BUFFER_NEIBS>

{

typedef int element_type;

enum {num_buffers=1};

};

template<> struct BufferTraits<BUFFER_TAU>

{

typedef float2 element_type;

enum {num_buffers=3};

};
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Since we can derive element types and number of components from the buffer
traits, our Buffer class template can simply derive from the appropriate
GenericBuffer:

template<flag_t Key>

class Buffer : public GenericBuffer<

BufferTraits<Key>::element_type,

BufferTraits<Key>::num_buffers>

{ /* other specializations, as necessary */ };

Note that the Buffer class template still does not have any actual allocation logic:
its only purpose is to provide the correct base class for the named properties of each
particle (e.g., position, velocity, etc.). The allocation logic is delegated to derived
classes such as HostBuffer (that would use malloc/free or new/delete),
CUDABuffer (using cudaMalloc/cudaFree), and CLBuffer (using clCreateBuffer/
clReleaseMemObject).

Finally, a collection of buffers is managed by a BufferList that maps symbolic
names to the concrete class implementing the buffer with the specific symbolic
name.

Since different variants of a particle system will instance different subsets of all
possible buffers, the mapping will in general be sparse, and it is therefore better to
use a dictionary type such as std::map (or language equivalent) to implement it.
This is particularly true for the bitmask choice of symbolic names. Moreover, since
each symbolic name maps to a buffer with a different data type, the mapping will
generally be between symbolic names and AbstractBuffers. Downcasting to the
correct Buffer<symbolic_name> type can be done in specific template methods,
where the symbolic name is known as compile type. Our BufferList class, for
example, exposes a template getData method that returns a pointer of the correct
type for the given symbolic name, again using the buffer traits to deduce it; some
example of its usage are illustrated further on.

In general, a single instance of a running particle system will have multiple
BufferLists: it may have one to hold the data on host (e.g., for saving or visualiza-
tion) and one on device to hold the data for the running simulation; on device, it
might have more than one, separating read/write copies of each buffer, or to hold
the data for different parts of the particle system (e.g., a BufferList for fluid
particle data, a BufferList for boundary particle data); it may also have one (or
more) BufferLists to hold all of the available data for the particle system and
separate smaller BufferLists with a selection of the data when passing it to indi-
vidual kernels, depending on the approach used.

6.2.2 Handling options combinatorial growth

As the number of options offered to the end user of a particle system grows,
there is a consequent explosion in the number of possible valid combinations that
need to be supported, which results in competing needs between the opportunity
(for performance reasons) for their compile-time implementation, and the associ-
ated resource consumption at compile time when runtime selection of the specific
option is offered.

(At some point of time, compiling all of the combinations of simulation param-
eters offered by GPUSPH took several hours, occupying several gigabytes of mem-
ory and producing a binary with around 3000 variants of the main computational
kernels overall.)
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There are two possible solutions to this issue. The simplest solution, which is
currently used in GPUSPH, is to push down the compile-time selection to the user:
the setup of the user simulation is done via a source file where all the compile-time
parameters must be selected. When the user simulation setup is compiled, only the
specific combination of parameters will be enabled and compiled for. An alternative
solution is to rely on the specific possibility offered with GPU programming, to
compile the device code at runtime. This feature has always been available with
OpenCL (in fact, OpenCL requires runtime compilation of the device code), and it
has been recently made available in CUDA via the NVRTC library.

The main downside of the compile-time selection is that the software must
always be distributed in source form, with several implications in terms of user-
friendliness and maintenance. Downsides for runtime compilation include the lim-
ited support for older version of CUDA, when relying on this proprietary solution,
and the potential time loss at the beginning of each execution (which may or may
not be offset by any caching the runtime compilation engine might do).

On the other hand, runtime compilation of the device code allows an even wider
range of aspects to be implemented at compile time (on the device side), which may
allow even stronger compiler optimizations. For example, global simulation param-
eters that are constant throughout a simulation are often stored in the device
constant memory at the beginning of the simulation; even though access to constant
memory is quite efficient, inlining the constants can be even more efficient, and this
can be achieved exploiting runtime compilation, by replacing the upload of the
constants to the device with appropriate #define in the runtime-compiled device
code.

6.2.3 C++ SFINAE versus C preprocessors for compile-time specialization

Implementing multiple variations of a kernel (or function used by a kernel) is
generally nontrivial, as the functions may have different sets of parameters and
different private variables and may operate differently even on data that is present
in all or most of them. The objective is therefore to isolate the variant-specific parts
from the common parts, avoiding code repetition.

When using runtime compilation for the device code and a C-based language
such as OpenCL C, the only way to achieve this is to fence nonrelevant parts of the
code with appropriate preprocessor directives, as illustrated in Listing 10 (left).
Code fencing can be factored out, and sometimes reduced, by collecting data into
conditional structures and refactoring computations into conditional functions; the
resulting code is slightly more verbose (Listing 10, right), but the optional features
are better isolated, improving the maintainability of the code.

Note that the conditional structure in this example cannot be extended to the
kernel parameters and private variables itself, due to the impossibility for global
array addresses to be member of structures shared between host and device, which
further limits the possibility to initialize the conditional parts of the private variable
structure with appropriate conditional functions. (This is a limitation of OpenCL C;
alternative solutions are possible using the Shared Virtual Memory feature intro-
duced in OpenCL 2.0 and supported by some implementations as an extension on
older versions of the standard.)

When the device code can be written in C++ and global arrays pointers are made
available in the same form to both the host and device (e.g., with CUDA), the
language itself provides powerful meta-programming techniques that can be lever-
aged to eliminate the need for a preprocessor, allowing multiple specialized
implementations to coexist.

27

Design and Implementation of Particle Systems for Meshfree Methods with High Performance
DOI: http://dx.doi.org/10.5772/intechopen.81755



Conditional structures and functions in C++ can be implemented by using tem-
plates and the meta-programming feature of the language known as SFINAE (sub-
stitution failure is not an error) to select function specializations based on any
combination of (compile-time) properties of their parameters. The approach we
show requires two building blocks that are available in the standard library since
C++11 (and can even be implemented in older C++ versions) and a special empty
structure template.

Listing 10.
Code fencing for optional components in the case of runtime device code compilation: inline approach (left) and
refactored approach with code isolation (right).

kernel void some_kernel(

global const float4 * restrict posArray,

global const float4 * restrict velArray,

#ifdef HAS_XSPH

global float4 * restrict xsphArray

#endif

#ifdef HAS_STRESS_TENSOR

global float4 * restrict stressTensor4,

global float4 * restrict stressTensor2,

#endif

global float4 * restrict forces)

{

/* common private variables go here */

#ifdef HAS_XSPH

/* XSPH private variables go here */

#endif

#ifdef HAS_STRESS_TENSOR

/* stress tensor private variables go here */

#endif

/* common computations go here */

#ifdef HAS_XSPH

/* XSPH computations go here */

#endif

#ifdef HAS_STRESS_TENSOR

/* stress tensor computations go here */

#endif

}

struct private_vars {

/* common private variables */

#ifdef HAS_XSPH

/* XSPH private variables */

#endif

#ifdef HAS_STRESS_TENSOR

/* stress tensor private variables */

#endif

};

void process_common(struct private_vars *priv)

{/* common computations here */}

void process_xsph(struct private_vars * priv)

#ifdef HAS_XSPH

{/* XSPH computations go here */}

#else

{} /* intentionally left blank */

#endif

void process_stress_tensor(

struct private_vars * priv)

#ifdef HAS_STRESS_TENSOR

{/* stress tensor computations go here */}

#else

{} /* intentionally left blank */

#endif

kernel void some_kernel(

global const float4 * restrict posArray,

global const float4 * restrict velArray,

#ifdef HAS_XSPH

global float4 * restrict xsphArray

#endif

#ifdef HAS_STRESS_TENSOR

global float4 * restrict stressTensor4,

global float4 * restrict stressTensor2,

#endif

global float4 * restrict forces)

{

struct private_vars priv;

/* initialize common part of priv */

#ifdef HAS_XSPH

/* initialize XSPH part of priv */

#endif

#ifdef HAS_STRESS_TENSOR

/* initialize stress tensor part of priv */

#endif

process_common(&priv);

process_xsph(&priv);

process_stress_tensor(&priv);

}
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The first building block is a structure template.

template<bool B, typename T, typename F>struct conditional;

such that conditional<somecondition, SomeType, SomeOtherType>::type
corresponds to SomeType when somecondition is true and to SomeOtherType

when the condition is false. This is part of C++11 and can be also defined in previous
versions of the standard [39].

The purpose of the empty structure template is to “absorb” any type, construct
from anything, and otherwise be empty. Using C++11 variadic templates for the
constructor, it can be implemented as.

template<typename T>struct empty {

template<typename U…>empty(U… args) {}

};

In older versions of C++, the single variadic template constructor must to be
replaced with multiple constructor templates, each taking a separate number of
arguments.

With these building blocks, we can define our conditional structure support
type, relying on the C++11 using template directive:

template<bool B, typename T>

using cond_struct=typename

conditional< B, T, empty<T> >::type;

When forced to use older C++ versions, something similar but less robust can be
implemented with a macro such as.

#define COND_STRUCT(cond, ...) \

typename conditional<cond, __VA_ARGS__, \

empty<__VA_ARGS> >::type

A structure with optional members can then be defined by defining multiple
structures grouping each set of optional members and then defining the main
structure as derived from all substructures, each wrapped in their own
cond_struct<>, as illustrated in Listing 11. We see how the individual groups of
members for the final structure are refactored into simpler structures, carrying their
own initialization information. We also see why the empty structure needs to be a
template: if this was not the case, and both XSPH and the stress tensor computation
were disabled, the kernel parameters structure would have empty as a base class
twice, which is not allowed by the standard; with our template approach, the two
empty base classes are now formally distinct types: empty<xsph_kernel_params>
and empty<stress_kernel_params>. The sample code also shows the advantage
of the BufferList class described previously and its typed buffer access methods.
On the device side, we can use the same approach for the private variables of the
kernel (Listing 12).

Finally, we need to define the individual process functions. For this, we need
separate overloads depending on whether the priv structure has the specific
members or not. One way to achieve this is to make all functions depend on the
same template parameters as the structure, but when there are many
parameters, this becomes quite complex and hard to maintain and extend, since
every additional parameter will require a change in all the functions that access
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the structure, regardless of whether the additional parameter actually has an
impact.

A simple way is to make the functions into templates depending on a single
parameter (the arbitrary type of the structure passed), and then make overloads
based on specific properties of the actual structure that gets passed. This can be
achieved by means of enable_if, a structure template declared as.

template<bool B, typename T=void> enable_if;

which is such that enable_if<condition, SomeType>::type is SomeType when
the condition is true and an error otherwise. Due to the SFINAE principle, when
the compiler is looking for the overload of a function to use, it will discard (without
errors) the overloads which result in an error and automatically select the one which
does not result in an error. Additionally, if SomeType is omitted, void is implied,
which can simply the syntax. Again, this template is provided by the standard
library in C++11 and can be implemented in older version of C++ [40].

To further simplify the syntax, we assume that C++11 is available and we can define:

template<bool B, typename T=void>

using enable_if_t=typename enable_if<B, T>::type;

(which is pre-defined in C++14).

Listing 11.
Conditional structures with C++ applied to kernel parameters: definition of the optional members (left) and
definition of the conditional structure template including them (right).

struct common_kernel_params {

const float4 * restrict posArray;

const float4 * restrict velArray;

float4 * restrict forcesArray;

common_kernel_params(BufferList& buffers)

: posArray(buffers.getData<BUFFER_POS>())

, velArray(buffers.getData<BUFFER_VEL>())

, forcesArray(buffers.getData<BUFFER_FORCES>())

{}

};

struct xsph_kernel_params {

float4 * restrict xsphArray;

xsph_kernel_params(BufferList& buffers)

: xsphArray(buffers.getData<BUFFER_XSPH>())

{}

};

struct stress_kernel_params {

float4 * restrict stressTensor4,

float4 * restrict stressTensor2,

stress_kernel_params(BufferList& buffers)

: stressTensor4(buffers.getData<BUFFER_TAU4>())

, stressTensor2(buffers.getData<BUFFER_TAU2>())

{}

};

template<

/* actual template parameters */

bool needs_xsph, bool needs_stress_tensor,

/* pseudo-template parameters,

used to give simpler names to

conditional structure members */

typename optional_xsph=

cond_struct<needs_xsph, xsph_kernel_params>,

typename optional_stress =

cond_struct<needs_stress_tensor,

stress_kernel_params>

>

struct kernel_params

: common_kernel_params

, optional_xsph

, optional_stress

{

/* These static variables allow compile-time

knowledge about the parameters used

for the specific instantiation

of the template */

static const bool has_xsph=needs_xsph;

static const bool has_stress=

needs_stress_tensor;

kernel_params(BufferList& buffers)

: common_kernel_params(buffers)

, optional_xsph(buffers)

, optional_stress(buffers)

{}

};
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The processing functions can then be defined as in Listing 13, with separate
overloads made available based on compile-time properties of the argument. The
kernel structure becomes very simple (Listing 14): all of the complexity has been
delegated to specific (sub)structures and functions, and we have a guarantee that
each specialized version of the kernel will only contain the code and variables that
are pertinent to its functionality.

Listing 12.
Conditional structures with C++ applied to private function variables: definitions of the optional members
(left) and definition of the conditional structure template including them (right).

struct common_kernel_priv {

/* common variables become members

of this structure */

common_kernel_priv(

common_kernel_params const& params)

{/* initialize the variables

from the parameters */}

};

struct xsph_kernel_priv {

/* XSPH-specific variables become members

of this structure */

xsph_kernel_priv(x

sph_kernel_params const& params)

{/* typically, feature-specific variables

will be initialized from

feature-specific kernel parameters */}

};

struct stress_kernel_priv {

/* Stress-tensor specific variables

become members of this structure */

stress_kernel_priv(

stress_kernel_params const& params)

{/* typically, feature-specific variables

will be initialized from

feature-specific kernel parameters */}

};

template<

bool needs_xsph, bool needs_stress_tensor,

typename optional_xsph =

cond_struct<needs_xsph, xsph_kernel_priv>,

typename optional_stress =

cond_struct<needs_stress_tensor,

stress_kernel_priv>

>

struct kernel_priv

: common_kernel_priv

, optional_xsph

, optional_stress

{

/* These static variables allow compile-time

knowledge about the parameters used for

the specific instantiation of

the template */

static const bool has_xsph=needs_xsph;

static const bool has_stress=

needs_stress_tensor;

kernel_priv(kernel_params<needs_xsph,

needs_stress_tensor> const& params)

: common_kernel_priv(params)

, optional_xsph(params)

, optional_stress(params)

{}

};

Listing 13.
Function specialization with overloads based on argument properties with enable-if in CUDA.

/* process_xsph is defined differently,

depending on whether XSPH is enabled or not;

we check for this based on the static const

has_xsph member of the priv structure:

this will always be present, and it will be

true or false depending on whether

XSPH was enabled */

template<typename Priv>

__device__ enable_if_t<Priv::has_xsph>

void process_xsph(Priv& priv)

{/* XSPH computations here */}

template<typename Priv>

__device__ enable_if_t<not Priv::has_xsph>

void process_xsph(Priv& priv)

{} /* intentionally left blank */

/* Similarly for the stress tensor,

using has_stress */

template<typename Priv>

__device__ enable_if_t<Priv::has_stress>

void process_stress_tensor(Priv& priv)

{/* stress tensor computations here */}

template<typename Priv>

__device__ enable_if_t<not Priv::has_stress>

void process_stress_tensor(Priv& priv)

{} /* intentionally left blank */

/* The common code needs no special treatment */

__device__ void

process_common(common_priv& priv)

{/* common computations here */}
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Runtime selection of the variant of the kernel to be used can be achieved with
simple conditionals (Listing 15). However, when the number of conditionals is
large, this can be rather bothersome to write; more compact and efficient solutions
to the runtime switch are possible, using the meta-programming techniques
presented in [41].

When using C macros, the multiple specialized variants of the kernel and related
structures and functions cannot coexist in the same compilation unit (since C does
not support overloading or templates), making runtime selection of the compile-
time variant impossible: a single specific instance must be selected when the device
code is compiled; on the upside, one would generally use C when using OpenCL C,
for which the device code is compiled at application runtime, as discussed in the
previous section.

In terms of syntax, the only significant downside of the SFINAE approach is that
the signature needs to be repeated for every specialization, in contrast to the C
macro approach, for which we only need one signature, and each implementation is
fenced by #if/#elif/#else/#endif. This could be avoided using the C++17 feature
if constexpr, but support for it in device code is still missing.

7. Conclusions

Particle systems are a fundamental aspect of many applications and numerical
methods. By their own nature, they benefit from the massively parallel stream
processing architecture of modern GPUs, but naive implementations can easily
encounter pitfalls that can limit the full exploitation of the hardware.

Listing 14.
Kernel structure after isolation of the optional components.

template<

bool needs_xsph, bool needs_stress,

typename Params =

kernel_params<needs_xsph, needs_stress_tensor>,

typename Priv =

kernel_priv<needs_xsph, needs_stress_tensor>

>

__global__ void some_kernel(Params params)

{

/* initialize both common and optional private

variables here */

Priv priv(params);

/* run common and optional parts of the code */

process_common(priv);

process_xsph(priv);

process_stress_tensor(priv);

}

/* template parameters for the kernel */

/* shorthand for the kernel parameters struct */

/* shorthand for the kernel private variables */

/* kernel signature */

Listing 15.
Runtime switch to call the appropriate compile-time kernel specialization.

if (opt_xsph && opt_stress) some_kernel<<<…>>>(kernel_params<true, true>(buffers));

else if (opt_xsph&& !opt_stress) some_kernel<<<…>>>(kernel_params<true, false>(buffers));

else if (!opt_xsph&& opt_stress) some_kernel<<<…>>>(kernel_params<false, true>(buffers));

else if (!opt_xsph&& !opt_stress) some_kernel<<<…>>>(kernel_params<false, false>(buffers));
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While hardware vendors go to great lengths to support more liberal coding, the
software can—and should—be designed to leverage the natural programming
model of the hardware, and we have provided several insights on how the particle
systems can be designed to fit better with the requirements of optimal GPU usage.
We also presented a few simple ideas that, when taken into consideration during an
initial implementation, can make future extensions much easier. Many of the sug-
gestions we provide can also be of general interest beyond the implementation of
particle systems.

We have stressed the importance of the choice to the correct approach in dealing
with the potentially severe limitations in the numerical robustness of the imple-
mentation, due to the restricted accuracy and precision of the single-precision
floating-point format which GPUs are optimized for. While many of the techniques
we have presented are not new (some going as far back as the nineteenth century),
in our experience they have surprisingly limited adoption; we hope that our discus-
sion of their usefulness in this context will lead to higher awareness of the possibil-
ities they offer. We dislike the adoption of higher-precision data types as a solution
to the issue, not only because of the performance implications on consumer hard-
ware, but as a philosophical objection to waste: why use the wrong numerical
approach, wasting the additional precision granted by double precision, when the
correct approach can make single precision sufficient? We do understand the need
for the extended precision requirements in many applications, and we are sure that
our reminiscence of classical solutions to better accuracy can benefit them as well,
particularly since support for even higher-precision data types is nearly nonexistent
in hardware (with the possible exception of the IBM POWER9 support for IEEE-
754-compliant 128-bit floating-point formats) and especially on GPUs.
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